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Characterization of the non-Arrhenius behavior of supercooled liquids by modeling nonadditive
stochastic systems
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The characterization of the formation mechanisms of amorphous solids is a large avenue for research, since
understanding its non-Arrhenius behavior is challenging to overcome. In this context, we present one path toward
modeling the diffusive processes in supercooled liquids near glass transition through a class of nonhomogeneous
continuity equations, providing a consistent theoretical basis for the physical interpretation of its non-Arrhenius
behavior. More precisely, we obtain the generalized drag and diffusion coefficients that allow us to model a
wide range of non-Arrhenius processes. This provides a reliable measurement of the degree of fragility of the
system and an estimation of the fragile-to-strong transition in glass-forming liquids, as well as a generalized
Stokes-Einstein equation, leading to a better understanding of the classical and quantum effects on the dynamics
of nonadditive stochastic systems.
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I. INTRODUCTION

The dynamic response of a wide class of materials can be
achieved using the so-called Arrhenius law [1–5]. Basically,
it consists of an exponential decay with the inverse of the
temperature characterized by the so-called temperature inde-
pendent activation energy [1–3]. The search for a physical
interpretation of the activation energy established the funda-
mentals of the transition state theory [6–8] since it associates
an Arrhenius-like behavior with diffusive processes in several
systems [4,9–12].

However, from the development of new technologies and
advances in materials preparation techniques, a wide vari-
ety of new compounds could be synthesized, leading to the
improvement of experimental techniques for the study of
chemical reactions and diffusive processes. In this scenario,
several systems have revealed deviations from Arrhenius be-
havior, evidenced through the temperature dependence of the
activation energy [1]. In recent years, the characterization of
non-Arrhenius behaviors has received considerable attention,
since it was observed in water-type models SPC/E (extended
simple point charge) [13,14], food systems [15], diffusivity
in supercooled liquids near glass transition [2,10,11,16,17],
chemical reactions [8,18,19], and several biological processes
[20,21]. Therefore, modeling these non-Arrhenius systems
is a large avenue for research and an actual challenge to
overcome.

The non-Arrhenius behaviors manifest themselves as con-
cave curves (sub-Arrhenius behavior), associated with non-
local quantum effects [8,19,22], or convex curves (super-
Arrhenius behavior), associated with the predominance of
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classical transport phenomena [3,20,22,23]. Despite much
effort by the scientific community, there are only a few
phenomenological relationships proposed to model non-
Arrhenius processes, such as the Vogel-Tamman-Fulcher
equation [24–26] and the Aquilanti-Mundim d-Arrhenius
model [3,19,20,22,23,27,28]. Other phenomenological ex-
pressions have recently been proposed [5,10,17]. However,
there is a need to establish a wide class of equations that
characterize non-Arrhenius processes in a consistent theoret-
ical basis for the physical interpretation of the characteristic
non-Arrhenius behavior of several diffusive processes.

Nevertheless, the Aquilanti-Mundim equation can be de-
rived from the stationary process of the nonlinear Fokker-
Planck equation, and the diffusivity dependence with the tem-
perature is consistent with experimental results [5]. Nonlinear
Fokker-Planck equations, especially those whose stationary
solutions maximize nonadditive entropies [29], such as the
Tsallis entropy [30], have been successfully employed for
modeling non-Markovian processes [31,32], anomalous dif-
fusion [33,34], astrophysical systems [35], sunspots [36], and
pitting corrosion [37], suggesting that this class of equations
can also be an alternative way to describe the non-Arrhenius
behavior of nonadditive stochastic systems.

In this context, we show in this paper a class of non-
homogeneous continuity equations whose generalized coeffi-
cient allows the modeling of a wide range of non-Arrhenius
processes. We model the characteristic super-Arrhenius be-
havior of diffusivity and viscosity in supercooled liquids,
determining a characteristic threshold temperature associated
with the discontinuities in its dynamic properties, such as the
viscosity and the activation energy. In addition, we define
a generalized exponent that characterizes the non-Arrhenius
process and serves as an indicator of the level of fragility
in glass-forming systems, whereas the threshold temperature
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indicates a fragile-to-strong transition, the general behavior of
metallic glass-forming liquids [38]. Our model also derives a
generalized version for the Stokes-Einstein equation, where
we obtain a characteristic temperature independent behavior
(at low temperatures) for sub-Arrhenius processes, and a
sudden death behavior around the threshold temperature for
super-Arrhenius processes. Our results pave the way for the
characterization of the breakdown of the standard Stokes-
Einstein relation [39–42], mainly in supercooled liquids [43],
providing one path toward understanding the dynamic evolu-
tion of non-Arrhenius processes, leading to the establishment
of a theoretical interface between a macroscopic and micro-
scopic perspective of the matter through a nonequilibrium
statistical mechanics.

II. GENERALIZED REACTION-DIFFUSION MODEL

Let us consider a concentration ρ(r, t ) of a substance mea-
sured in volume V at time t ; the total amount of substance for
the same volume is given by the nonhomogeneous continuity
equation. In this context, we propose a generalized model,
based on a nonhomogeneous continuity equation, which refers
to dissipative reaction-diffusion processes, through the fol-
lowing conditions:

(i) f (r, t ) = �∇ · �ν(r, t ) is a volumetric density per unit
time associated with dissipative processes and �ν(r, t ) is a
field of nonzero divergence, which can be understood as a
dissipation field, associated with these dissipative reaction-
diffusion processes, by analogy to a source effect.

(ii) �ν(r, t ) = −κ−1
m ρm �∇φ, where κm is a positive constant

parametrized by the exponent m. The potential φ is analogous
to a generalized chemical potential μ, associated with the
molar energy of a chemical reaction, in a reaction-diffusion
model.

(iii) For the steady state �ν(r, t ) → �νS (r), which is a field
of zero divergence.

(iv) �J = −D(r, t ; ρ) �∇ρ is a diffusion flux, for a general-
ized version of Fick’s first law [12,44], in which D(r, t ; ρ) is a
generalized diffusion coefficient.

(v) D(r, t ; ρ) = (�/2)ρn−1 [29], where � is a positive def-
inite parameter, related to a class of nonlinear equations asso-
ciated with anomalous diffusive processes [29,45]. This con-
dition establishes the connection between nonlinear Fokker-
Planck equations and nonadditive entropic forms [29,45].
In this context, nonlinear Fokker-Planck equations can be
arranged into classes associated with these entropic forms
and their corresponding stationary state, which is one path
toward the characterization of the non-Arrhenius behavior of
nonadditive stochastic systems.

In this circumstance, the nonhomogeneous continuity
equation becomes a particular class of nonlinear Fokker-
Planck equations [29] whose nonlinearity of the generalized
drag coefficient involves the information of the dissipative
or exchange processes, such as phase transitions or chemical
reactions. From these conditions we obtain an alternative way
to describe the non-Arrhenius behavior of the diffusion pro-
cesses of nonadditive stochastic systems such as supercooled
liquids, from a consistent theoretical basis. To ensure that
the diffusion coefficient, D(r, t ; ρ), defined in condition (v)

FIG. 1. Monolog plot of the diffusivity as a function of the recip-
rocal temperature. The curves m > 2 (dotted red lines) characterize
a class of sub-Arrhenius processes, while the curves m < 2 (dashed
blue lines) characterize a class of super-Arrhenius processes. The
m = 2 curve (solid line) corresponds to the usual Arrhenius plot. The
curves were simulated for the E/kB = 1000 K condition

is proportional to the concentration ρ(r, t ), we consider the
particular case n = 2. Thus, we obtain the nonhomogeneous
continuity equation

∂ρ(r, t )

∂t
= κ−1

m
�∇ · [( �∇φ)ρm] + �

2
∇2[ρ2], (1)

where Eq. (1) is a class of nonlinear Fokker-Planck equations,
whose solutions compose a class of rapidly decreasing func-
tions [46] that maximize nonadditive entropies, such as the
Tsallis entropy [30], since this guarantees the possibility of
fundamental solutions for the diffusion equation.

III. DIFFUSIVITY, VISCOSITY, AND FRAGILITY
OF GLASS-FORMING LIQUIDS

The characterization of diffusivity and viscosity in super-
cooled liquids is effective to understand the glass transition
and the formation mechanisms of amorphous solids. From the
stationary solution of Eq. (1) and condition (v), for n = 2, the
dependence of the diffusion coefficient with the temperature
can be written as

D(T ) = D0

[
1 − (2 − m)

E

kBT

] 1
2−m

, (2)

where D0 = �C0 (C0 is a normalization constant of the
stationary concentration), E = − ∫ �∇φ · dr is a generalized
energy, and C2−m

0 κm� = kBT [47,48]. From Eq. (2), the Ar-
rhenius standard behavior is recovered when the coefficient
m → 2; then the energy E , in this limit, corresponds to a
temperature independent energy.

Figure 1 shows the diffusivity of a supercooled liquid as a
function of the reciprocal temperature. Under the condition
m < 2 the proposed model encompasses a class of super-
Arrhenius diffusive processes, associated with the predom-
inance of classical transport phenomena [3,20,22,23], pre-
dominantly according to experimental reports [5,10,16,17]. In
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FIG. 2. The activation energy as a function of the reciprocal
temperature. The curves m > 2 (dotted red lines), from which the
activation energy is a decreasing function of the reciprocal tem-
perature, characterize a class of sub-Arrhenius processes, while the
increasing curves m < 2 (dashed blue lines) characterize a class of
super-Arrhenius processes. In addition, the m = 2 curve (solid line)
corresponds to the Arrhenius activation energy, characterized by a
temperature independent behavior. The curves were simulated using
the scale factor E/kB = 1000 K.

addition, the model also covers a wide class of sub-Arrhenius
diffusive processes, characterized by the condition m > 2,
associated with nonlocal quantum effects [8,19,22], and less
sensitive to the exponent variations than the super-Arrhenius
processes.

It is also possible to verify the existence of a threshold
temperature for super-Arrhenius processes, from which the
diffusivity goes to zero, given by

Tt = (2 − m)E

kB
. (3)

From Eq. (2), using the slope of log(D(T )/D0) as a func-
tion of T −1 as shown in Fig. 1, we obtain the activation energy
temperature dependence as

EA(T ) = E

1 − (2 − m) E
kBT

, (4)

the main feature of non-Arrhenius processes. Furthermore,
from Eq. (4), for m → 2 the activation energy achieves a
temperature independent behavior EA(T ) → E corresponding
to the Arrhenius law, as previously mentioned.

Figure 2 shows the activation energies, corresponding to
the diffusivity curves presented in Fig. 1, calculated from
Eq. (4). The activation energy is an increasing function of
the reciprocal temperature for sub-Arrhenius processes and
decreasing for super-Arrhenius processes. In addition, for the
super-Arrhenius processes, when the threshold temperature,
Eq. (3), is achieved the activation energy diverges to infinity,
indicating that this temperature is related to the viscosity
divergence in the glass transition.

From Eq. (1), we can define κ−1
m ρm−1 as the generalized

fluid mobility [47], which relates the drift velocity of the

FIG. 3. The viscosity as a function of the reciprocal temperature.
The curves m > 2 (dotted red lines) characterize a class of sub-
Arrhenius models for viscosity, while the curves m < 2 (dashed
blue lines) characterize a class of super-Arrhenius models. The
m = 2 curve (solid line) corresponds to the Arrhenius model for the
viscosity.

diffusive flux to the dissipative field �ν(r, t ) = −κ−1
m ρm �∇φ, as

described in Sec. II. Given that the viscosity η(T ) is inversely
proportional to the fluid mobility, its temperature dependence
is given by

η(T ) = η∞

[
1 − (2 − m)

E

kBT

] 1−m
2−m

, (5)

where η∞ = ακmC1−m
0 is the high temperature viscosity limit

and α is a positive definite constant. From Eq. (5) the Arrhe-
nius model from the viscosity is recovered for the limit case
m → 2.

Figure 3 shows the viscosity as a function of the recipro-
cal temperature. For super-Arrhenius processes (m < 2) the
threshold temperature characterizes the regime from which
the viscosity diverges to infinity. Thus, the threshold tem-
perature, Eq. (3), serves as an indication of how close the
system is to the glass transition region because it involves
discontinuities in the dynamic properties, such as the activa-
tion energy, Eq. (4), and viscosity, Eq. (5). The glass-liquid
transition occurs in a range of temperatures for which the
viscosity assumes a large value, but still does not diverge. In
most glass-forming liquids, the glass transition temperature is
established at the viscosity reference value of 1012 Pa s; thus
Tt � Tg.

This model can also be used to calculate the level of
fragility Mη in glass-forming systems [38,49,50] by our ex-
ponent m as

Mη =
(

m − 1

2 − m

)(
1

1 − Tt
Tg

)
. (6)

For the usual Arrhenius diffusive processes, the condition
m = 2 characterizes a strong glass system, whereas for a
wide class of super-Arrhenius diffusive processes the condi-
tion m < 2 characterizes a fragile glass [49,50]. A second
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important feature that arises from our model is the distin-
guishability between strong and fragile systems for super-
Arrhenius processes (m < 2), since the further the glass
transition temperature Tg is from the threshold temperature,
Eq. (3), the more fragile the system will be. The proposed
approach considers a dynamic interpretation for the glass
transition since the ratio Tt/Tg in Eq. (6) is related to discon-
tinuities in dynamic properties such as energy and viscosity,
indicating a fragile-to-strong transition [38] usually found in
some water and silica systems, which is possibly a general
behavior of metallic glass-forming liquids [38], where an
initially fragile supercooled liquid can be transformed into a
strong liquid upon supercooling toward Tg.

In this context, the transition characterized by this thresh-
old temperature differs from the freezing or crystallization
transition, which is in the Ehrenfest classification a first-
order phase transition [51], because it cannot characterize a
transition between states in the thermodynamic equilibrium.
Therefore, the dynamics around the glass transition region,
characterized by Eq. (3), provides a measurement of how frag-
ile a system is, establishing the theoretical basis for the under-
standing of the formation mechanisms of amorphous solids.

Furthermore, fragile-to-strong transitions have been related
to an extensive configurational entropy for all nonzero temper-
atures [52]. This feature can be identified in our model given
that nonadditive entropic forms can be extensive, depend-
ing on the characteristics of the system, because additivity
and extensivity are distinct properties that coincide only in
short-range interacting systems from which is applicable the
Boltzmann-Gibbs entropy [53–55].

Moreover, a third remarkable result can be extracted from
our model. The product between the generalized diffusion co-
efficient, Eq. (2), and the viscosity, Eq. (5), obtained from our
generalized model for reaction-diffusion processes provides
a generalized Stokes-Einstein relation for any non-Arrhenius
diffusion process, given by

Dη = αkBT

[
1 − (2 − m)

E

kBT

]
. (7)

Figure 4 shows the temperature dependence of the gener-
alized Stokes-Einstein relation, Eq. (7), for different values of
the coefficient m. For the super-Arrhenius diffusive processes
(m < 2) the relation gives an estimate of the glass transi-
tion temperature, since the generalized diffusion coefficient,
Eq. (2), goes to zero faster than the viscosity, Eq. (6), diverges
to infinity. Thus, the region in which the product of the
viscosity and the generalized diffusion coefficient, Eq. (7),
goes to zero is equivalent to the threshold temperature of glass
transition, Eq. (3). In addition, as demonstrated in Fig. 4,
the usual form of the Stokes-Einstein relation is recovered
from Eq. (7) under two conditions: (i) for any Arrhenius-
like process (m → 2) and (ii) for the condition E � kBT ,
i.e., thermal fluctuations predominate in the process, to the
detriment of the concentration gradient.

On the other hand, for the sub-Arrhenius diffusive pro-
cesses, it is worth noting that, from the condition E � kBT ,
the generalized Stokes-Einstein equation, Eq. (7), presents a
temperature independent behavior, enabling the differentia-
tion of the classical and quantum regimes, paving the way
for the characterization of sub-Arrhenius processes through

FIG. 4. The temperature dependence of the generalized Stokes-
Einstein relation, Eq. (7), for different values of the coefficient m.
For super-Arrhenius processes, m < 2 (dashed blue lines), the region
in which the product between the viscosity and the generalized
diffusion coefficient, Eq. (7), rapidly goes to zero is equivalent to the
threshold temperature of glass transition, Eq. (3). For sub-Arrhenius
processes, m > 2 (dotted red lines), from the condition E � kBT the
generalized Stokes-Einstein equation presents a temperature inde-
pendent behavior. The straight line corresponds to the usual form
of the Stokes-Einstein relation, recovered for any Arrhenius-like
process, m = 2 curve (solid line), and for the condition E � kBT ,
that separates the super- and sub-Arrhenius regimes.

Eq. (7). This provides one path toward understanding the
quantum effects in the dynamics of the nonadditive stochastic
systems.

IV. CONCLUSIONS

In summary, our main result was to provide an alternative
way to describe the non-Arrhenius behavior of diffusive pro-
cesses in glass-forming liquids. Our model was characterized
by a generalized exponent m that defines the class of non-
Arrhenius processes and serves as an indicator of the degree
of the fragility in these systems. In addition, we determine
the threshold temperature, Eq. (3), from which the dynamic
properties, such as the activation energy and viscosity, diverge
and give us a reliable estimate of the degree of fragility,
since the ratio Tt/Tg [Eq. (6)] indicates a fragile-to-strong
transition, establishing the theoretical basis for understanding
the intrinsic features of amorphous solids.

Also interesting is the realization of a generalized Stokes-
Einstein equation, Eq. (7), which allows us to characterize
the breakdown of the standard Stokes-Einstein relation in su-
percooled liquids. For sub-Arrhenius processes, the general-
ized relation presents a characteristic temperature independent
behavior at low temperatures while, for the class of super-
Arrhenius diffusive processes, it rapidly goes to zero around
the threshold temperature. Moreover, the usual form of the
Stokes-Einstein relation is recovered for any Arrhenius-like
process and when the thermal fluctuations predominate in the
process to the detriment of the concentration gradient (E �
kBT ). Our results provide one path toward the differentiation
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of the super- and sub-Arrhenius processes, leading to a better
understanding of the classical and quantum effects on the
dynamics of nonadditive stochastic systems, paving the way
for the characterization of the formation mechanisms of amor-
phous solids through the study of non-Arrhenius diffusive
processes in these systems.
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