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Phase field crystal (PFC) theory is extensively used for modeling the phase behavior, structure, thermodynam-
ics, and other related properties of solids. PFC theory can be derived from dynamical density functional theory
(DDFT) via a sequence of approximations. Here, we carefully identify all of these approximations and explain
the consequences of each. One approximation that is made in standard derivations is to neglect a term of form
∇ · [n∇Ln], where n is the scaled density profile and L is a linear operator. We show that this term makes a
significant contribution to the stability of the crystal, and that dropping this term from the theory forces another
approximation, that of replacing the logarithmic term from the ideal gas contribution to the free energy with
its truncated Taylor expansion, to yield a polynomial in n. However, the consequences of doing this are (i) the
presence of an additional spinodal in the phase diagram, so the liquid is predicted first to freeze and then to melt
again as the density is increased; and (ii) other periodic structures, such as stripes, are erroneously predicted to
be thermodynamic equilibrium structures. In general, L consists of a nonlocal convolution involving the pair
direct correlation function. A second approximation sometimes made in deriving PFC theory is to replace L
with a gradient expansion involving derivatives. We show that this leads to the possibility of the density going
to zero, with its logarithm going to −∞ while being balanced by the fourth derivative of the density going
to +∞. This subtle singularity leads to solutions failing to exist above a certain value of the average density.
We illustrate all of these conclusions with results for a particularly simple model two-dimensional fluid, the
generalized exponential model of index 4 (GEM-4), chosen because a DDFT is known to be accurate for this
model. The consequences of the subsequent PFC approximations can then be examined. These include the phase
diagram being both qualitatively incorrect, in that it has a stripe phase, and quantitatively incorrect (by orders
of magnitude) regarding the properties of the crystal phase. Thus, although PFC models are very successful as
phenomenological models of crystallization, we find it impossible to derive the PFC as a theory for the (scaled)
density distribution when starting from an accurate DDFT, without introducing spurious artifacts. However, we
find that making a simple one-mode approximation for the logarithm of the density distribution ln ρ(x) rather
than for ρ(x) is surprisingly accurate. This approach gives a tantalizing hint that accurate PFC-type theories may
instead be derived as theories for the field ln ρ(x), rather than for the density profile itself.
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I. INTRODUCTION

The phase field crystal (PFC) theory for matter is widely
used and has been successfully applied to describe a broad
range of phenomena, including, for example, grain boundary
dynamics [1,2], crystal nucleation [3,4], crystal growth [5],
glass formation [6], crack propagation [2], and many other
properties of condensed matter. For more background and ex-
amples of situations to which the PFC theory has been applied,
see the excellent review [7]. The PFC theory was originally
proposed, in the spirit of “regular” phase field theory (PFT),
as a diffuse-interface theory for the time evolution of an
order parameter field [1]. The equations of PFT are obtained
via symmetry, thermodynamic, and other arguments and the
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result is a theory that is widely used in materials science and
other disciplines to model the structure of materials. For more
background on PFT see for example Ref. [8] and references
therein.

The central and original idea in extending PFT to arrive
at PFC theory is to incorporate aspects of the microscopic
structure of the material into the model [1]. The result is
a theory that operates on atomic length scales and diffusive
timescales [7]. By this we mean that PFC theory is a theory
for a field that exhibits numerous maxima, each of which
is identified as the average location of the atoms (or more
generally “particles”) in the system. This idea is powerful
because, by building into the theory more information about
the underlying material structure, it enables the inclusion of
much more of the physics coming from particle correlations to
be incorporated. Over the years several variants of PFC theory
have been developed that are able to describe a range different
crystalline (and even quasicrystalline) structures [9–16].

Thus, the original PFC [1] may be viewed as the simplest
partial differential equation model one can conceive of for
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a conserved order parameter exhibiting peaks arranged with
crystalline ordering. It is obtained from a (scaled) free energy
Fα that is a functional of the dimensionless order parameter
n:

Fα[n] =
∫ {

1

2
n
[(

k2
s + ∇2

)2 − r
]
n + 1

4
n4

}
dx, (1)

where n(x, t ) is a field that depends on position in space x and
on time t , and ks is an inverse length scale that determines
the lattice spacing of the crystal. The parameter r defines
how near the system is to freezing. The time evolution of the
conserved field n is given by the dynamics

∂n

∂t
= ∇2

(
δFα

δn

)
= −∇2[rn − (

k2
s + ∇2)2

n − n3], (2)

where δFα

δn is the functional derivative of Fα with respect to
n(x).

Given the ingredients in the model, it is therefore no
surprise that PFC theory is closely related to the Swift-
Hohenberg equation [17]:

∂n

∂t
= −δFα

δn
= rn − (

k2
s + ∇2

)2
n − n3, (3)

which is one of the archetypal equations in pattern formation
theory. As one can see above, both the Swift-Hohenberg
equation and PFC theory can be expressed as a different type
of dynamics based on the same free energy functional [7].
The Swift-Hohenberg equation (3) is based on an underlying
dynamics that seeks to minimize the free energy over time,
while the PFC dynamics (2), which also decreases the free
energy over time, in addition enforces a conservation of the
average value of the order parameter in the system. Thus, the
PFC equation (2) is sometimes referred to as the conserved
Swift-Hohenberg equation [7,18–21].

In the years after PFC theory was originally proposed it
was realized that it could be derived from classical dynamical
density functional theory (DDFT) [5,7,22–24], via a sequence
of several different approximations. Below, we say much more
on what these approximations are. DDFT is a theory for the
time evolution of the ensemble average one-body (number)
density profile ρ(x, t ), for a nonequilibrium system of inter-
acting classical particles. DDFT is based on equilibrium den-
sity functional theory (DFT) [25–27] and for an equilibrium
system, DDFT is equivalent to DFT. DDFT was originally
developed as a theory for Brownian particles with overdamped
stochastic equations of motion [28–31], but it has also been
extended to describe the dynamics of underdamped systems
and atomic or molecular systems where the particle dynamics
is governed by Newton’s equations of motion [32–37]. This
body of work shows that when such systems are not too far
from equilibrium, then the dynamics predicted by the original
DDFT is still often correct in the long-time limit where the
particle dynamics is dominated by diffusive processes. This
is because DDFT corresponds to a dynamics given by the
continuity equation

∂ρ

∂t
= −∇ · j, (4)

where the current j ∝ −∇μ(x, t ), with μ(x, t ) a local
(nonequilibrium) chemical potential [28–31]. Equation (4) is

of course expected since the total number of particles in the
system N = ∫

ρ(x, t )dx is a conserved quantity.
References [5,7,22–24] give various different derivations

of the PFC model, starting from DFT and/or DDFT. Here,
starting from DDFT, we systematically show how all the vari-
ous different theories are related and we identify and highlight
the significance of each of the approximations that are made in
the derivation of PFC theory. We show that there is a particular
term of the form ∇ · [n∇Ln], where L is a linear operator,
that is almost universally neglected because it is “of higher
order” [24], but this term is actually important for stabilizing
crystalline structures: its contribution is of the same order as
some of the terms that are retained. As we explain in detail,
neglecting this term essentially forces one to make the Taylor
expansion of the ideal gas logarithmic term in the free energy
in order to recover something physically reasonable. We show
that neglecting this term, as is done in PFC theory, and the
subsequent replacement of the logarithm by its Taylor series,
leads to the spurious appearance in the phase diagram of an
extra spinodal and also alters the relative stabilities of the
crystal state compared to a stripe phase and also other phases,
leading in two dimensions (2D) to the stripe phase becoming
the global free energy minimum state for certain parameter
values. Essentially, all this behavior originates because the
function ln(1 + n) has one root, but when it is replaced
by a truncated Taylor expansion, the resulting polynomial
generally has two roots. Our arguments also directly apply
in three dimensions to explain why lamellar phases occur
as equilibrium phases in PFC theory. Recall that most PFC
theories predict that as one moves in the phase diagram
away from the region where there is coexistence between
the liquid and the crystal, moving deeper into the crystalline
portion of the phase diagram, such stripe or lamellar phases
appear as equilibrium structures and are global minima of
the free energy [7]. Of course, particles with isotropic pair
interactions generally never “freeze” to form striped phases,
unless they have an unusual and special form for the pair
potential between the particles [38–40]. DDFT, taken together
with a reliable approximation for the Helmholtz free energy
functional, of course does not predict such stripe phases for
crystallization from simple liquids.

The linear operator L has the form of a nonlocal convolu-
tion involving the pair direct correlation function plus another
simpler term [see Eq. (20) below]. Another approximation
that is often made in deriving PFC theories is to approximate
L by a gradient expansion involving derivatives. We show
below that if one makes this approximation while simultane-
ously retaining the logarithmic term from the ideal gas free
energy, this results in a theory that still predicts reasonably
accurately the freezing transition, but as one increases the
average density, moving deeper into the region of the phase
diagram where the crystal phase occurs, there is a point where
ρ(x) → 0 at the points in space x between the density peaks,
where the density is a minimum. On increasing the average
density beyond this point in the phase diagram, there is no
solution to the theory. We analyze in detail this singular behav-
ior. As ρ(x) → 0 we have ln ρ(x) → −∞, of course. In the
equation for the equilibrium density profile this divergence is
initially balanced by the term involving the fourth derivative,
∂4ρ/∂x4 → +∞. However, when the average density in the
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system is increased beyond the value at which this divergence
occurs, we find there is no solution.

We illustrate these conclusions by finding the predicted
structures and phase diagram for the 2D version of the
GEM-4 (generalized exponential model of index 4) [41,42],
chosen because DDFT based on a simple approximation (the
so-called random phase approximation (RPA) [43]) for the
Helmholtz free energy functional can be very accurate for
predicting the equilibrium structures formed in this model and
also the thermodynamics [42,44,45]. At higher temperatures,
the 2D GEM-4 system exhibits just a single fluid phase
and at higher densities a single crystal phase. At lower
temperatures, where the RPA DDFT is no longer accurate,
there is a hexatic phase and multiple crystalline phases as the
density is increased [42]. Here we do not consider this regime,
restricting ourselves to the regime where there is just one
fluid and one crystal phase, which are predicted accurately by
the RPA DDFT. This enables us to investigate the effect of
making subsequent approximations to the DDFT, including
those made to derive PFC theory. We find that the PFC-type
theories spuriously predict three additional phases that are in
reality not present in the phase diagram (i.e., are not thermo-
dynamically stable). These are (i) a stripe phase, (ii) what we
refer to as “down hexagons” (in contrast to the true crystal
structure, which we refer to as “up hexagons”), and then at
even higher densities a melting to form (iii) another uniform
liquid phase. We show how the approximations made in
deriving the PFC result in these structures being predicted.

The final contribution of this paper is to show that there is a
very simple and accurate ansatz one can make for the form of
the equilibrium crystal density profile in DDFT (and so also
for DFT, of course). The ansatz is ρ(x) = ρ0eφ(x), where ρ0

is a constant and the field φ(x) is approximated by a sinusoid
of the form φ(x) ≈ φ0 + φ1eik·x + complex conjugate (in one
dimension), plus other similar terms (in higher dimensions),
where φ0 and φ1 are constants. The results presented here are
for the GEM-4 model and show why this approximation is
unexpectedly accurate: the approximation is able to replicate
almost exactly the numerical solution to the DDFT problem,
from small to arbitrarily large amplitude density variations.
We expect this ansatz also to be reliable for other systems.
This form of one-mode theory gives a hint for future directions
to develop accurate PFC-type theories, since using a one-
mode approximation in PFC is often fairly accurate.

This paper is structured as follows: In Sec. II we present
our systematic step-by-step derivation of PFC, starting from
DDFT. After each approximation, we carefully state the
model; i.e., we give the corresponding free energy functional
and also the expression for the chemical potential, which is a
quantity that is a constant at all points in space for equilibrium
states. In order to keep track of the different orders in which
the approximations can be made, we give each model a
name, starting with PFC-α for the original PFC model in
Eq. (2) above, and with DDFT-0 for the original formulation
of DDFT below. The different DDFT approximations result
in five different versions, DDFT-1 to DDFT-5. Similarly, we
explain the various different approximations that can be made
to each of these, leading to a corresponding PFC theory,
which we name PFC-α to PFC-ε. Note that the criterion we
use here for distinguishing between whether we refer to a

theory as a DDFT or a PFC is based on whether the free
energy which is minimized by the dynamical equations (i.e.,
the Lyapunov functional) has the logarithmic ideal gas term
or not; if it does not have the logarithm, we refer to it as
a PFC. Table I below is there to help the reader navigate
the various models and the approximations made in each
one. Section II concludes with a summarizing discussion. In
Sec. III we present results for the GEM-4 system comparing
predictions for the density profiles and thermodynamics of
equilibria for two of the different DDFT theories and also
two of the PFC theories. In this section we also present the
phase diagrams for the GEM-4 system predicted by these
different DDFT and PFC theories. By comparing all of these
we are able to assess the accuracy of the different theories
and the validity of the various approximations. In Sec. IV
we discuss the implications of the main two approximations
and analyze the singular behavior displayed by some models.
In Sec. V we introduce the ansatz ρ(x) = ρ0eφ(x) and derive
the new one-mode approximation for DDFT. We draw our
conclusions in Sec. VI. The paper includes two appendices
in which we describe the numerical (continuation) methods
we use to calculate the density profiles.

II. DERIVATION OF THE PHASE FIELD
CRYSTAL MODEL FROM DDFT

In this section we progress from the original formulation
of DDFT (which we call DDFT-0) through a series of ap-
proximations (DDFT-1, …, DDFT-5), as listed in Table I. Our
main starting point is DDFT-2. From this point, there are three
main approximations that can be made (or not made): (i) the
Ramakrishan-Yussouff (RY) or the random phase approxima-
tion (RPA) for the free energy, (ii) the gradient expansion
of the convolution term, and (iii) the Taylor expansion of
the logarithmic term. Making (or not making) the first two
of these approximations results in DDFT-3, DDFT-4, and
DDFT-5. Then, making the third approximation from DDFT-2
results in PFC-β, from DDFT-3 results in PFC-γ , and so on
up to PFC-ε. The PFC-ε model can be rescaled to recover
the original version of PFC, PFC-α; see Eqs. (1) and (2). The
various models are summarized in Table I. Among the models
we present below, DDFT-5 is equivalent to the model derived
by Huang et al. [24] and advocated by van Teeffelen et al.
[23] (named PFC1 in that paper), and DDFT-3 and PFC-ε
are equivalent to the models named DDFT and PFC2 by van
Teeffelen et al. [23].

A. Dynamic density functional theory: DDFT-0

The starting point for all of our derivations is the key DDFT
equation [28–31]:

∂ρ

∂t
= ∇ ·

[
βM(ρ)∇ δF

δρ

]
, (5)

where β = (kBT )−1 (with kB being Boltzmann’s constant and
T being temperature), and M(ρ) is the positive ρ-dependent
mobility. The Helmholtz free energy F[ρ] depends on the
density profile ρ(x, t ) integrated over space; hence F[ρ] de-
pends on time but not on position [30]. The expression δF/δρ

is the functional derivative of F with respect to ρ(x, t ), which
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TABLE I. Various versions of DDFT and PFC, in order of appearance, along with references to the equations defining the dynamics, the
free energy, and the chemical potential. We also give the quadratic (Q), cubic (C), and quartic (R) coefficients. PFC-α is the phenomenological
model, also known as the conserved Swift-Hohenberg equation; PFC-ε is equivalent to PFC-α.

Name
Truncate
at O(c(4) )

LDA (31) for
c(3) and c(4)

RY/RPA:
c(3) = c(4) = 0

Gradient
expansion
of L (44)

Constant mobility,
expand ln(1 + n) Dynamics

Free
energy

Chemical
potential Q, C, R

PFC-α Yes N/A Yes Yes Yes (2) (1) Q = 0, C = −1

DDFT-0 (5) (10) (7)
DDFT-1 Yes (24), (26) (25) (28), (30)

DDFT-2 Yes Yes (34) (32) (36) (35)
DDFT-3 Yes N/A Yes (41) (40) (42) Q = 1

2 , C = 0, R = 0
DDFT-4 Yes N/A Yes (46) as (32) as (36) (35)
DDFT-5 Yes N/A Yes Yes (48) (47) (49) Q = 1

2 , C = 0, R = 0

PFC-β Yes Yes Yes (53), (54) (52) (55) (56)
PFC-γ Yes N/A Yes Yes (58) (57) (59) Q = 1

2 , C = − 1
3

PFC-δ Yes N/A Yes Yes as (54) as (52) as (55) (56)
PFC-ε Yes N/A Yes Yes Yes (60) as (57) as (59) Q = 1

2 , C = − 1
3

therefore depends on both time and position. DDFT usually
takes M(ρ) = Dρ; i.e., the mobility is proportional to density
[28–31], where D is the diffusion coefficient. We henceforth
scale time so that D = 1. With boundary conditions that do
not allow material to enter or leave the system, N = ∫

ρ(x)dx
(or equivalently, the mean density) is a constant of the motion
and is the total number of particles in the system.

With suitable boundary conditions, one can readily show
that the Helmholtz free energy decreases monotonically with
time:

dF
dt

= −
∫

βM(ρ)

∣∣∣∣∇ δF
δρ

∣∣∣∣
2

dx � 0, (6)

so (assuming that F[ρ] is bounded below) the system
typically evolves to a (local) minimum of F , which is a
dynamically stable equilibrium of (5). Here, “dynamically
stable” means that small perturbations away from the equi-
librium decay, and “equilibrium” means that ∂ρ/∂t = 0 and
dF/dt = 0. Owing to the dynamics being governed by a
continuity equation (4), such perturbations cannot change the
mean density. Local minima of F that are not the global
minimum are thermodynamically metastable. The system can
also have dynamically unstable equilibria, for which F is a
saddle or maximum. From (6), we see that all equilibria of (5)
satisfy ∇(δF/δρ ) = 0, so

δF
δρ

= constant = μ, (7)

where μ is the chemical potential of the equilibrium. This
is of course the Euler-Lagrange equation for the problem
of finding stationary points of the functional F[ρ], subject
to the constraint of fixed mean density. Note however that
when evolving (5) forward in time from an arbitrary initial
condition, μ is not necessarily known a priori.

The theory can also be cast in terms of the grand potential
(also called the Landau free energy) functional [25–27]:


[ρ] = F[ρ] − μN = F[ρ] − μ

∫
ρ(x)dx. (8)

From this it follows that the functional derivative of 
 is

δ


δρ
= δF

δρ
− μ, (9)

and that this is zero at equilibrium: equilibria are extreme val-
ues of 
. Like the Helmholtz free energy, the grand potential
decreases monotonically with time, since Eq. (6) is also true
if one replaces F by 
. Therefore, for two phases to coexist,
they must have the same specific grand potential (i.e., the same
pressure) and the same chemical potential. Thus, the global
minimum of 
 for a given μ and T is the thermodynamic
equilibrium state of the system [25–27].

Following the usual approach in DFT, we separate the
Helmholtz free energy into three parts: the “ideal gas” con-
tribution, which is proportional to the temperature but takes
no account of particle interactions, an excess (Fex) over the
ideal gas contribution arising from the particle interactions,
and the contribution due to an external potential Uext(x), as
follows [25–27]:

F[ρ] = kBT
∫

ρ[ln(�dρ) − 1]dx + Fex[ρ] +
∫

ρUextdx,

(10)

where the integral is taken over the volume V in three dimen-
sions (d = 3) (or the area in 2D, d = 2) and where � is the
thermal de Broglie wavelength. Since for our purposes here
the value of � is irrelevant (changing � will shift the values
of F and μ by constants), we henceforth set � = 1. We also
consider bulk systems and so we assume that Uext = 0. With
the separation in Eq. (10), we have

β
δF
δρ

= ln ρ + β
δFex

δρ
, (11)

which gives

β∇ δF
δρ

= 1

ρ
∇ρ + · · · , (12)

where on the right hand side we only explicitly write the con-
tribution from the ideal gas part of the free energy. Inserting
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this into Eq. (5) with M = Dρ we obtain

∂ρ

∂t
= ∇2ρ + · · · , (13)

in which the coefficient in front of the term ∇2ρ is D, but our
choice of time scaling has D = 1. Note that this term is linear
in ρ, in spite of it originating from a nonlinear logarithmic
contribution to the free energy.

We refer to the model up to this point as DDFT-0.

B. Expansion of Fex: DDFT-1

To proceed, we must have an expression for the excess
Helmholtz free energy functional Fex[ρ]. We use a functional
Taylor expansion, which is also that used in all derivations
of PFC theory. This gives the free energy functional of the
system of interest in terms of properties of a reference system,
which are assumed to be known. The reference system that
is chosen is a uniform liquid, with constant density ρ0. The
density profile of the system of interest may be varying in
space and with an average density that may be different
from ρ0. The functional Taylor series expansion of the excess
free energy can be written in terms of the density difference
�ρ(x, t ) = ρ(x, t ) − ρ0 as follows [26,27]:

Fex[ρ] = Fex[ρ0] − kBT
∫

c(1)(x1)�ρ(x1)dx1

− kBT

2!

∫
c(2)(x1, x2)�ρ(x1)�ρ(x2)dx1dx2

− kBT

3!

∫
c(3)(x1, x2, x3)

×�ρ(x1)�ρ(x2)�ρ(x3)dx1dx2dx3

+ similar fourth-order term + · · · . (14)

The expressions c(n) in the equation above are proportional to
the first and higher functional derivatives of Fex with respect
to density, all evaluated at ρ = ρ0:

c(n)(x1, . . . , xn) = −β
δnFex

δρ(x1) . . . δρ(xn)
[ρ0]. (15)

These functions c(n) are known as direct correlation functions
[25–27], and are related to n-point density correlation func-
tions. In the two-point case, c(2) is the pair direct correlation
function and is related to the pair correlation function (i.e.,
the radial distribution function) through the Ornstein-Zernike
equation [25–27]. These direct correlation functions depend
on our choice of ρ0 and depend directly on temperature
through the linear factor of β in the definition (15) and also
indirectly via the fact that the correlations in a liquid change
with temperature. Note also that c(1)[ρ0] is a constant when ρ0

is a constant.
For a homogeneous liquid with distant (or periodic) bound-

aries, these functions depend on displacements but not on
absolute position, so (through a slight abuse of notation) we
also write

c(n)(x1, . . . , xn) = c(n)(�x2,�x3, . . . , �xn), (16)

where �x j = x j − x1 [27]. We also take the liquid to be
isotropic.

We are considering density perturbations away from the
liquid state, so it is convenient to write

ρ(x, t ) = ρ0[1 + n(x, t )]. (17)

We do not assume that n is small, but it is often the case
that the average of n(x, t ) over the whole system is small.
Note also that ρ(x, t ) = ρ0 is a stationary solution of (5).
Substituting Eq. (14) into Eq. (5) and writing only the terms
up to c(1), we get

∂n

∂t
= ∇2n − ∇2c(1) − ∇ · [n∇c(1)] + · · · . (18)

That the uniform liquid state is an equilibrium of (5) implies
that n = 0 is a solution of Eq. (18): all terms not written down
involve �ρ and so are zero for the uniform liquid with density
ρ0. Recall that c(1)[ρ0] is a constant, which means terms
involving gradients of this can be dropped. While this constant
term does not influence the structure (density profile) both in
and out of equilibrium, it does affect the thermodynamics (i.e.,
free energy value) and so also mechanical properties [46].
With this, we can write the equation for the time evolution
of n(x, t ) [up to O(c(4) )] as

∂n

∂t
= ∇2n − ρ0∇2

∫
c(2)(x, x2)n(x2)dx2

− ρ0∇ ·
[

n∇
∫

c(2)(x, x2)n(x2)dx2

]

− ρ2
0

2
∇2

∫
c(3)(x, x2, x3)n(x2)n(x3)dx2dx3

− ρ2
0

2
∇ ·

[
n∇

∫
c(3)(x, x2, x3)n(x2)n(x3)dx2dx3

]

− ρ3
0

6
∇2

∫
c(4)(x, x2, x3, x4)

× n(x2)n(x3)n(x4)dx2dx3dx4

− ρ3
0

6
∇ ·

[
n∇

∫
c(4)(x, x2, x3, x4)

× n(x2)n(x3)n(x4)dx2dx3dx4

]
+ · · · , (19)

where we have suppressed writing the time dependence of n
throughout and the x dependence of n when it is not inside an
integral. We have written this equation so that the first line is
linear in n, the next two lines are quadratic in n, the fourth and
fifth lines are cubic in n, and the last line is quartic in n.

Since the first line is linear in n, and both terms involve a
Laplacian, we can write the linearized version of (19) in terms
of the negative Laplacian of a linear operator L:

∂n

∂t
= −∇2Ln, (20)

where

Ln(x) = −n(x) + ρ0

∫
c(2)(x, x2)n(x2)dx2. (21)

The nonlocal operator L is most conveniently considered in
terms of its Fourier transform, or equivalently, in terms of how
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k

k2σ(k)

k = 1

FIG. 1. Illustrative example of the growth rate k2σ (k) as a func-
tion of wave number k. Small amplitude modes with k2σ (k) < 0
decay exponentially in time, while those with k2σ (k) > 0 grow
exponentially. Throughout we scale lengths so that the maximum
growth rate occurs at k = 1.

it acts on modes of the form exp(ik · x). If

Leik·x = σ (k)eik·x, (22)

then σ (k) is the eigenvalue of L with eigenfunction exp(ik ·
x). With this, the linear equation (20) can readily be
solved in terms of linear combinations of functions like
exp [k2σ (k)t + ik · x], where k2σ (k) is the growth rate for a
mode with wave vector k, and k = |k|. If σ (k) is negative for
all k, all small amplitude density modulations decay to zero,
and the liquid state is dynamically stable.

Recall that for a bulk liquid, c(2)(x, x2) = c(2)(�x2), with
�x2 = x2 − x, and for spherically symmetric (isotropic) parti-
cles, c(2)(x, x2) = c(2)(|�x2|). Therefore, in this case σ (k) =
σ (k); i.e., σ depends only on the wave number k = |k|. The
eigenvalue σ (k) can be expressed as

σ (k) = −1 + ρ0

∫
c(2)(|x2 − x|)eik·(x2−x)dx2

= −1 + ρ0ĉ(2)(k), (23)

where ĉ(2) is the Fourier transform of c(2). Recall from (15)
that c(2) is proportional to β, so if ĉ(2) has any positive Fourier
components, decreasing the temperature (increasing β) can be
expected to lead to a range of wave numbers with positive
growth rates, and the liquid being dynamically unstable to
modes with wave numbers centered around the maximum
of k2σ (k); see Fig. 1. We have scaled lengths so that the
maximum growth rate occurs at wave number k = 1. This
argument, of course, assumes that the product β−1c(2) is
independent of temperature. This is not true in general, but
for some systems it is a good approximation (at least over
a limited range of temperatures); see Ref. [47] for a recent
discussion on this for a particular colloidal system. Recall
too that for an equilibrium liquid the static structure factor
S(k) = [1 − ρ0ĉ(2)(k)]−1. S(k) is proportional to the Fourier
transform of the radial distribution function [27]. So, for the
stable uniform liquid, we have σ (k) = −1/S(k).

We refer to the state point at which the uniform liquid
becomes linearly unstable to density modulations with wave
number k �= 0 as the spinodal point, in keeping with the
terminology of [48]. The more common usage of the term
“spinodal” relates to the onset of the zero-wave-number phase
separation instability of liquid-liquid or gas-liquid phase sep-
aration [27,30]. At the spinodal point, the density and temper-
ature are such that the liquid is dynamically marginally stable;

that is, the maximum of k2σ (k) is zero. Therefore, at higher
temperatures, small amplitude density modulations decay, and
at lower temperatures, small amplitude density modulations
grow. For a given fixed value of ρ0, the spinodal temperature
is Ts, with a corresponding βs = (kBTs)−1. Similarly, either
increasing the density ρ0 of the liquid or increasing the
chemical potential μ can also lead to crossing the spinodal.

With (21), we can eliminate c(2) in favor of L in (19), and
obtain [truncating at O(c(4) )]

∂n

∂t
= −∇2

(
Ln + 1

2
n2

)
− ∇ · [n∇Ln]

− ρ2
0

2
∇2

∫
c(3)(x, x2, x3)n(x2)n(x3)dx2dx3

− ρ2
0

2
∇ ·

[
n∇

∫
c(3)(x, x2, x3)n(x2)n(x3)dx2dx3

]

− ρ3
0

6
∇2

∫
c(4)(x, x2, x3, x4)

× n(x2)n(x3)n(x4)dx2dx3dx4

− ρ3
0

6
∇ ·

[
n∇

∫
c(4)(x, x2, x3, x4)

×n(x2)n(x3)n(x4)dx2dx3dx4

]
, (24)

where we have used the result ∇ · [n∇n] = 1
2∇2n2. For an

ideal gas, with Ln = −n and c(2) = c(3) = c(4) = 0, the first
line of the equation above reduces to the diffusion equation,
∂n
∂t = ∇2n, similarly to (13).

At this point, we have made no approximations beyond ex-
panding the free energy in Eq. (14) and truncating at O(c(4) ).
We refer to the model at this stage, truncated in this way, as
DDFT-1. In the new variables, and incorporating c(2) into L,
the Helmholtz free energy F can be expressed (up to fourth
order) in terms of a scaled free energy F1 = F/ρ0, where

βF1[n] =
∫

{[1 + n(x1)] ln[1 + n(x1)] − n(x1)}dx1

− 1

2

∫
[n2(x1) + n(x1)Ln(x1)]dx1

− ρ2
0

6

∫
c(3)(x1, x2, x3)

× n(x1)n(x2)n(x3)dx1dx2dx3

− ρ3
0

24

∫
c(4)(x1, x2, x3, x4)

× n(x1)n(x2)n(x3)n(x4)dx1dx2dx3dx4, (25)

and where we have also dropped terms that do not contribute
to (24). In these variables, the DDFT that leads to the dynam-
ics (24) is

∂n

∂t
= ∇ ·

[
β(1 + n)∇ δF1

δn

]
. (26)

Note that because of the ln(1 + n) term in (25), n is con-
strained so that 1 + n is always non-negative. Also, because
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of Eq. (17), we have

δF
δρ

= δF1

δn
. (27)

Moreover, states that satisfy

δF1

δn
= �μ, (28)

where �μ = μ − μ0 and where [see (7), (10), and (14)]

μ0 = kBT ln �dρ0 − kBT c(1)[ρ0], (29)

are equilibrium solutions of (24), or equivalently, extrema of
F1. Henceforth, we redefine μ to be β�μ/ρ0, which is a
shifted and rescaled chemical potential. For the free energy
in (25), we have

β
δF1

δn
= ln [1 + n(x)] − n(x) − Ln(x)

− ρ2
0

2

∫
c(3)(x, x2, x3)n(x2)n(x3)dx2dx3

− ρ3
0

6

∫
c(4)(x, x2, x3, x4)

× n(x2)n(x3)n(x4)dx2dx3dx4. (30)

At equilibrium, this expression (the rescaled chemical poten-
tial μ) does not vary in space. The reference liquid n = 0
has F1 = 0 and μ = 0. The zero value for F1 arises (in part)
from dropping Fex[ρ0] from (14), while the zero value for the
rescaled chemical potential is a consequence of (29), which
is equivalent to dropping c(1) from (14) and setting � = 1
in (10).

C. Simplification of c(3) and c(4): DDFT-2

As the next step, Huang et al. [24] kept only the zero-wave-
number components of c(3) and c(4), or equivalently, they took

c(3)(x, x2, x3) = c(3)
0 δ(x − x2)δ(x − x3),

(31)
c(4)(x, x2, x3, x4) = c(4)

0 δ(x − x2)δ(x − x3)δ(x − x4),

where c(3)
0 and c(4)

0 are constants (our sign convention is
opposite to that of [24]). This is equivalent to making a local
density approximation (LDA) [26] for these terms in the free
energy. We could in principle include terms involving c(5) and
higher as well, treated in the same way: these would contribute
a more general function of n in the free energy, treated with
the LDA. However, since we are investigating the effect of
approximations that have not yet been discussed, we keep
as simple a free energy as possible at this point, consistent
with truncating at O(c(4) ). With this, the free energy in (25)
becomes

βF2[n] =
∫

{[1 + n(x)] ln[1 + n(x)] − n(x)}dx

+
∫ {

− 1

2
[n2(x) + nLn(x)]

− ρ2
0

6
c(3)

0 n3(x) − ρ3
0

24
c(4)

0 n4(x)

}
dx, (32)

and the four terms involving c(3) and c(4) in (24) become

−ρ2
0

2
c(3)

0 ∇2n2, −ρ2
0

2
c(3)

0 ∇ · [n∇n2],

−ρ3
0

6
c(4)

0 ∇2n3, −ρ3
0

6
c(4)

0 ∇ · [n∇n3]. (33)

Using ∇ · [n∇n2] = 2
3∇2n3 and ∇ · [n∇n3] = 3

4∇2n4, Huang
et al. [24] combined (33) and (24) to get

∂n

∂t
= −∇2(Ln + Qn2 + Cn3 + Rn4) − ∇ · [n∇Ln], (34)

where

Q = 1

2
+ ρ2

0

2
c(3)

0 , C = ρ2
0

3
c(3)

0 + ρ3
0

6
c(4)

0 , R = ρ3
0

8
c(4)

0 .

(35)

We also have a chemical potential

μ = β
δF2

δn
= ln [1 + n(x)] − n(x) − Ln(x)

− ρ2
0

2
c(3)

0 n2(x) − ρ3
0

6
c(4)

0 n3(x), (36)

which does not vary in space at equilibrium. Up to this point,
we refer to the model as DDFT-2.

Here, we retain the n4 term (as did Huang et al. [24]), be-
cause otherwise the dynamics in (34) would not be consistent
with the free energy (32) and the DDFT dynamics (26) (with
F2 instead of F1).

The next three models involve making (or not making)
two approximations: (i) assuming the Ramakrishan-Yussouff
or random phase approximation, which leads to a quadratic
excess Helmholtz free energy functional, and (ii) making a
gradient expansion of the linear operator L.

D. Quadratic excess free energy: DDFT-3

Often, the free energy functional in (14) is truncated at
O(�ρ2). This is known as the Ramakrishan-Yussouff (RY)
approximation [7,23,49], which effectively sets c(3) = c(4) =
0. A mathematically equivalent approximation arises in the
treatment of soft purely repulsive particles modeling soft
matter, namely the RPA [43]. Here, two soft isotropic particles
at x1 and x2 separated by a distance x12 = |x1 − x2| interact
through a potential energy u(x12), which depends only on the
magnitude of the distance and is finite for all values of x12.
The excess free energy [cf. Eq. (14)] is then

Fex[ρ] = 1

2

∫
u(|x1 − x2|)ρ(x1)ρ(x2)dx1dx2. (37)

This amounts to setting c(3) = c(4) = 0 and

c(2)(x1, x2) = −βu(|x1 − x2|) (38)

in DDFT-2. The eigenvalues σ (k) can thus be related to the
Fourier transform of u through (23) [5,43]:

σ (k) = −1 − ρ0β

∫
u(|x − x2|)eik·(x2−x)dx2

= −1 − ρ0βû(k). (39)
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Setting c(3) = c(4) = 0 implies from (35) that Q = 1
2 , C = 0,

and R = 0, and results in a free energy

βF3[n] =
∫

{[1 + n(x1)] ln[1 + n(x1)] − n(x1)}dx1

− 1

2

∫
[n2(x1) + n(x1)Ln(x1)]dx1. (40)

With this choice of free energy, the dynamics in (34) becomes

∂n

∂t
= −∇2

(
Ln + 1

2
n2

)
− ∇ · [n∇Ln], (41)

along with an analogous version of (36), for the chemical
potential:

μ = β
δF3

δn
= ln [1 + n(x)] − n(x) − Ln(x). (42)

We refer to this model as DDFT-3; it is equivalent to DDFT-1
with the RY approximation, and to DDFT-0 with Fex given by
the RPA approximation.

Before moving on to make further approximations, it is
worth noting a useful property that DDFT-3 and the subse-
quent theories derived from it possess. If the pair potential
u(x12) in Eq. (38) can be written as u(x12) = εψ (x12), where
ε is a parameter that controls the overall strength of the
potential, then from Eqs. (21), (38), and (42) we obtain

μ = ln [1 + n(x)] + ρ0βε

∫
ψ (|x − x2|)n(x2)dx2. (43)

The consequence of this is that for a given ψ , the behavior
of the model depends only on the combination of parameters
ρ0βε and the value of μ. If one changes the value of the
reference density ρ0 to some other value, then this is entirely
equivalent to solving the system with the original reference
density ρ0 at a different value of βε. We should emphasize
that this is only true if ψ does not change with density, which
in general is not true, but is approximately the case for some
systems.

E. Gradient expansion of the linear term: DDFT-4

Returning to DDFT-2, Huang et al. [24] (following [2])
expanded L in powers of the gradient operator ∇, replacing
L by the simplest linear operator that allows a positive growth
rate for modes with a wave number ks. Scaling lengths so that
ks = 1 results in

Lgradn = rn − γ (1 + ∇2)2n, (44)

so σ (k) = r − γ (1 − k2)2 from (22). This approximation is
equivalent (within scaling) to a local gradient expansion of
(21), expanding the Fourier transform of c(2) about its maxi-
mum:

ρ0ĉ(2)(k) = 1 + r − γ (1 − k2)2, (45)

where the function ρ0ĉ(2)(k) and its second derivative eval-
uated at k = 1 are 1 + r and −8γ , respectively. Here, r is
a parameter, notionally increasing with β (and with ρ0) and
equal to zero at the spinodal point, when β = βs. This param-
eter controls the growth rate of waves with wave number 1:
effectively, r is the height of the maximum at k = 1 in the

growth rate curve in Fig. 1. The second parameter γ can be
used to fit the curvature of ĉ(2)(k) at k = 1.

With this gradient expansion, the dynamics is

∂n

∂t
= −∇2(Lgradn + Qn2 + Cn3 + Rn4) − ∇ · [n∇Lgradn].

(46)

We refer to this model as DDFT-4: Lgrad is now a (local)
partial differential operator and (46) is a partial differential
equation. The free energy and chemical potential can be
found from (32) and (36), setting L = Lgrad. The lower bound
n � −1 is still respected. This model is equivalent to that
written down by [24].

Higher powers (or other functions) of the Laplacian can
be retained in Lgrad, to improve the accuracy of the match
between the eigenvalues of L and Lgrad, as done for example
by [9,10], or to introduce additional unstable length scales, as
done for example by [11–14] and others. See also Eq. (76)
below and the associated discussion.

F. RY and gradient expansion: DDFT-5

Finally, we can make both the RY (or RPA) approximation
(c(3)

0 = c(4) = 0) and replace the linear operator L by Lgrad

to get the model advocated in Ref. [23]. The free energy and
evolution equation are

βF5[n] =
∫

{[1 + n(x1)] ln[1 + n(x1)] − n(x1)}dx1

− 1

2

∫
[n2(x1) + n(x1)Lgradn(x1)]dx1 (47)

and

∂n

∂t
= −∇2

(
Lgradn + 1

2
n2

)
− ∇ · [n∇Lgradn], (48)

along with an analogous version of Eq. (42) for the chemical
potential:

μ = β
δF5

δn
= ln [1 + n(x)] − n(x) − Lgradn(x). (49)

This model is named PFC1 in [23], but here we call it DDFT-5
for consistency.

G. PFC models

The final simplification that can be made (or not made) is
to discard the ∇ · [n∇Ln] (or ∇ · [n∇Lgradn]) term from the
dynamical equations for the four DDFT models DDFT-2, …,
DDFT-5, resulting in four PFC models PFC-β, . . ., PFC-ε.
Huang et al. [24] justify making this simplification on the
grounds that this term is not truly quadratic in n: the presence
of Ln in the expression means that it is effectively of higher
order. However, we show below that this term does in fact
make an important contribution to the free energy, at least as
important as the c(3) term.

In addition, dropping this term implies significant changes
to the DDFT dynamics, the mobility, and the nonlinear terms
in the free energy. In fact, the (1 + n) factor in the mobility
in (26), the logarithm in the ideal gas free energy in (10), and
the ∇ · [n∇Ln] term in (24) are inextricably linked. This can
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be seen in the progression from (10) to (13): the functional
derivative of the ideal gas term in (10) (the first term on the
right hand side) leads to the ln ρ term in (11), the gradient
of this leads to ρ−1∇ρ in (12), and the mobility being M =
Dρ cancels the ρ−1, leading to a diffusion equation in (13).
If the ∇ · [n∇Ln] term is dropped from (34), the equation for
n becomes of the form ∂n

∂t = ∇2 δG
δn for some functional G[n].

We can see the implications of this by returning to (5) and
taking the steps needed to get to this modified version of (34).
Clearly the mobility in (5) has been taken to be constant. If we
now think of the ideal gas part of the free energy in (10) and
(11), but with a constant mobility in the dynamical equation,
we end up with the ideal gas term contribution to the equation
for ρ being the form

∂ρ

∂t
= 1

ρ
∇2ρ − 1

ρ2
|∇ρ|2 (50)

instead of the diffusion equation (13). This unlikely equa-
tion can be avoided, and the diffusion equation recovered at
leading order, by expanding the logarithm in (32) in a Taylor
series. Thus, dropping the ∇ · [n∇Ln] term is equivalent to
taking constant mobility and expanding the logarithm.

It is because of these substantial changes that we opt to use
the term “DDFT” for all models based on free energies that
have the logarithmic ideal gas term, the nonconstant mobility,
and the ∇ · [n∇Ln] term retained. In contrast, we use the term
“PFC” for models based on expanding the logarithm, having
a constant mobility, and the ∇ · [n∇Ln] term dropped. One
consequence of expanding the logarithm up to O(n4), as is
done in most PFC derivations [7], is that the ideal gas part
of the free energy contributes cubic and quartic (as well as
quadratic) terms to the free energy, so going from DDFT-2
to PFC-β turns out not to be just a matter of dropping the
∇ · [n∇Ln] term.

So, a consistent free energy–dynamics derivation [2,23]
involves going back to DDFT-2 and replacing the logarithm
in (32) with

(1 + n) ln(1 + n) = n + 1
2 n2 − 1

6 n3 + 1
12 n4, (51)

resulting in a free energy

βFβ [n] =
∫ (

−1

2
nLn − 1

6
n3 + 1

12
n4

− ρ2
0

6
c(3)

0 n3 − ρ3
0

24
c(4)

0 n4

)
dx1, (52)

where we have suppressed writing the x1 dependency of n(x1).
Taking the mobility M(ρ) in (5) to be a constant (M = Dρ0)
implies (after scaling)

∂n

∂t
= ∇2

[
β

δFβ

δn

]
, (53)

similarly to (2). This leads to the PFC dynamical equation,

∂n

∂t
= −∇2[Ln + Qn2 + Cn3], (54)

and to a chemical potential

μ = β
δFβ

δn
= −Ln − Qn2 − Cn3, (55)

where Q is as in (35) but C is different:

Q = 1

2
+ ρ2

0

2
c(3)

0 , C = −1

3
+ ρ3

0

6
c(4)

0 . (56)

We refer to this model as PFC-β, and recall that the factor of
β in front of Fβ is the inverse temperature.

The end result here is that PFC-β (54) is not the same as
DDFT-2 (34) with the ∇ · [n∇Ln] term removed: the cubic
coefficient C is different and the quartic contribution Rn4

in (34) is absent. For the cubic coefficient, the contribution
proportional to c(3)

0 in (35) comes from the nonconstant mo-
bility, while the − 1

3 term in (56) comes from expanding the
logarithm. The contribution to C proportional to c(4)

0 is the
same. Moreover, the 1

2 in Q in (35) and (56), while having
the same numerical value, arises for two different reasons:
nonconstant mobility versus expanding the logarithm. An
additional difference between the DDFT and PFC models
is that in the PFC models, the constraint that n � −1 (i.e.,
ρ � 0) is not enforced.

As in the DDFT derivations, we can now make (or not
make) the RY (or RPA) approximation and the gradient
expansion. We consider first the RY approximation, setting
c(3) = c(4) = 0 in PFC-β. The free energy is

βFγ [n] =
∫ (

−1

2
nLn − 1

6
n3 + 1

12
n4

)
dx1, (57)

the dynamics is

∂n

∂t
= −∇2

[
Ln + 1

2
n2 − 1

3
n3

]
, (58)

and the chemical potential is

μ = β
δFγ

δn
= −Ln − 1

2
n2 + 1

3
n3. (59)

We refer to this model as PFC-γ , and it is effectively the same
as PFC-β but with Q = 1

2 and C = − 1
3 .

Finally, the gradient expansion can be made, replacing L
by Lgrad in all expressions in this subsection, resulting in
PFC-δ (without RY) and PFC-ε (with RY). Recall that RY
is mathematically equivalent to the RPA.

We refer to these models collectively as the PFC models,
and have chosen the names PFC-α, etc., to distinguish these
from the PFC1 and PFC2 models of Ref. [23]. The quadratic
term in the dynamics (Qn2) can be removed (provided C �= 0)
by adding a constant to n(x), but we choose not to do this as
it implies a change to what was meant by ρ0 in the reference
liquid. In addition, a negative C can be scaled to −1. With
these changes, PFC-ε is equivalent to the original PFC-α
model (2) of [1,2]:

∂n

∂t
= −∇2[rn − γ (1 + ∇2)2n + Qn2 + Cn3], (60)

where we have written out Lgrad explicitly, and Q = 1
2 and

C = − 1
3 (or Q = 0 and C = −1 after scaling and adding a

constant to n, returning to the conserved Swift-Hohenberg
equation).

The implication of dropping the ∇ · [n∇Ln] term in the
dynamics (41) for DDFT-3 is now apparent: without this term,
Eq. (41) reduces to (58) but with the cubic term removed.
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The absence of the cubic term here implies a free energy as
in (57) that is not bounded below, i.e., a free energy that is
nonphysical, and so the ∇ · [n∇Ln] term can have the effect
of stabilizing patterns. In addition, dropping the ∇ · [n∇Ln]
term is consistent only with a theory with a constant mobility.

H. Summary

To summarize, we have carefully laid out the various
approximations made in the progression from the DDFT-0
starting point (5) to the final PFC (2) and (58) written down in
[1,2]. We have largely followed earlier derivations [7,23,24],
seeking to clarify the approximations that are made. Along
the way, we have identified four intermediate versions of
DDFT, listed for clarity in Table I. The change in name from
DDFT to PFC could be made at any point in this progression,
but we prefer to make the name change at the point where the
∇ · [n∇Ln] term is dropped (along with all the other changes
that are implied by this), since removing this term marks a
considerable alteration to the free energy expression and to
the dynamics.

The PFC model (54) is appealing in its simplicity, and it
gives insight into a variety of crystallization phenomena, but
the derivations of the model from DDFT presented here, as
well as the derivation from Ref. [24], are both problematic.
Just dropping the ∇ · [n∇Ln] term, as done by Huang et al.
[24], means that the dynamics is not equivalent to a DDFT
with mobility proportional to ρ. On the other hand, the
alternative is to expand the logarithm up to O(n4) in (51) in
order to provide a nonlinear stabilizing term ( 1

12 n4) in the
free energy (57). However, in the original formulation, the
logarithm comes from the ideal gas term in (10), and leads
to a linear diffusive term in the dynamics. The stabilizing
nonlinear terms in (34) are provided by c(3)

0 , c(4)
0 (in DDFT-2)

and by the ∇ · [n∇Ln] term; these are all absent in PFC-γ .
Indeed, all these models only make physical sense if their

free energies are bounded below. The free energies for DDFT-
0 and DDFT-1 are too general to make any comment, but that
for DDFT-2 (32), etc., can be discussed. The (1 + n) ln(1 +
n) − n term is bounded below by zero, and the − 1

2

∫
nLndx

term is bounded below because the eigenvalues of L are
bounded above:

−
∫

n(x)Ln(x)dx � −σmax

∫
n2(x)dx, (61)

where σmax is the maximum over k of σ (k) [we have in mind a
σ (k) as in Fig. 1]. In any case, this term, along with the other
quadratic and cubic terms, is dominated by the quartic in n,
which is bounded below provided c(4)

0 < 0. If c(4)
0 = 0, then

c(3)
0 < 0 will do, recalling that n � −1. For DDFT-3, with the

RY (or RPA) approximation c(3)
0 = c(4) = 0, the boundedness

of the free energy (40) depends on the n2 + nLn combination.
From (21), the relevant term is

−
∫

[n2(x1) + n(x1)Ln(x1)]dx1

= −ρ0

∫
n(x1)c(2)(x1, x2)n(x2)dx1dx2. (62)

In general, this is not bounded below, but it is in certain
circumstances. For example, it is if σmax < −1, and it is if
c(2)(x1, x2) � 0 [or u(|x1 − x2|) � 0 for RPA] for all x1 and

x2, which is the case in the numerical examples below. The
PFC models are not constrained to have n � −1, but Fβ (52)
is bounded by the n4 term as long as its coefficient is positive;
Fγ (57) is always bounded below, because the expansion of
the logarithm in (51) was truncated after an even powered
term.

Throughout we have made the simplest choices in the
approximations, but other authors have made many other
choices. For example, the original PFC paper [1], as well
as later papers [22,24,50–52], included a two-component (bi-
nary) version of the PFC model. Recently, Wang et al. [53]
took a much closer look at c(3) and c(4), expressing these in
terms of isotropic tensors and so allowing these functions
to introduce bond angle dependence into the free energy.
Some choices of c(3) and c(4) lead to nonlinear terms that
include gradients, which can affect the selection of the final
stable crystal [54]. The gradient expansion approach has been
generalized in two ways: (i) higher order terms or rational
functions were considered by [9,10] in order to improve the
fit between the functional form and the Fourier transform
of c(2), and (ii) PFC models with two unstable length scales
have been put forward by several authors [10–15], since these
allow more complex crystals (face-centered cubic, icosahedral
quasicrystals, …) to be stabilized. We discuss the model of
[9] in more detail below. Alternative approaches involving
weighted densities are also possible [55].

III. COMPARISON OF DDFT AND PFC

We are interested in the effects of the approximations made
in going from DDFT to PFC. A full assessment of the validity
of the RY (or RPA) approximation for Fex, which in itself
constitutes a major simplification, is beyond the scope of the
present study. The general conclusion on the validity of the
RY or RPA approximation is that it depends on the nature
of the interactions between the particles; there are examples
in the literature where this approximation is reliable and
others where it works badly; see for example the discussion
in Refs. [56,57] and references therein.

Here, we consider one particular system where the RPA is
accurate and then we focus on the effects of approximating L
by Lgrad and of making the suite of other approximations in-
herent in going from DDFT to PFC: expanding the logarithm,
assuming constant mobility, and dropping the ∇ · [n∇Ln]
term. To this end, we start with DDFT-3 and solve (42),
rewritten here as

DDFT-3: ln [1 + n(x)] − n(x) − Ln(x) = μ. (63)

The system that we consider is particles interacting via the
GEM-4 [41,42] potential; this is a model for soft-matter
particles and in particular for dendrimers and other polymers
in suspension, treating the polymers via an effective pair
potential between their centers of mass. This potential is soft,
i.e., finite for all values of x12 [41–43,58,59], and is

u(x12) = εe−(x12/R)4
, (64)

where the parameter ε controls the strength of the potential
and R controls its spatial range. We consider here the system
in 2D [42,45]. As long as the temperature and density are high
enough that the particle cores regularly overlap (the regime
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FIG. 2. The eigenvalue σ (k) of L plotted as a function of wave
number k for the GEM-4 potential (solid line) for R = 5.0962 and
ρ0βε = 0.2455, which is at the threshold where the system becomes
linearly unstable. This has σ (0) = −18.75. We also display σ (k)
from the gradient expansion of L (dashed line), i.e., a Taylor ex-
pansion in Fourier space around k = 1, which is the PFC relation for
Lgrad, σ (k) = −γ (1 − k2)2, with γ = 4.37. Recall that the growth
rate of Fourier modes with wave number k is is k2σ (k). The dotted
line labeled Lgrad-8 (EOF) is the curve for (76), the eighth-order fitting
proposed in [9]; it nearly coincides with the GEM-4 curve for k � 1.

in which the system freezes), the RPA approximation (37) is
known to be rather accurate for the GEM-4 system and gives
a good account of the phase diagram and the structure of the
liquid and solid phases [42,44,45].

From Eqs. (21), (38), and (64) we obtain the linear operator
L:

Ln(x) = −n(x) − ρ0βε

∫
e−|x−x2|4/R4

n(x2)dx2. (65)

Recall from (22) that L has eigenvalues σ (k) with eigenfunc-
tions eik·x. We can choose the combined parameter ρ0βε and
soft-particle radius R so that the maximum in σ (k) occurs at
k = 1 when the system is at the linear stability threshold; i.e.,
this is a maximum with σ (1) = 0, similar to Fig. 1. In 2D,
to satisfy this condition we must have ρ0βε = 0.2455 and
R = 5.0962; see Appendix A for details.

With this choice of parameters, the eigenvalue σ (k) is
shown as a solid line in Fig. 2. The figure also shows (dashed
line) the eigenvalue for the gradient expansion of L around
k = 1:

Lgradn(x) = −γ (1 + ∇2)2n(x), (66)

where γ = 4.37 is chosen to match the second derivative d2σ
dk2

at k = 1, as done for example in Refs. [2,9,60]. The dotted
line in Fig. 2 is the eigenvalue for (76), the eighth-order fitting
model proposed in [9] and discussed in more detail below.

In what follows we compare solutions of (63) for DDFT-3
with solutions of the analogous equations for DDFT-5, PFC-
γ , and PFC-ε:

DDFT-5: ln (1 + n) − n − Lgradn = μ, (67)

PFC-γ : − 1
2 n2 + 1

3 n3 − Ln = μ, (68)

PFC-ε: − 1
2 n2 + 1

3 n3 − Lgradn = μ. (69)

See Appendix B for details of the pseudo-arclength continu-
ation numerical method we use for solving these equations.
Also, in the Supplemental Material [69] we include a MATLAB

code for solving DDFT-3. Note that throughout what follows,
we refer to the quantity 1 + n(x) as the “density.”

Since the DDFT-5, PFC-γ , and PFC-ε represent different
forms of Taylor expansion around the reference state with
density ρ0, there are a variety of ways comparison between
solutions can be made. Here, we opt to fix L and Lgrad as in
(65) and (66) with the specified values of ρ0βε, R, and γ .
This implies that at μ = 0 the reference state with n = 0 is at
the spinodal point and is marginally unstable to modes with
wave number k = 1. We then vary μ starting from μ = 0 and
follow the liquid, stripe, and hexagonal solutions of (63) and
(67)–(69) in appropriately sized two-dimensional domains.
For a given value of μ the different solutions have different
values for the mean density 1 + n̄ = 1 + 1

A

∫
n(x)dx, where

A is the area of the domain. For each state we calculate the
specific grand potential:


[n]

A
= F[n]

A
− μ(1 + n̄), (70)

where F is F3, F5, Fγ , or Fε , as appropriate. We also
minimize 
/A with respect to the domain size A by applying
the approach described in Appendix B. For a given value of
the chemical potential μ and the combined parameter ρ0βε,
the thermodynamic equilibrium state is that with the minimum
value of 
/A. Note that equilibria with the same μ do not
necessarily have the same value of n̄, which is important
when considering which equilibria might result from initial
conditions via the dynamics.

The solution corresponding to the uniform density liquid
state with n(x) = nliq can readily be found. In this case we
have Lnliq = σ (0)nliq, and so we must solve the following
algebraic equations for nliq:

DDFT-3,5: ln(1 + nliq ) − nliq − σ (0)nliq = μ, (71)

PFC-γ ,ε: − 1
2 n2

liq + 1
3 n3

liq − σ (0)nliq = μ, (72)

recalling that the value of σ (0) depends on whether or not the
gradient expansion is carried out (see Fig. 2). Finding nliq for
a given value of μ is done easily using Newton’s method, and
the resulting nliq and specific 
liq are shown in Fig. 3. In all
cases, we see that nliq is an increasing function of μ, while

liq/A is a decreasing function of μ. The figure shows that
the specific grand potentials for the liquid state predicted by
all four models are similar close to μ = 0, but the predicted
liquid state densities are rather different away from μ = 0.
This difference originates from the different values of σ (0)
(−18.75 for DDFT-3 and PFC-γ , in contrast to −4.37 for
DDFT-5 and PFC-ε). We see from Fig. 3 that the density of
the liquid is erroneously predicted to increase too rapidly as μ

is increased by the gradient expansion theories (DDFT-5 and
PFC-ε). This is because these get the value of the isothermal
compressibility χT to be too large [9]. This compressibility
is related to σ (0) via χT = −β/[σ (0)ρ0(1 + nliq )] [27]; see
Eq. (23) and following discussion. Expanding the logarithm
makes relatively little difference over this range of densities.

Since crystallization occurs at higher densities, we expect a
transition from the liquid to the crystal to occur as μ increases.
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FIG. 3. (a) Liquid density (1 + nliq) and (b) specific grand po-
tential 
liq/A as a function of the scaled chemical potential μ, for
DDFT-3 (solid black line), DDFT-5 (dashed black line), PFC-γ
(indistinguishable from DDFT-3), and PFC-ε (dashed magenta line).

At the spinodal the uniform liquid becomes linearly unstable
and the patterned state solution branches bifurcate from the
liquid at this point. To find these states, we seek a solution of
the form

n(x) = nliq + δn(x), (73)

where near the bifurcation point δn � 1, and δn is of the form
eik·x, so that Lδn = σ (k)δn. Expanding Eqs. (63) and (67)–
(69) in powers of δn we find that the O(1) equations to solve
are just those for finding the liquid state density, Eqs. (71)–
(72). The O(δn) equations are

DDFT-3,5:

[
1

1 + nliq
− 1 − σ (k)

]
δn = 0, (74)

PFC-γ ,ε:
[ − nliq + n2

liq − σ (k)
]
δn = 0. (75)

The spinodal point for DDFT-3,5 or for PFC-γ , ε is where
there are solutions of the equation with δn �= 0.

Since we are looking for a change in stability, we take
the extreme value of σ (k), i.e., σ (k) = 0 (see Fig. 2). Then,
Eq. (74) is solved (with δn �= 0) only for nliq = 0, which leads
to μ = 0 from (71). In contrast, Eq. (75) with σ (k) = 0 has
two solutions, nliq = 0 and nliq = 1, leading to μ = 0 and
μ = − 1

6 − σ (0) from (72). The implication of this is that
the PFC has two spinodal points: the liquid loses stability
at nliq = 0 as μ increases through 0, but it regains stability
at nliq = 1, which gives μ = 18.58 for PFC-γ and μ = 4.20

for PFC-ε. This prediction that the liquid regains stability
for higher μ is a consequence of expanding the logarithm,
or equivalently of Taylor expanding the 1/(1 + nliq ) term in
(74), and is confirmed by direct computation of the crystal
solutions below. Of course, this prediction is erroneous, since
the simulation results for the GEM-4 system [41,42] show no
sign of a second spinodal point or the associated stable second
liquid in the equilibrium system phase diagram.

In Fig. 4 we display examples of three relevant different
types of periodic solutions that can be found for DDFT-3.
These are (i) the crystal solution, which we refer to as “up
hexagons,” which exhibit a triangular array of isolated density
maxima surrounded by hexagonal regions where the density
is close to zero. There are also (ii) “down hexagons,” which
are the opposite, with isolated density minima and hexagonal
density maxima. Finally, there is (iii) the stripe state. De-
pending on the state point these solutions are not necessarily
linearly stable. Our naming convention to distinguish the
two different hexagonal solutions originates in the convection
literature [61]. These solutions were initiated at μ ≈ 0 and
then continued numerically (see Appendix B) up to μ = 10.
For DDFT-3 it is possible to go a bit higher in μ, but with
increasing μ (i.e., increasing average density) the peaks in
the density profile get narrower and higher and so more and
more grid points are required to resolve these peaks correctly.
However, as we show below for some of the other models and
for different reasons, it is not possible to continue the solutions
this far in μ. The domains on which the profiles are calcu-
lated have periodic boundary conditions, with 4 wavelengths
in each direction (for stripes), or 8 × 8√

3
wavelengths (for

hexagons). The wavelength is initially equal to 2π for μ = 0
and is then adjusted by up to about 2% in order to minimize
the specific grand potential as μ is varied; i.e., we minimize

/A with respect to variations in the size of the crystal unit
cell or, for the stripe phase, we minimize with respect to vari-
ations in the spacing between the stripes; see Appendix B for
details.

In Fig. 5 we display a series of plots showing the max-
imum, minimum, and average values of the density profiles
1 + n for the stripe and hexagonal structures as a function of
μ. We also plot the specific grand potential 
/A for the dif-
ferent structures. Recall that for a given μ the thermodynamic
equilibrium phase corresponds to the global minimum of 
/A.
The results for DDFT-3 are shown in Figs. 5(a)–5(c). The
(a) stripes originate in a supercritical pitchfork bifurcation at
μ = 0, and (b) hexagons originate in a transcritical bifurcation
at the same value of μ. The density profile of the up hexagons
ranges from about 2 × 10−5 up to about 50, for μ = 10. All
of these branches can be continued to larger values of μ.

DDFT-5, in Figs. 5(d)–5(f), initially behaves in the same
way, but all three branches have their minimum density head-
ing to zero before μ gets to 10; this happens at μ ≈ 3.37
for (d) stripes, and for μ ≈ 0.28 and μ ≈ 2.73 for (e) the up
and down branches of hexagons, respectively. The numerical
method cannot continue the branches beyond these points. We
argue in Sec. IV that this is not an artifact of the numerical
method; rather it is a genuine feature of solutions of Eq. (67)
that the density 1 + n can go to zero. In this limit, ln(1 +
n) → −∞, but this is balanced by a lack of smoothness in
n(x): the fourth derivative in Lgradn can go to +∞ and so
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FIG. 4. Examples of solutions of DDFT-3 (63) with μ = 10. (a), (d) Up hexagons (isolated density maxima surrounded by density that is
small but positive) in a 8π × 8√

3
wavelength domain, with 2.3 × 10−5 < 1 + n < 52.3. (b), (e) Down hexagons (isolated density minima) in a

8 × 8√
3

wavelength domain, with 0.12 < 1 + n < 3.3. (c), (f) Stripes in a 4 × 4 wavelength domain, with 0.045 < 1 + n < 5.9. The top row
[(a)–(c)] shows the density 1 + n and the bottom row [(d)–(f)] shows log10(1 + n).

balance the singularity in ln(1 + n). Therefore, μ ≈ 0.28 is
the limit of validity of the DDFT-5 model.

The two PFC examples are similar to each other, and it
is easier to discuss PFC-ε, in Figs. 5(j)–5(l), first. Here, (j)
stripes and (k) hexagons bifurcate from the liquid at μ = 0,
but they rejoin the liquid at μ = 4.20 as explained in the
discussion following Eqs. (74)–(75). The maximum and mini-
mum densities for the up and down hexagon cross between the
two bifurcations. The behavior of PFC-γ , in Figs. 5(g)–5(i),
is similar, though the second bifurcation is at μ = 18.58, off
the scale of the figure.

Panels (c), (f), (i), and (l) of Fig. 5 show that the curves
of the specific grand potential 
/A as functions of μ are very
close, so in Fig. 6, we plot instead (
 − 
liq )/A versus μ,
where 
liq is the specific grand potential for the liquid at the
same value of μ. In (a) the DDFT-3 case, the up hexagons
clearly have the lowest grand potential for μ � −2.8 with the
uniform liquid being the global minimum for μ < −2.8, and
at no point do stripes come anywhere near, as one should ex-
pect from the particle simulation results [42]. For (b) DDFT-5,
the two hexagon branches stop before the stripe branch when
their minimum densities go to zero (the limit of validity), but
otherwise the relative values for the hexagon and stripe grand
potentials is qualitatively similar to DDFT-3. For [(c), (d)]
the PFC examples, once again it is easiest to discuss PFC-ε
first. In Fig. 6(d), the hexagon and stripe branches bifurcate
from the liquid at μ = 0 and rejoin the liquid at μ = 4.20,
with stripes having the lowest grand potential for intermediate
values of μ, and up or down hexagons being the lowest grand
potential state for smaller or larger values of μ. The behavior
of (c) PFC-γ is similar, but stretched to larger values of μ

(off scale).
The insets in the four panels of Fig. 6 display magnifi-

cations that show that the behavior near the spinodal point
at μ = 0 is qualitatively similar in all four cases: the up

hexagons start with 
 > 
liq for negative μ, but the branch
changes direction, forming a cusp, close to which is the
thermodynamic coexistence point (Maxwell point), where

 = 
liq. The down hexagons start with 
 < 
liq for positive
μ, and the stripes, also with 
 < 
liq for positive μ, have a
value of the grand potential intermediate between the up and
down hexagons. We note that the range of μ over which this
behavior occurs is about a factor of ten smaller in the DDFT-5
and PFC-ε cases as compared to DDFT-3, also with a roughly
tenfold drop in the overall range of values of (
 − 
liq )/A.

The observation that the bulk phase behavior of the sys-
tem depends only on μ and the value of ρ0βε if the pair
potential can be written as u(x12) = εψ (x12)—see the dis-
cussion around Eq. (43)—is true for the GEM-4 system.
As a consequence, having calculated the coexisting densities
for a particular value of ρ0βε, the linear stability threshold,
these results can be scaled to give the phase diagram in the
full average density 1 + n̄ versus dimensionless temperature
kBT/ε plane, which is one of the usual ways the GEM-4 phase
diagram is displayed [41,42,44,45,62].

The phase diagrams obtained from doing this are in Fig. 7.
In Fig. 7(a) we display the phase diagram obtained from
DDFT-3, which is identical (to within the resolution of the
calculations) to that previously calculated in Refs. [45,62].
For example, when βε = 1, the average densities ρ0(1 + n̄)R2

of the coexisting liquid and the crystal are 5.41 and 5.68,
respectively. As a result of the scaling behavior, the coexisting
densities (binodals) are two straight lines going from the
origin and passing through these two points.

In Fig. 7(b) we display the phase diagram obtained for the
DDFT-5. The binodals are a little closer to the linear stability
threshold line than for DDFT-3, but other than that, it looks
similar overall. Note however that the up hexagon branch
cannot be continued beyond μ ≈ 0.28 (where the minimum
density goes to zero); this line is indicated as the “limit
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FIG. 5. Data summarizing the nature of the stripe and the two hexagonal solutions in the four cases: (a)–(c) DDFT-3, (d)–(f) DDFT-5,
(g)–(i) PFC-γ , and (j)–(l) PFC-ε. The graphs have the same axis limits in order to emphasize similarities and differences. The left column [(a),
(d), (g), (j)] shows the stripe (lamellar) phase, with maximum and minimum values of 1 + n shown as solid lines, and average values of 1 + n
shown as a dashed line. The center column [(b), (e), (h), (k)] shows the same quantities for the two hexagonal branches: the up hexagon branch
bifurcates to negative values of μ before turning around in a fold (saddle-node) bifurcation and continuing to larger μ. The right column [(c),
(f), (i), (l); see also Fig. 6] shows 
/A for these three periodic solutions and also for the uniform liquid (dotted line). In DDFT-3, for μ � −2.8
the up hexagons (solid line) have the lowest value of 
/A, and of the nonuniform phases the stripes (dashed line) are next, with the down
hexagons (solid line) having the highest value of 
/A. In the DDFT-5 and the PFC cases, the lines are so close that on this scale they appear
overlaid. The (approximate) region of quantitative agreement between DDFT-3 and PFC-γ is circled in red in (b) and (h).

of validity.” Beyond this line, in the bottom right region of
the phase diagram, there is no up hexagon solution to the
equations, for the reasons discussed in Sec. IV.

In Fig. 7(c) we display the phase diagram for PFC-γ , and in
Fig. 7(d) for PFC-ε. The binodals almost overlie each other,
so the predicted difference between the average densities of
the liquid and the crystal at coexistence are much smaller
than that predicted by DDFT-3 and DDFT-5. Furthermore, on

moving to higher average densities or to lower temperatures
kBT/ε one encounters the stripe phase, followed by the down
hexagon phase and then finally the uniform liquid becomes
stable again. The prediction of the occurrence of these later
phases is of course wrong, signifying a breakdown in the
accuracy of the PFC theory at even the qualitative level.

Before finishing this section, we note that it is possible
to extend the gradient expansion in (66) by including higher
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FIG. 6. Specific 
 relative to the value for the liquid at the same value of μ, with hexagons shown as solid lines (the up hexagons have
the lowest 
 − 
liq for μ close to zero), and stripes shown as dashed lines. The insets show details of the region close to μ = 0, as well as
(dotted line) 
 − 
liq = 0. The panels are (a) DDFT-3, (b) DDFT-5, (c) PFC-γ , and (d) PFC-ε. In the PFC examples, the state with lowest
grand potential changes from up hexagons to stripes to down hexagons as μ increases. Note the factor of 10 difference between the inset axis
scales between DDFT-3 and PFC-ε.

powers of the Laplacian. For example, Ref. [9] proposed an
eighth-order fitting (EOF), which in our notation is

Lgrad-8n(x) = −γ (1 + ∇2)2n(x) − EB(1 + ∇2)4n(x), (76)

where γ fits the curvature of the dispersion relation as before,
and EB allows the eigenvalue σ (0) of L to be matched as
well, i.e., allows the model to match correctly the isothermal
compressibility χT . An example of the dispersion relation for
this operator is shown as a dotted line in Fig. 2. This EOF
version of the theory, with Lgrad-8 in (76), improves over the
standard version, with (66), since σ (0) for L and Lgrad-8 are
the same. Therefore, the liquid properties of DDFT-5 match
those of DDFT-3, and the liquid properties of PFC-γ match
those of PFC-ε, once Lgrad is replaced by Lgrad-8.

However, the drawbacks of the gradient expansion are still
present. With Lgrad-8, the values of μ at which the DDFT-
5 stripe and hexagon densities go to zero are larger, but
this undesirable feature is only deferred, not eliminated. The
reason is that the singularity in the logarithm is now balanced
against an eighth-order derivative. Note too that introducing

even higher derivatives does not cure this problem; it just
pushes the singularity to higher order. In addition, with Lgrad-8

the second liquid spinodal in the PFC-ε model is still present;
it is just pushed to higher values of μ (similar to the value
for PFC-γ ) and since this second spinodal is present, there is
still a range of values of μ for which stripes have the lowest
specific 
.

IV. EFFECT OF THE APPROXIMATIONS

The qualitative change in going from a DDFT to a PFC
model (dropping the ∇ · [n∇Ln] term, assuming constant
mobility, and expanding the logarithm) is apparent in the
phase diagrams shown in Fig. 7, comparing panels (a) and
(b) to panels (c) and (d). Here we discuss in detail additional
effects of the approximations.

A. Expanding the logarithm

The effect of expanding the logarithm as in Eq. (51) is very
significant. In Sec. III we demonstrated that this expansion
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FIG. 7. The phase diagram for the GEM-4 model as predicted by (a) DDFT-3, (b) DDFT-5, (c) PFC-γ , and (d) PFC-ε, plotted in the average
density ρ̄R2 = ρ0(1 + n̄)R2 versus temperature kBT/ε = ρ0/(ρ0βε) plane. In these phase diagrams, which show only the states with lowest 
,
lines are labeled with a Roman font and regions are labeled in italics. For kBT/ε � 0.1 the DDFT-3 phase diagram is in good agreement with
the true phase diagram [42]. However, the two PFC phase diagrams wrongly predict at high densities the occurrence of a stripe phase, down
hexagons, and a second liquid phase. In the DDFT-5 phase diagram there is no solution in the bottom right half of the phase diagram, below
the limit of validity.

leads to the liquid having a second spinodal point, illustrated
in the phase diagrams in Figs. 7(c) and 7(d), with the crystal
remelting as the density is increased. The reason for this is that
Eq. (75) can be solved with n = 0 and n = 1, while Eq. (74)
is only solved by n = 0, with σ (k) = 0 in both cases.

Intimately connected to the existence of this second spin-
odal is the transition from stable up hexagons at the μ = 0
spinodal to stable down hexagons at the higher density spin-
odal. These connections to the spinodals mean that the free
energy of the up hexagons increases again compared to the
liquid state free energy as the chemical potential is increased,
in order to reconnect to the liquid state at the upper spinodal.
An intermediate region of stable stripes is not inevitable, but
is evident in both PFC examples in Figs. 6(c) and 6(d).

Taking more terms in the expansion in Eq. (51) does not
help. The highest power should be even (otherwise the free
energy is not bounded below), and the improved versions of
Eq. (75), which involves the second derivative of Eq. (51) with
respect to n, also have n = 0 and n = 1 as (the only) real roots,

regardless of how many terms are kept in the expansion of the
logarithm. The exception is if only terms up to n2 are kept in
(51); in this case, c(3) and c(4) (if they are nonzero) provide
the stabilizing nonlinearities and may also lead to a spurious
spinodal.

B. Gradient expansion of L
As discussed in Sec. III above, the results in Figs. 5(d)

and 5(e) suggest that for certain values of μ, the DDFT-5
equation (67) has solutions for the density 1 + n which go
to zero at certain places. In contrast, the density in the PFC
models appears to stay away from zero (although there is no
reason for it to do so and there would be no singularity if
it did), and in DDFT-3, the density minimum gets smaller
and smaller as μ increases, but remains positive, without
the sharp cutoff seen in DDFT-5. In this section we argue
that the density reaching zero is not an artifact of numerical
difficulties; rather it is a feature of the DDFT-5 equation (67).
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FIG. 8. (a) DDFT-5 stripe density profile 1 + n, its logarithm, and other terms in (67), for μ = 3.3688, with 1 + n(xmin) ≈ 5 × 10−7. The
resolution was Nx = 2048 grid points in a domain with one wavelength. (b) Detail around the location of the density minimum at xmin, showing
various terms in (77): ln(1 + n) and γ nxxxx as solid lines, with + symbols showing the locations of the grid points, and (γ − 1)n and γ nxx

as the lower and upper dashed lines. The total of all terms in (77) is shown as a dotted line at zero, showing that the equation is satisfied at
every grid point. The balance between ln(1 + n) and γ nxxxx is clear. (c), (d) Similar data for 1D DDFT-3 stripes, with μ = 28.9 in a domain
containing four wavelengths, with other parameters as in Table II. A (scaled) plot of the GEM-4 potential is shown in blue. The density is
sharply peaked, and has a minimum value ≈1.8 × 10−6. In (d), close to one of the density minima, the ln(1 + n) and the Ln terms (solid lines)
are well behaved, and the DDFT-3 equation (63) as a whole (dotted line) is satisfied. Note that (a) and (c) use log10(1 + n) while (b) and (d) use
the natural logarithm.

Here, we focus on singularities in the solution, not on stability.
Our discussion in this section is mainly framed in terms of the
stripe solution, which is unstable, but the stable up hexagon
branch has similar issues, as is illustrated in Fig. 5(e).

Figure 8(a) shows that even close to the end of the branch
of DDFT-5 stripes, the density profile 1 + n remains smooth,
but since its minimum at x = xmin is very close to zero
[1 + n(xmin) ≈ 5 × 10−7], therefore the logarithm ln(1 + n)
is sharply spiked toward large negative values at xmin. Writing
out the terms in (67) for a density profile only varying in the x
direction, we have

ln (1 + n) + (γ − 1)n + γ nxx + γ nxxxx − μ = 0, (77)

which suggests that the only way to balance a large negative
contribution from ln(1 + n) is to have a large positive γ nxxxx.
Figure 8(b) shows that these two terms (solid lines with
markers at the grid points) do indeed balance each other. The
figure also shows that the other terms in (77) are well behaved
and that the equation is satisfied at each grid point. Therefore
this singularity is not a numerical artifact, but rather a genuine
feature of DDFT-5 stripes: the minimum density goes to zero
at a certain finite value of μ. In Figs. 8(c) and 8(d) we show

for comparison results from DDFT-3: the stripes have sharply
peaked density maxima and density minima just as small as in
DDFT-5, but all terms in Eq. (63) [Fig. 8(d)] are well behaved.

As μ is further increased, the minimum of the density in
DDFT-5 gets closer to zero, so the logarithm of the density
goes further toward −∞ and correspondingly γ nxxxx goes
toward +∞. Figure 5(d) shows that the density minimum
gets to zero at a finite value of μ. We have not been able to
develop a consistent asymptotic approximation for this limit
in the DDFT-5 equation. However, to illustrate that apparently
smooth solutions with logarithmic singularities in their fourth
derivatives can easily be found, consider for example taking
γ = 1 in (77) and taking a density profile that has a quadratic
minimum at x = xmin = 0:

1 + n(x) = Ax2 + Bx4 + Cx4 ln(x2), (78)

where A, B, and C are constants. For small x, the
largest of these three terms is Ax2, so ln(1 + n) ≈ ln(Ax2),
which goes to −∞ as x → 0. The other terms are
nxx ≈ 2A + O(x2, x2 ln(x2)) and nxxxx ≈ 24C ln(x2) + 24B +
100C. Adding these three together requires 1 + 24C = 0
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to cancel the logarithmic singularity at x = 0, and the remain-
ing terms are constants or go to zero as x → 0.

As can be seen from Fig. 8, having an adequate resolu-
tion for our numerical calculations was a challenge but for
different reasons for the different models. In DDFT-3, the
density maxima can be sharply peaked while the logarithm of
the density is smooth, so inadequate resolution in the density
field prompts an increase in the number of grid points (we
implement automatic regridding, as discussed in Appendix B).
In contrast, in DDFT-5, the density field can be smooth but
with minima very close to zero, so its logarithm has very
sharp negative peaks. In this case, inadequate resolution in the
logarithm of the density prompts regridding. The difference
is that in DDFT-5, the equation involves derivatives so any
problem is magnified, while in DDFT-3, the equation involves
convolutions that smooth out any problems.

These arguments indicate that a singular solution to the
DDFT-5 equation (67) of the type seen in Fig. 8 is possible,
with the density going to zero, and that this is not a problem of
inadequate numerical resolution, but rather a consequence of
replacing the convolution in DDFT-3 with derivatives. A full
asymptotic theory should result in a prediction for the value of
μ at which the branch terminates. The stripe solutions of the
DDFT-3 equation (63) can also have small density but without
any singularity in the solution.

V. ONE-MODE APPROXIMATION FOR DDFT

The data displayed in Figs. 8(a) and 8(c) lead to an in-
teresting observation: in (a) DDFT-5, the logarithm of the
density is sharply negatively peaked, while the density is
smooth (at least up to its second derivative), slowly varying,
and resembles a cosine. In contrast, in (c) DDFT-3, the density
is sharply peaked, while the logarithm of the density is slowly
varying and resembles a cosine. One of the attractions of PFC
theory is that it has slowly varying solutions that are well
represented by a few Fourier modes [1,2,7,11], and this carries
over to some extent to DDFT-5. Such Fourier representations
of the density profiles in DDFT-3 are unsatisfactory, apart
from for the unstable solutions very close to the spinodal
point, since any solution of reasonable amplitude is sharply
peaked.

However, the data in Fig. 8 suggest that representing the
logarithm of the density with a few Fourier modes should
work well in DDFT-3. In this section, we elaborate how such
a theory can be developed.

The key is to write Eq. (63) in terms of φ(x) ≡ ln[1 +
n(x)], and approximate φ by a few Fourier modes. As a first
step, we write out L using Eq. (65) and rewrite (63) as

ln[1 + n(x)] + ρ0βε

∫
ψ (|x − x2|)n(x2)dx2 − μ = 0,

(79)

where ψ (|x − x2|) = e−|x−x2|4/R4
. The convolution term (in-

cluding the ρ0βε prefactor) in this equation is −n(x) − Ln(x).
We know the eigenvalues of L: L exp(ikx) = σ (k) exp(ikx),
which means that the convolution term acting on a Fourier
mode exp(ikx) has eigenvalue −[1 + σ (k)]. We also know
that for high wave numbers, the convolution averages to zero,
and indeed σ (k) → −1, as can be seen in Fig. 2.

We focus first on stripes, which have Fourier components
only at integer wave numbers, and notice that 1 + σ (2) is
already very small (less than 0.01), because ψ̂ (2) is small.
This implies that the Fourier components of the convolution
term at k = 2 and higher will be much smaller than the Fourier
components at k = 0 and k = 1, regardless of the spectrum
of n itself. The other two terms in Eq. (79) are μ, which is
constant (k = 0 only), and ln(1 + n), so ln(1 + n) can only
have significant Fourier components at k = 0 and k = 1: there
is nothing to balance modes with |k| � 2. This explains why
ln(1 + n) in the lower left panel of Fig. 8 is smooth, and it is
also why approximating the logarithm of the density by a few
Fourier modes must work regardless of the amplitude of the
modulations in the density, or how sharply they are spiked, or
of the value of μ.

For the stripe phase we write

ln[1 + n(x)] = φ(x) = φ0 + φ1eix + φ̄1e−ix, (80)

where φ0 and φ1 are constants (real and complex, respectively)
that we need to find. This can easily be generalized for
hexagons and other periodic phases by adding more modes in
(80). The k = 0 and k = 1 components of exp (φ1eix + c.c.),
where c.c. denotes the complex conjugate, can be expressed
in terms of integrals, defining two functions f0(φ1) and f1(φ1)
given by

f0(φ1) = 1

2π

∫ 2π

0
exp(φ1eix + c.c.)dx,

f1(φ1) = 1

2π

∫ 2π

0
e−ix exp(φ1eix + c.c.)dx; (81)

i.e., f0 is a modified Bessel function of the first kind of order
zero and f1 is a Fourier transform generalization of f0. Using
these functions, n(x) = eφ(x) − 1 can be written in terms of its
Fourier components as

eφ(x) − 1 = eφ0 f0(φ1) − 1 + [eφ0 f1(φ1)eix + c.c.]

+ modes with |k| � 2. (82)

The modes with |k| � 2 in (82) are large in amplitude, but they
are reduced in significance in Eq. (79) by the convolution, as
explained above. The action of the convolution on modes with
|k| < 2 can be written in terms of σ (k). Retaining only these
terms, we are left with the k = 0 and k = 1 components of
(79):

φ0 + [1 + σ (0)][1 − eφ0 f0(φ1)] − μ = 0,

φ1 − eφ0 f1(φ1)[1 + σ (1)] = 0. (83)

Notice that the only information remaining from the GEM-4
potential is the values of σ (0) and σ (1), i.e., the values of û(0)
and û(1). Recall also that if the reference density ρ0 is chosen
to be the value at the spinodal, then we have σ (1) = 0. These
equations can also be written in terms of the pair potential as

φ0 − ρ0βû(0)[1 − eφ0 f0(φ1)] − μ = 0,

φ1 + eφ0 f1(φ1)ρ0βû(1) = 0. (84)

The two equations in (83) can easily be solved for φ0 and μ

in terms of φ1, from which the density can be reconstructed.
The agreement between this and the full solutions of DDFT-3
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(a) (b) (c)

FIG. 9. Full numerical solutions of DDFT-3 plotted together with the one-mode approximation. (a) Stripes in 1D DDFT-3, showing
the density profile itself and its logarithm from solving Eq. (63) at μ = 28.9 (solid black line), with the one-mode approximation overlaid
(dashed blue line). Replotting the 2D DDFT-3 (b) stripe and (c) hexagon data from Figs. 5(a) and 5(b) (solid black lines), with the one-mode
approximation overlaid (dashed blue lines).

is astonishing. Figure 9(a) shows a 1D example at μ = 28.9,
with the full solution as a black line and the approximate
solution as a dashed line. Even though the density varies by
two orders of magnitude, the two are almost indistinguishable.
There is similar excellent agreement with the branch of stripe
solutions [Fig. 9(b)] in 2D DDFT-3 [recall that the GEM-4
potential has different values of σ (0) in 1D and 2D].

For 2D hexagons, the approach is similar, with the two
e±ix terms in Eq. (81) replaced by six similar terms, with
wave numbers k that are uniformly spaced around a circle
of radius 1 in k space [cf. Eq. (B14) in Appendix B]. The
agreement in this case [Fig. 9(c)] is also very good. If one
adds a further six modes with |k| = √

3, then the agreement
is as good as that for stripes. These approximate solutions
can easily be continued up to μ = 100 without difficulties,
where we observe very sharply peaked density maxima and
extremely small but nonzero values for the density minimum.

VI. DISCUSSION AND CONCLUSIONS

In this paper, starting from DDFT, we have presented a
step-by-step derivation of PFC theory, at each stage explaining
the consequences of the approximations. The approximations
can be listed under three main groupings: (i) Making a
truncated functional Taylor expansion approximation for the
excess Helmholtz free energy, and then making the RPA or
RY approximation. This leads to DDFT-3 in our classification.
(ii) Neglecting the ∇ · [n∇Ln] term, which effectively also
forces making a Taylor expansion of the logarithmic ideal
gas term and assuming constant mobility. (iii) Replacing the
nonlocal convolution in L with a local gradient expansion.
The consequence of (ii) is to introduce a second spinodal
into the phase diagram and to significantly alter the relative
stabilities of the different periodic states, in particular making
striped states to become an equilibrium phase for some state
points, which is contrary to the physics. The consequence of
making (iii) without first making (ii) is to generate a theory
(DDFT-5) that has a no-solution region in the phase diagram,
such as that displayed for the GEM-4 model in Fig. 7(b).
All these consequences have been illustrated for the GEM-4
system, chosen because DDFT-3 is fairly accurate for this
model for temperatures kBT/ε > 0.1, allowing us to see the
influence of the subsequent approximations.

Throughout, there is good quantitative agreement between
DDFT-3, PFC-γ , and the EOF versions of DDFT-5 and PFC-ε

(data not shown) only for unstable small amplitude solutions
close to the spinodal point. The region of quantitative agree-
ment agreement between DDFT-3 and PFC-γ is circled in
red in Figs. 5(b) and 5(h). Beyond this region, the agreement
between the four theories is at best qualitative.

Given all these problematic consequences for PFC theory,
especially the issues related to Taylor expanding the logarith-
mic ideal gas term, it raises the question of why then is PFC
theory so successful? In our view, there are several reasons
for this. The first reason is that PFC theory is qualitatively
correct near to the spinodal. Therefore, it can satisfactorily
describe the coexistence between the liquid and the crystal
phase, which is often an important aspect in applications of
the theory. Second, despite the approximations, PFC theory
still incorporates some very important physics: (i) the free
energy satisfies the correct symmetries, (ii) the dynamical
equation gives a time evolution that decreases the free energy
monotonically over time, and (iii) the current is proportional
to the gradient of the chemical potential. These are all impor-
tant features for describing many phenomena. Also, many of
the features that PFC theory is used to describe are generic,
and the model parameters can be scaled to fit (for example)
iron [9] and graphene [63], but could equally well be scaled
to match other materials, with similar good agreement. This
universality (having the correct symmetries, etc.) underlines
the importance of PFC theory as a powerful model of generic
features of crystallization, but it means that PFC theory will
in general not be able to predict any unusual (nongeneric)
behavior.

Our results in Sec. V for the GEM-4 system showing that
one can derive a very accurate one-mode amplitude equation
approximation for the field φ(x) = ln[ρ(x)/ρ0], rather than
the density itself, gives a tantalizing hint as to how PFC-type
theories may more properly be derived and what the order
parameter field in PFC theory really represents: Should we
consider the PFC order parameter to be a scaled logarithm of
the density distribution or some other similar function of the
density, rather than being proportional to the density profile
itself? On the basis of the work presented here, the answer
to this question is “probably yes,” but clearly more work is
required to fully address this.

Returning to theories for the density profile, in our view
it is preferable to retain the logarithmic ideal gas term in the
approximation used for the Helmholtz free energy functional,
since this is required to have physical (i.e., positive) density
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profiles, and also because with this the DDFT dynamics leads
to the (correct physics) linear diffusion equation term; see
Eq. (13). The difficult consequence of retaining this in the
free energy is that one then has to deal with terms in the
dynamical equation of the form ∇ · [n∇Ln], which makes
solving numerically far more difficult. However, this term also
contributes to making the crystalline phase more stable than
the stripe phase, which also makes it important. The crucial
contribution of this term can especially be seen in DDFT-3,
since in this version of the theory it is clearly required for
stabilizing the crystal structure. In general, we would advocate
using one of DDFT-1, DDFT-2, or DDFT-3 (depending on
how Fex is treated) over all existing PFC theories, for studying
the properties of real materials.

It is worth noting that in all the approximations made here,
we only consider those that retain the form of a dynamics
that decreases the free energy monotonically over time; see
Eq. (6). This is a feature of both DDFT and PFC theory. In
our view this structure is important and should not be broken
by any approximations made, i.e., any that might be made
in future in attempting to avoid any of the above mentioned
issues.

It is also worth noting that while we have not discussed the
consequences of the LDA in going from DDFT-1 to DDFT-2
[see Eq. (31)], the polynomial terms in the chemical potential
(36) can potentially lead to the same problem of having a
second spinodal, even while retaining the logarithm term. This
applies to DDFT-4 as well.

In this paper we have largely focused on making our
arguments in two dimensions, in order to keep the presen-
tation as simple and comprehensible as possible. However,
we should emphasize that all of our arguments apply for
three-dimensional (3D) systems. For example, at the higher
temperatures we have focused on here, the 3D GEM-4 model
exhibits at equilibrium a single fluid phase and two crystalline
phases: the body-centered cubic phase at lower densities and
the face-centered cubic structure at higher densities. These are
all accurately predicted by the 3D version of DDFT-3 [41].
There are no columnar or lamellar phases, which are the 3D
equivalents of the stripe phase. On the other hand, the 3D ver-
sions of the PFC theories presented here all predict a lamellar
phase at some state points [18], the 3D generalizations of the
down hexagons and a second spinodal with the uniform liquid
becoming the equilibrium phase at higher densities.

It would be interesting to explore how the dynamics of
defects and the elasticity and plasticity of crystals differs
between DDFT and PFC, and our results are also relevant to
binary systems. In the derivation in Ref. [24] of a PFC theory
for binary mixtures, the generalization of the ∇ · [n∇Ln]
term is retained until the last moment in the derivation, but
then dropped for the same reasons that is is neglected for
one-component systems. Given the importance of this term for
one-component systems, it is surely also important for stabi-
lizing crystal structures in binary systems. Note also that when
determining mechanical properties such as elastic constants,
the terms in the free energy that are linear in n can be impor-
tant [46]. These have been neglected here throughout since
such terms do not contribute to determining density profiles.

The singularity observed for DDFT-5 as the chemical
potential μ (or equivalently, the average density 1 + n̄) is

increased was found by continuing equilibrium solutions de-
termined at lower values of μ. One aspect that needs further
investigation relates to determining the influence of this when
DDFT-5 is solved for state points where the final equilibrium
crystal (or stripe) solution for the density profile does not
exist. For example, a situation we have in mind is that studied
by van Teeffelen et al. [23] consisting of a solidification front
propagating into the unstable liquid. These authors compared
results for this situation between (in our terminology) DDFT-
3, DDFT-5, and PFC-ε. Their results are for two-dimensional
dipolar colloidal particles. From the DDFT-5 results (PFC1 in
their terminology) displayed in Figs. 4 and 5 of Ref. [23], it
can be seen that they did not consider values of the coupling
parameter large enough to encounter any of the singularities;
the density profiles stay well away from zero. It would be
interesting to quench deeper into the crystal phase to study
the evolution of the density distribution toward the singular
state. However, the numerics to resolve this accurately would
surely be difficult.

One aspect of PFC theory that the derivation from DDFT
highlights is that in general one is not free to independently
vary the parameters r and n̄ in Eqs. (1) and (2). For example,
for the GEM-4 model there are certain values of r that are
not generated by the mapping from DDFT. Of course, by
changing the pair potential, different combinations of the PFC
model parameters can become accessible. We should also
recall that although we have illustrated many of our conclu-
sions by considering the soft-core GEM-4 model, PFC theory
can be derived for systems of particles with hard potentials
since it is the pair direct correlation function c(2)(x1, x2) that
enters the theory; this quantity is finite for all values of x1

and x2.
As a final point, we mention that our results will also

be of interest to the pure mathematics community. DDFT-3
is also referred to as the McKean-Vlasov equation and in
this context there are a number of recent interesting rigorous
results [64,65]. Our results for DDFT-5, showing that for a
finite value of μ there is a singularity with the density profile
going to zero, may well be of interest to those who study the
mathematics of solutions to partial differential equations with
compact support; see for example Ref. [66]. For values of
μ beyond the singular point where 1 + n(x) → 0, it may be
that the solutions become complex. If one were interested in
finding these solutions, we believe it might require treating μ

as a complex variable. Of course, all of this is out of the realm
where the model represents a theory for matter.
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TABLE II. Linear theory for the GEM-4 potential in one, two,
and three dimensions. Solving dσ

dk (1) = 0 and σ (1) = 0 gives R

and ρ0βε, while γ and σ (0) are computed from d2σ

dk2 (1) and (A1),
respectively. We also give the values of EB for the EOF in Eq. (76).

Dimension R ρ0βε γ σ (0) EB

1 4.5918 1.1629 3.2051 −10.680 7.475
2 5.0962 0.2455 4.3692 −18.752 14.383
3 5.5719 0.0455 5.6889 −31.305 25.616

APPENDIX A: LINEAR THEORY FOR GEM-4

In this Appendix, we discuss how we compute the linear
theory for the GEM-4 potential in (64). To be specific, in
a two-dimensional periodic domain, the eigenvalue σ (k) is
defined by Leik·x = σ (k)eik·x and (65), which can be written
as

σ (k) = −1 − ρ0βε

∫
e−|x−x2|4/R4

eik·(x2−x)dx2, (A1)

where the integral is taken over the periodic domain (the
GEM-4 potential is replaced by its periodic extension). We
set k = (k, 0), we integrate from [−Nπ/k, Nπ/k] in each
dimension, and we choose the integer N large enough that
the GEM-4 exponential is effectively zero at the boundaries;
N = 4 suffices. We then scale x by a factor of k, replacing
x2 − x by x/k, so that the integral becomes

σ (k) = −1 − ρ0βε

∫∫ Nπ

−Nπ

e−|x|4/(k4R4 )eix dx
k2

, (A2)

where x is the first component of x. With this scaling, the
limits of the integral do not depend on k.

We choose R and ρ0βε so that σ (1) = 0 and dσ
dk (1) = 0.

The derivative of σ with respect to k is

dσ

dk
= −ρ0βε

∫∫ Nπ

−Nπ

(
4|x|4 − 2k4R4

k7R4

)
e−|x|4/(k4R4 )eixdx.

(A3)

Evaluating this at k = 1 and removing the constant factor
outside the integral gives a function F (R):

F (R) =
∫∫ Nπ

−Nπ

(
4|x|4 − 2R4

R4

)
e−|x|4/R4

eixdx. (A4)

We solve the equation F (R) = 0 using Newton’s method to
give R. We then calculate ρ0βε by requiring that σ (1) = 0
in (A2). Values for R and ρ0βε in one, two, and three
dimensions are given in Table II. We compute the GEM-4
dispersion relation in Fig. 2 in a similar way, and use the
second derivative of (A2) with respect to k, at k = 1, to find
the γ parameter (also given in Table II) in Lgrad. The table also
gives σ (0), since this is useful for computing properties of the
liquid, as well as EB, the coefficient in the eighth-order model
of [9], given in Eq. (76).

APPENDIX B: NUMERICAL METHOD: CONTINUATION

We use numerical continuation to solve the four equations
(63) and (67)–(69) for n(x) as the parameters vary. Our

approach is based on [67] for the pseudo-arclength contin-
uation method, and we use the approach advocated by [68]
to solve the large linear systems at each Newton step. The
main parameters are the chemical potential μ, the parameters
in the linear operators L and Lgrad, and the domain size. In this
discussion, we focus on μ as the parameter that is varied.

1. Pseudo-arclength continuation

The main idea behind pseudo-arclength continuation is to
suppose that we are looking to calculate a branch of solutions
n(x) depending on the parameter μ. The branch may have
folds (as in Fig. 5), and the method should be able to go
around these. The method defines a parameter (the arclength
s) that increases or decreases monotonically along the branch
(including its folds) such that both n(x) and μ can be regarded
as single-valued functions of s. Then the equation to be solved
is

G(n(s), μ(s)) = 0, (B1)

where G represents the equation we are solving for n. Instead
of thinking of n as being a function of position x, we represent
n as a series of values ni on N grid points xi (i = 1, . . . , N),
so n is now a vector in RN , and G is a function from
RN+1 → RN . Equation (B1) represents N equations for N + 1
unknowns, and so it is supplemented by an orthogonality
condition, that the next point on a branch should lie in a plane
orthogonal to a line connecting the two previous points. It is
this that allows the branch following technique to go around
folds. If we have two points on the branch (n(s), μ(s)) at s0

and s1, then we take the derivatives of n and μ with respect to
the arclength to be approximately

dn

ds
= S

n(s1) − n(s0)

s1 − s0
,

dμ

ds
= S

μ(s1) − μ(s0)

s1 − s0
, (B2)

with the scaling factor S chosen so as to satisfy

1

N

N∑
i=1

(
dni

ds

)2

+
(

dμ

ds

)2

= 1. (B3)

The 1
N prefactor means that the parametrization of the branch

by the arclength is essentially independent of the number of
grid points.

The method then proceeds in a predictor-corrector fash-
ion. The predictor step, with a target step size �s, provides
(n2, μ2):

n2 = n(s1) + �s
dn

ds
, μ2 = μ(s1) + �s

dμ

ds
. (B4)

Then, (n2, μ2) is used as an initial iterate for a Newton
solver for Eq. (B1), supplemented by the condition that the
Newton iterates lie in a plane orthogonal to the line given in
(B4), parametrized by �s. This means that we are solving
H(n, μ) = 0, where H is RN+1 → RN+1, with the first N
equations in H being the same as G, and the last equation
being

(n − n2)
dn

ds
+ (μ − μ2)

dμ

ds
= 0. (B5)
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To be precise, we take

H(n, μ) =
(

1√
N

P · G(n, μ)

Eq. (B5)

)
, (B6)

where P is a linear preconditioner for G (see below). The
√

N
scaling means that the norm ‖H(n, μ)‖ (the square root of the
sum of the squares of its components) is independent of the
number of grid points N , and it also means that the equations
in G and the orthogonality condition (B5) are given a similar
weighting by the Newton method.

Solving H(n, μ) = 0 results in a new point on the branch
of solutions, (n(s2), μ(s2)), where s2 is given by

s2 = s1 + 1

N
[n(s2) − n(s1)]

dn

ds
+ [μ(s2) − μ(s1)]

dμ

ds
,

(B7)

with dn
ds and dμ

ds given by (B2). This last equation comes from
replacing n2 with n(s2) and μ2 with μ(s2) in (B4) and finding
a �s = s2 − s1 from 1/N times the first equation plus the
second equation. This is not quite the actual change to the
arclength that was achieved in the step, and the approximation
is the reason that the method is called the pseudo-arclength
method.

2. Newton’s method

For Newton’s method, we define X = (n, μ) and solve
H(X ) = 0. We start with X0 given by the predictor step above
in (B4), and follow [68], at each step solving the linear
equation

∂H
∂X

δX n = −H(Xn), (B8)

where ∂H
∂X is the (N + 1) × (N + 1) matrix of derivatives of H

with respect to X , and then improving our estimate of the root
by using δX .

The Newton method proceeds until convergence, defined
by

‖H(Xn)‖ < Nabs + Nrel‖H(X0)‖, (B9)

where Nabs and Nrel are the Newton absolute and relative con-
vergence tolerances, respectively, typically 10−10 and 10−8.
We also monitored the maximum of |H(n(x), μ)| across the
domain, and this was typically no larger than ten times Nabs,
so the equations are well satisfied at each point in space as
well as in norm.

The linear equations in (B8) are solved to find δX n us-
ing MATLAB’s biconjugate gradient stabilized (l) (“bicgstabl”)
method. This allows the matrix-vector multiplications to be
evaluated using a function (rather than by explicitly comput-
ing a large matrix). The method is iterative, and proceeds until

∥∥∥∥∂H
∂X

δX n + H(Xn)

∥∥∥∥ < Lrel‖H(Xn)‖, (B10)

where the relative tolerance Lrel of the linear solver is cho-
sen so as to balance the number of Newton steps against
the number of “bicgstabl” iterations. Based on [68], we

choose

Lrel = 0.1
√

‖H(Xn)‖ + Nabs

‖H(Xn)‖ , (B11)

subject to the constraint that Lrel should be no larger than 0.1.
The effect of this is that in the initial first or second of the
Newton iterations, when ‖H(Xn)‖ is at its largest, the linear
solver is not asked to work too hard to solve (B8), since any
reasonably good approximate solution is likely to improve the
estimate of the root, and an absolutely perfect solution is not
going to do much better. In the middle stages of the Newton
iterations, when ‖H(Xn)‖ is about 10−6, the tolerance Lrel

is about 2 × 10−4, which is not good enough for quadratic
convergence of Newton’s method, but is good enough to
provide two or three orders of magnitude improvement to
the quality of the solution at a considerably lower cost. In
the final stages of the Newton iterations, Lrel = 0.1, good
enough for polishing the solution to the tolerance Nabs while
not attempting to solve the linear problem down to round-off
error.

Also based on [68], we implement the Armijo rule, which
ensures that each Newton step results in an improvement
to the solution. The idea is that the solution of the linear
equation (B8) should give the correct direction for improving
the solution of H(X ) = 0, but taking a full step may not
actually result in an improvement, so instead we set

Xn+1 = Xn + 2− jδX n, (B12)

where j = 0, 1, 2, . . . is chosen to be the smallest such that

‖H(Xn+1)‖ < ‖H(Xn)‖. (B13)

In most cases, the first ( j = 0) Armijo step satisfies (B13),
equivalent to the normal Newton method, but when the density
is close to zero in the DDFT calculations, and small changes
in density lead to large changes in its logarithm, the Armijo
rule is helpful.

We do not use a preconditioner in the GEM-4 calculations
[so P in (B6) is the identity], but in the gradient expansion
calculations, a preconditioner is helpful. In Fourier space,
Lgrad can easily be inverted, so the preconditioner is L−1

grad
when the absolute value of the eigenvalue σ (k) is greater than
1; otherwise the preconditioner is the identity. This has the
effect of reducing the number of iterations needed to solve
(B8) by a factor of 10 or even 100.

A sample MATLAB code to solve Eq. (63) for DDFT-3 by
Newton’s method (without the continuation aspect) is given in
the Supplemental Material [69].

3. Additional considerations

We start the computation of each branch close to n = 0 and
μ = 0 using an approximate solution derived from weakly
nonlinear theory. For example, for hexagons in DDFT-3, we
take

n(x) = μ

σ (0)
(−1 + eik1·x + eik2·x + eik3·x + c.c.), (B14)

where the initial value of μ is small, σ (0) comes from Table II,
k1 = (1, 0), k2 = (− 1

2 ,
√

3
2 ), k3 = (− 1

2 ,−
√

3
2 ), and c.c. stands

for complex conjugate.
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The equations are posed on periodic domains and we use
Nx × Ny grid points, depending on the number of wavelengths
in the domain and the nature of the solution. The GEM-4
hexagonal calculations require 8 × 8√

3
wavelength domains,

with resolutions starting at 80 × 48 Fourier modes close to
onset. At larger amplitude, 512 × 320 Fourier modes (or even
more) are needed, especially if the density maxima are sharply
peaked (in DDFT-3) or if the density minima are very close
to zero (in DDFT-5). In order to accommodate the changing
needs for resolution along a branch, we monitor whether
the solutions are well resolved and implemented automatic
regridding, so as to maintain enough grid points to resolve
the solution well, regardless of what features emerge as μ

is varied. Typically we require that the amplitudes of the
highest-wave-number Fourier modes be no higher than 10−10

times the largest Fourier amplitude.
We also implement automatic pseudo-arclength step-size

control: �s is increased by a factor of 1.1 (up to a maximum
of 0.1) if the Newton method converges quickly (in fewer
than 5 iterations), or is decreased by a factor of 2 (down
to a minimum of 10−6) if it converges slowly (more than 8
iterations) or fails.

Finally, we adjust the domain size continuously along each
branch so as to minimize the specific grand potential 
/A.
This is done by adding an extra parameter (the domain stretch
factor K), so that the real domain size is KLx × KLy instead

of an unstretched Lx × Ly. The number of grid points is not
altered. Then the real GEM-4 potential is proportional to
ψ (|x|) = exp (−K4|x|4/R4), where x is the unstretched coor-
dinate on the unaltered grid. Quantities like the mean value
of n are the sum of the values of n at each grid point divided
by the number of grid points, and so are not affected by the
stretch factor. The only parts of 
/A that are affected are the
convolutions (for L and the GEM-4 potential) and the spatial
derivatives (for Lgrad). In the case of the GEM-4 potential,
when considering the specific grand potential 
3/A arising
from (40) for example, and L given by (65), the integrals in

3/A are proportional to K2, with additional K dependence
coming from the GEM-4 potential itself. Therefore,

d (
3/A)

dK
∝

∫
n(x)

(
2Kψ ⊗ n + K2 ∂ψ

∂K
⊗ n

)
dx, (B15)

where ⊗ represents the convolution integral evaluated on the
unstretched grid, and the x integral is also on the unstretched
grid. In the case of Lgrad, Laplacians on the real grid are a
factor of K−2 times Laplacians on the unstretched grid, so
d (
/A)/dK is evaluated accordingly. In both cases, an extra
equation [d (
/A)/dK = 0] is added to H in (B6), and this
is solved alongside all the other equations. The Jacobian also
needs to be evaluated. In practice this made little difference
in the cases considered here, and the domain stretch factor
largely stayed between 0.98 and 1.02.
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