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We show that the critical manifold of a statistical mechanical system in the vicinity of a critical point is locally
accessible through correlation functions at that point. A practical numerical method is presented to determine
the tangent space and the curvature to the critical manifold with variational Monte Carlo renormalization group.
Because of the use of a variational bias potential of the coarse-grained variables, critical slowing down is greatly
alleviated in the Monte Carlo simulation. In addition, this method is free of truncation error. We study the
isotropic Ising model on square and cubic lattices, the anisotropic Ising model, and the tricritical Ising model on
square lattices to illustrate the method.
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I. INTRODUCTION

The introduction of renormalization group (RG) theory in
statistical physics [1] has greatly deepened our understanding
of phase transitions. Our understanding of RG, however, is
far from complete. The actual implementation of the RG
procedure remains a highly nontrivial task. The critical man-
ifold of a lattice model is defined as the set of coupling
constants for which the long range physics of the system is
described by a unique underlying scale-invariant field theory.
However, the same lattice model may admit different critical
behaviors described by different field theories upon changing
the coupling constants. This is the case, for instance, in
the tricritical Ising model to be discussed later. Thus, the
critical manifold is always defined with respect to the field
theory underlying the lattice model. It could be defined in any
space of coupling constants associated with a finite number
of coupling terms with co-dimension in that space equal to
the number of relevant operators of the system. General RG
theory requires that the RG flow should go into a unique fixed-
point Hamiltonian if the starting point of the flow is on the
critical manifold. There are various “natural” RG procedures
where different points on a critical manifold do not go to the
same critical fixed point, the most well-known example being
the decimation rule in dimensions higher than one [2]. By
contrast, when an RG procedure satisfies this requirement, the
attractive basin of the critical fixed point is the entire critical
manifold, and a computational scheme should exist, at least,
in principle, to identify the critical manifold. Whether or not
this approach can be successfully pursued were a stringent
test of the RG procedure under consideration. Conversely, the
knowledge of the critical manifold provides a straightforward
way to check the validity of any RG procedure: One could
simply simulate the RG flow starting from two different points
in the critical manifold and verify that they eventually land
on the same fixed point. This consideration alone should be
enough motivation for developing a method to compute the
critical manifold.

Another issue for which the knowledge of the critical
manifold would be of interest is the study of the geome-
try of the coupling constant space, i.e., the parameter man-
ifold of a classical or quantum many-body system. How
to define a Riemannian metric in the parameter manifold
has been proposed for a long time for both classical [3]
and quantum systems [4]. Recently, there have been devel-
opments in understanding the significance of the geometry
of the parameter manifold for both classical and quantum
systems [5–9]. One would expect knowledge of the critical
manifold would fit naturally into such developments. We do
not pursue further this issue here, but we leave it to future
research.

In this paper, we present a method to determine the
tangent space and curvature of the critical manifold at the
critical points of a system with variational Monte Carlo
(MC) renormalization group (VMCRG) [10]. We will show
that, unlike the computation of the critical exponents with
Monte Carlo renormalization group [11] or VMCRG, the
determination of the critical manifold tangent space (CMTS)
and curvature does not suffer truncation error no matter how
few renormalized coupling terms are used. We discuss first
the case where there are no marginal operators along the
RG flow and then the case where there are. The examples
that we consider in this paper are all classical, but the
method can be extended to quantum systems if a sign-free
path-integral representation of the quantum system would be
available.

II. MONTE CARLO RENORMALIZATION GROUP AND
THE CRITICAL MANIFOLD

A. Coarse-graining and renormalized coupling constants

For notational simplicity, we use the terminology for clas-
sical magnetic spins on a lattice in the following discussion,
although the formalism applies in general. Consider a statis-
tical mechanical system in d-spatial dimensions with spins σ
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and Hamiltonian H (0)(σ),

H (0)(σ) =
∑

β

K (0)
β Sβ (σ), (1)

where Sβ (σ)’s are the coupling terms of the system, such
as nearest-neighbor spin products, next-nearest-neighbor spin
products, etc., and K(0) = {K (0)

β } are the corresponding cou-
pling constants. Here, we call the original Hamiltonian before
any RG transformation the zeroth level renormalized Hamil-
tonian, hence, the notation (0) in the superscript. The critical
manifold is, then, defined in the space of K (0)

β corresponding
to a finite set of couplings Sβ (σ).

In a real-space RG calculation, one defines coarse-grained
spins σ ′ in the renormalized system with a conditional prob-
ability T (σ ′|σ) that effects a scale transformation with scale
factor b. T (σ ′|σ) is the probability of σ ′ given spin config-
uration σ in the original system. The majority rule block
spin in the Ising model proposed by Kadanoff et al. [12]
is one example of the coarse-grained variables. T (σ ′|σ)
can be iterated n times to define the nth level coarse-
graining T (n)(μ|σ ) realizing a scale transformation with scale
factor bn,

T (n)(μ|σ) =
∑

σ (n−1)

· · ·
∑

σ (1)

T (μ|σ (n−1)) · · · T (σ (1)|σ). (2)

T (n) defines the nth level renormalized Hamiltonian H (n)(μ)
up to a constant g(K(0) ) independent of μ [13],

H (n)(μ) ≡ − ln
∑

σ

T (n)(μ|σ)e−H (0) (σ) + g(K(0) )

=
∑

α

K (n)
α Sα (μ) + g(K(0) ), (3)

where {K (n)
α }’s are the nth level renormalized coupling con-

stants associated with the coupling terms Sα (μ) defined for the
nth level coarse-grained spins. Modulo the constant coupling
term, T (n)(μ|σ) defines H (n)(μ) uniquely. H (n) renormalized
from different starting Hamiltonians H (0) will generally be
different. However, if no marginal operators appear in the RG
transformation, the renormalized Hamiltonians from different
initial points on the critical manifold will converge to the same
critical fixed-Hamiltonian H∗(μ) as n goes to infinity.

To probe H∗(μ) in a MC simulation, one increases the
iteration level n and the system size L until the renormalized
Hamiltonian H (n) becomes invariant with n to the desired
accuracy and the L dependence becomes negligible. It is gen-
erally impossible to determine all of the coupling constants
of H (n)(μ) because their number increases combinatorially
with the lattice size. In practice, one adopts some truncation
scheme and approximates H (n) with a finite number of cou-
pling terms {Sα (μ)} with coupling constants K (n)

α ,

H (n)(μ) ≈
∑

α

K (n)
α Sα (μ). (4)

B. Critical manifold tangent space in the absence of
marginal operators

To compute the CMTS, let us suppose that K (0)
β and K (0)

β +
δK (0)

β belong to the critical manifold and apply the RG proce-

dure starting from these two points. As the difference in the
irrelevant directions becomes exponentially suppressed with
progressively large n, the corresponding two renormalized
Hamiltonians will tend to the same Hamiltonian H (n) in the
absence of RG marginal operators. In particular, the trun-
cated coupling constants K (n)

α,truncate and K (n)
α,truncate + δK (n)

α,truncate,
renormalized from K (0)

β and K (0)
β + δK (0)

β , respectively, will be
equal within deviations exponentially small with n because
they are the truncation approximation for two Hamiltonians
H (n) and H (n) + δH (n), whose difference is exponentially
small in n. Thus, the spanning set of the CMTS {δK (0)

β }
satisfies the following equation for sufficiently large n:

K (n)
α,truncate +

∑

β

∂K (n)
α,truncate

∂K (0)
β

δK (0)
β = K (n)

α,truncate (5)

for every α. That is, the CMTS {δK (0)
β } is the kernel of the nth

level RG Jacobian,

A(n,0)
αβ ≡ ∂K (n)

α,truncate

∂K (0)
β

(6)

for any well-defined truncation scheme. In the following, we
will use K (n)

α to denote the truncated coupling constants.
As shown in Ref. [10], VMCRG provides an efficient way

to compute the renormalized constants and the RG Jacobian
matrix with MC under a given truncation scheme. It intro-
duces a bias potential V (μ) of the coarse-grained variables,
expanded in a finite set of renormalized couplings Sα (μ) with
variational parameters Jα ,

VJ(μ) =
∑

α

JαSα (μ), (7)

and a variational function of J = {Jα},
�(J) = ln

∑

μ

e−[H (n) (μ)+VJ (μ)] +
∑

μ

VJ(μ)pt (μ), (8)

where pt (μ) is a preset target probability distribution, which
will be taken as the uniform distribution in the following.
As proved in Ref. [14], � is convex in each Jβ , and, if one
excludes the constant coupling term, has a unique minimizer
Jmin, which can be found with a stochastic gradient descent
algorithm using the Jacobian and the Hessian of �(J) [10],

∂�(J)

∂Jα

= −〈Sα (μ)〉VJ + 〈Sα (μ)〉pt , (9)

∂2�(J)

∂Jα∂Jβ

= 〈Sα (μ)Sβ (μ)〉VJ − 〈Sα (μ)〉VJ〈Sβ (μ)〉VJ . (10)

Here 〈·〉VJ is the biased ensemble average under VJ, and 〈·〉pt is
the ensemble average under the target probability distribution
pt . The minimizer Jmin then satisfies the minimizing condi-
tion: For every renormalized coupling Sγ (μ),

〈Sγ (μ)〉Vmin = 〈Sγ (μ)〉pt . (11)

If the set of the coupling terms Sα is complete, Vmin(μ) =∑
α Jα,minSα (μ) = −H (n)(μ), and we identify for each α,

K (n)
α = −Jα,min. (12)

Because the set of Sα (μ) is not complete, a truncation error in
computing K (n)

α is incurred. However, because the minimizer
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of � is unique, the truncation scheme is well defined. Within
VMCRG, A(n,0)

αβ can be obtained by expanding Eq. (11) to

linear order in δK (0)
β and δK (n)

α . The result [10] is that, for a
given β, every Sγ (μ) must satisfy

∑

α

〈〈Sγ (μ), Sα (μ)〉〉V
∂K (n)

α

∂K (0)
β

= 〈〈Sγ (μ), Sβ (σ)〉〉V , (13)

where 〈〈X,Y 〉〉V ≡ 〈XY 〉V − 〈X 〉V 〈Y 〉V is the connected cor-
relation function of the observables X and Y in the biased
ensemble with the potential Vmin(μ). Thus, for any β, the

Jacobian matrix element A(n,0)
αβ = ∂K (n)

α

∂K (0)
β

, viewed as a column

vector indexed by α, can be obtained from Eq. (13) by matrix
inversion.

We also note that the method described above works for
any target distribution pt (μ) in VMCRG. A different pt (μ)
will result in a different bias potential Vmin(μ) to be used
in the sampling of the matrix A(n,0). We use the uniform
distribution here because, then, Vmin(μ) acts to eliminate the
long-range correlation in a critical system, and the resultant
ensemble for the sampling of A(n,0) benefits from a much
faster MC relaxation [10]. However, one can impose any
arbitrary bias potential of the coarse-grained variables V (μ)
and adopt the corresponding biased distribution as the target
distribution. All the steps in the above derivation follow, and
the CMTS can then be computed in the biased ensemble with
the arbitrary V (μ). In particular, if one insists on using the
original ensemble with no bias potential, one only needs to set
the target distribution to be the original unbiased distribution
in which case Vmin necessarily vanishes and A(n,0) is sampled
in the unbiased ensemble.

C. Critical manifold tangent space in the presence of
marginal operators

When there are marginal operators in the RG transforma-
tion, two different points on the critical manifold will con-
verge to different fixed-point Hamiltonians. However, starting
from any point on the critical manifold, at sufficiently large
n, H (n) will be equal to H (n+1), and so will the truncated
renormalized constants K (n)

α be equal to K (n+1)
α . Now, suppose

that both K (0)
β and K (0)

β + δK (0)
β are on the critical manifold

giving rise to the truncated renormalized constants K (n)
α and

K (n)
α + δK (n)

α , respectively. Then, the spanning set of CMTS
{δK (0)

β }, instead of Eq. (5), satisfies the following condition:

K (n)
α +

∑

β

∂K (n)
α

∂K (0)
β

δK (0)
β = K (n+1)

α +
∑

β

∂K (n+1)
α

∂K (0)
β

δK (0)
β (14)

for every α. But K (n)
α and K (n+1)

α are already equal up to an
exponentially small difference because they are renormalized
from the same point on the critical manifold. Thus, when
marginal operators appear in the RG transformation, the
CMTS is the kernel of the matrix,

A(n+1,0)
αβ − A(n,0)

αβ . (15)

D. The normal vectors to critical manifold tangent space

Because of the spin-flip symmetry, the renormalization of
the even operators and of the odd operators are decoupled in
the examples we consider here, so they can be considered
separately. In the Ising models that we discuss later, the co-
dimension of the critical manifold is one, and the tangent
space is, thus, a hyperplane and the row vectors of A(n,0)

or A(n+1,0) − A(n,0) for systems with or without marginal
operators are orthogonal to this hyperplane. This means that
the row vectors of A(n,0) or A(n+1,0) − A(n,0) are all normal
vectors to the CMTS and are parallel to one another. Thus, the
P matrix defined as

Pαβ = A(n,0)
αβ

A(n,0)
α1

or
A(n+1,0)

αβ − A(n,0)
αβ

A(n+1,0)
α1 − A(n,0)

α1

, (16)

that contains the normalized row vectors of A(n,0) or
A(n+1,0) − A(n,0) should have identical rows.

In the tricritical Ising model that we also discuss, the criti-
cal manifold in the even subspace has co-dimension two [15].
In this case, we cannot expect all the rows of Pαβ to be equal.
Instead, the rows should form a two-dimensional (2D) vector
space to which the CMTS is orthogonal. This outcome can
be checked, for example, by verifying that all the row vectors
of Pαβ lie in the vector space spanned by its first two rows.
If such consistency checks can be satisfied, it is a testament
of the validity of RG theory, which predicts that a critical
fixed-point Hamiltonian exists and that the co-dimension of
the critical manifold has precisely the assumed value for the
models considered in this paper.

In general, the CMTS computed from different renor-
malized couplings will have different statistical uncertainties
because the sampling noise differs for different correlation
functions in an MC simulation. One should, thus, trust the
result with the least uncertainty and use the values computed
from other renormalized constants as a consistency check.

III. NUMERICAL RESULTS FOR CMTS

A. Two-dimensional isotropic Ising model

Consider the isotropic Ising model on a 2D square lattice
with Hamiltonian H (σ ),

H (σ ) = −K (0)
nn

∑

〈i, j〉
σiσ j − K (0)

nnn

∑

[i, j]

σiσ j, (17)

where 〈i, j〉 denotes the nearest-neighbor pairs and [i, j]
denotes the next-nearest-neighbor pairs. K (0)

nn and K (0)
nnn are the

corresponding coupling constants. This model is analytically
solvable when K (0)

nnn = 0 and is critical at the Onsager point
with K (0)

nn = 0.4407 · · · [16]. Four critical points are first
located with VMCRG in the coupling space of {K (0)

nn , K (0)
nnn}.

This task can be achieved by fixing K (0)
nnn and varying K (0)

nn
whereas monitoring how the corresponding renormalized cou-
pling constant K (n)

nn varies with n, the RG iteration index.
The largest value of the original coupling constant K (0)

nn,1 for

which K (n)
nn decreases with n and the smallest value K (0)

nn,2 for
which K (n)

nn increases with n define the best estimate within
statistical errors of the interval [K (0)

nn,1, K (0)
nn,2] of the location

of the critical coupling K (0)
nn,c. We note that the calculated
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TABLE I. Pαβ for the isotropic Ising model. α indexes rows
corresponding to the three renormalized constants: nn, nnn, and
�. The fourth row of the table at the Onsager point shows the
exact values. β = 2–4, respectively, indexes the component of the
normal vector to the CMTS corresponding to coupling terms nnn, �,
and nnnn. β = 1 corresponds to the nn coupling term, and Pα1 is
always 1 by definition. The simulations were performed on 16 cores
independently, each of which ran 3 × 106 Metropolis MC sweeps.
The standard errors are cited as the statistical uncertainty.

K (0)
nn K (0)

nnn Pα2 Pα3 Pα4

0.4407 0 1.4134(3) 0.5135(3) 1.7963(5)
1.4146(7) 0.5134(7) 1.799(2)
1.413(3) 0.511(3) 1.794(7)

Exact 1.4142 0.5139 1.8006
0.37 0.0509 1.3717(4) 0.5242(3) 1.7664(8)

1.375(1) 0.5243(7) 1.773(2)
1.372(4) 0.527(3) 1.773(6)

0.228 0.1612 1.2529(7) 0.5303(4) 1.6545(8)
1.254(1) 0.5318(8) 1.659(2)
1.252(5) 0.535(3) 1.65(1)

0.5 −0.0416 1.4441(4) 0.5019(5) 1.816(1)
1.444(2) 0.503(2) 1.818(4)
1.441(7) 0.499(6) 1.80(1)

renormalized constants are truncated and we assume here
that the truncated K (n)

nn increases or decreases monotonically
with the exact K (n)

nn . This assumption is very natural and does
not seem to be violated in the present paper. Alternatively,
the same procedure can be performed by fixing Knn and
varying Knnn. In the following VMCRG calculations, we use
n = 4, L = 256, and the b = 2 majority rule with a random
pick on tie. We use three renormalized couplings: the nearest-
neighbor product K (n)

nn , the next-nearest product K (n)
nnn, and

the smallest plaquette K (n)
� . The model is known to have no

marginal operators. The four critical points shown in Table I
all belong to the same critical phase as they all flow into
the same truncated fixed-point renormalized Hamiltonian. The
CMTSs are determined at these critical points in a four-
dimensional coupling space spanned by K (0)

nn , K (0)
nnn, K (0)

� , and
the third-nearest-neighbor products K (0)

nnnn. The Pαβ is shown
in Table I. In addition, we also show the CMTS at the Onsager
point, which is analytically solvable [17].

The CMTS can also be computed in the odd coupling
subspace as we show here for the Onsager point. In this
calculation, we take n = 5, L = 256, and again the b = 2
majority rule for coarse graining. The CMTS in a space of four
odd couplings, listed in the legend of Table II, is calculated
from the same four renormalized couplings. The result is
shown in Table II.

B. Three-dimensional istropic Ising model

Consider now the same model on a three-dimensional (3D)
square lattice with K (0)

nnn = 0, i.e., the 3D isotropic nearest-
neighbor Ising model. This model does not have an analytical
solution but is known to experience a continuous transition
at K (0)

nn = 0.221 65 · · · [18]. To compute the CMTS at this
nearest-neighbor critical point, we use n = 3, L = 64, and

TABLE II. Pαβ for the odd coupling space of the isotropic
Ising model. α indexes rows corresponding to the four renormalized
odd spin products: (0, 0), (0, 0)-(0, 1)-(1, 0), (0, 0)-(1, 0)-(−1, 0)
and (0, 0)-(1, 1)-(−1,−1) where the pair (i, j) is the coordinate
of an Ising spin. The simulations were performed on 16 cores
independently, each of which ran 3 × 106 Metropolis MC sweeps.
The standard errors are cited as the statistical uncertainty.

K (0)
nn K (0)

nnn Pα2 Pα3 Pα4

0.4407 0 3.31248(8) 1.65629(4) 1.49852(6)
3.296(2) 1.649(4) 1.479(2)
3.315(3) 1.658(2) 1.503(2)
3.32(5) 1.68(4) 1.51(3)

the b = 2 majority rule with a random pick on tie. The
CMTS is computed in an eight-dimensional coupling space
{K (0)} spanned by the nearest-neighbor and the next-nearest-
neighbor renormalized coupling constants K (n)

nn and K (n)
nnn as

shown in Table III.

C. Two-dimensional anistropic Ising model

Consider then the anisotropic Ising model on a 2D square
lattice with Hamiltonian H (σ ),

H (σ ) = −K (0)
nnx

∑

〈i, j〉x

σiσ j − K (0)
nny

∑

〈i, j〉y

σiσ j, (18)

where 〈i, j〉x and 〈i, j〉y, respectively, denote the nearest-
neighbor pairs along the horizontal and the vertical directions.
In the space of {K (0)

nnx
, K (0)

nny
}, the model is exactly solvable and

is critical along the line [19],

sinh
(
2K (0)

nnx

)
sinh

(
2K (0)

nny

) = 1. (19)

With the 2 × 2 majority rule, the system admits a marginal
operator due to anisotropy in the RG transformation [20].
We performed VMCRG calculations on two critical points of
the system with K (0)

nny
/K (0)

nnx
= 2 and 3 with four renormalized

couplings K (n)
nnx

, K (n)
nny

, K (n)
nnn, and K (n)

� . The CMTS is computed

in the coupling space {K (0)
nnx

, K (0)
nny

, K (0)
nnn, K (0)

� , K (0)
nnnnx

, K (0)
nnnny

}
using Eq. (15) as shown by Pαβ in Table. IV.

TABLE III. Pαβ for the 3D isotropic Ising model. The two rows
in the table correspond to the two different α’s which index the nn
and the nnn renormalized constants, respectively. β runs from 1 to 8,
corresponding to the following spin products: S(0)

β (σ): (0, 0, 0)-(1, 0,
0), (0, 0, 0)-(1, 1, 0), (0, 0, 0)-(2, 0, 0), (0, 0, 0)-(2, 1, 0), (0, 0, 0)-(1,
0, 0)-(0, 1, 0)-(0, 0, 1), (0, 0, 0)-(1, 0, 0)-(0, 1, 0)-(1, 1, 0), (0, 0, 0)-(2,
1, 1), and (0, 0, 0)-(1, 1, 1) where the triplet (i, j, k) is the coordinate
of an Ising spin. Sixteen independent simulations were run, each of
which took 3 × 105 Metropolis MC sweeps. The simulations were
performed at the nearest-neighbor critical point with Knn = 0.221 65.

Pα2 Pα3 Pα4 Pα5 Pα6 Pα7 Pα8

2.642(8) 1.540(8) 6.61(3) 2.46(1) 0.788(3) 6.92(4) 1.99(1)
2.64(2) 1.55(2) 6.7(1) 2.50(2) 0.795(3) 7.0(1) 1.99(2)
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TABLE IV. Pαβ for the 2D anisotropic Ising model. α in-
dexes rows corresponding to the four renormalized constants:
nnx, nny, nnn, and �. β = 2–6, respectively, indexes the compo-
nent of the normal vector to CMTS corresponding to coupling
terms nny, nnn, �, nnnnx , and nnnny. β = 1 corresponds to the nnx

coupling term, and Pα1 is always 1 by definition.

K (0)
nnx

Pα2 Pα3 Pα4 Pα5 Pα6

0.304689 0.653(8) 2.387(10) 0.814(8) 1.749(8) 1.21(1)
0.646(4) 2.381(5) 0.807(4) 1.755(4) 1.200(5)
0.647(8) 2.38(1) 0.808(12) 1.747(14) 1.20(1)
0.63(2) 2.37(3) 0.78(3) 1.76(4) 1.22(3)

Exact 0.6478

0.240606 0.507(4) 2.241(5) 0.692(7) 1.74(1) 0.957(7)
0.498(2) 2.236(3) 0.681(3) 1.739(3) 0.946(4)
0.499(8) 2.24(1) 0.68(1) 1.736(14) 0.940(14)
0.500(16) 2.23(3) 0.67(3) 1.75(4) 0.94(2)

Exact 0.5

D. Two-dimensional tricritical Ising model

Finally, let us consider the 2D tricritical Ising model with
the Hamiltonian,

H (σ) = −K (0)
nn

∑

〈i, j〉
σiσ j − K (0)

�
∑

i

σ 2
i , (20)

where σ = ±1, 0 and 〈i, j〉 denotes the nearest-neighbor
pairs. In the coupling space of K (0)

nn and K (0)
� , the model

admits a line of Ising-like continuous phase transitions, which
terminates at a tricritical point. At the tricritical point, the
underlying conformal field theory (CFT) changes from the
Ising CFT with a central charge of 1

2 to one with a central
charge of 7

10 [21]. Accompanying this phase transition is a
change in the co-dimension of the even critical manifold from
1 of the Ising case to 2 of the tricritical case [15]. We compute
the CMTS at the tricritical point, which has been determined
to occur at K (0)

nn = 1.642(8) and K (0)
� = −3.227(1) both by

MCRG [15] and finite size scaling [22].
The coupling space we consider has six couplings, listed

in Table V. We use n = 5, L = 256, and the b = 2 majority
rule. The normal vectors to the CMTS are computed using the
first five renormalized couplings as the statistical uncertainty
of the sixth renormalized coupling is too large. The result is
again represented by Pαβ and shown in Table VI. As can be
seen, the rows of P are not equal within statistical uncertainty,
indicating that the co-dimension is higher than one. To verify
that the co-dimension is two, one can check whether the row

TABLE V. The couplings used in the computation of CMTS for
the 2D tricritical Ising model.

Coupling

1 σ 2
i

2 σiσ j, i and j nearest neighbors
3 σiσ j, i and j next-nearest neighbors
4 σiσ jσkσl , i, j, k, and l in the smallest plaquette
5 (σiσ j )2, i and j nearest neighbors
6 (σiσ j )2, i and j next-nearest neighbors

TABLE VI. Pαβ for the 2D tricritical Ising model. α indexes
rows corresponding to the first five renormalized couplings listed in
Table V, which also gives the couplings for β = 2–6.

α Pα2 Pα3 Pα4 Pα5 Pα6

1 2.085(2) 2.100(5) 0.928(1) 2.079(1) 2.073(2)
2 2.200(2) 2.271(3) 1.046(2) 2.190(2) 2.232(2)
3 2.171(1) 2.2285(2) 1.0160(5) 2.163(1) 2.193(1)
4 2.214(1) 2.283(1) 1.04(1) 2.20(1) 2.24(1)
5 2.038(4) 2.03(1) 0.873(2) 2.03(1) 2.00(1)

vectors for α = 3–5 are in the vector space spanned by the
first two row vectors. Let un be the nth row vector of P . If the
hypothesis of co-dimension two were correct, one could write

u3 = au1 + bu2, (21)
and find a and b from the first two components of the vectors
u1, u2, and u3. We could then check that the remaining
components of u3 satisfy the linear relation in Eq. (21) with
the so found a and b. A similar check can be carried out for
the vectors u4 and u5. The vectors u3, u4, and u5 calculated
in this way are reported in Table VII. As we can see, the Pαβ

for α = 3–5 and β = 2–6 in Table VII are equal within sta-
tistical uncertainty to the corresponding elements in Table VI,
consistent with a co-dimension equal to two at the tricritical
point.

IV. CURVATURE OF THE CRITICAL MANIFOLD

Next, we compute the curvature of the critical manifold
using the isotropic Ising model as an example. For a change
{δK (0)

β } in the original coupling constants, we expand the cor-
responding change in the renormalized constants to quadratic
order,

δK (n)
α =

∑

β

A(n,0)
αβ δK (0)

β + 1

2

∑

βη

B(n,0)
αβη δK (0)

β δK (0)
η , (22)

where A(n,0)
αβ and B(n,0)

αβη can be determined by substituting
Eq. (22) in Eq. (11) and enforcing equality to second order
in δK (0)

α . A(n,0)
αβ is already given in Eq. (13). The result for B

is that for given β and η for every γ , one requires∑

α

〈〈Sγ (μ), Sα (μ)〉〉VB(n,0)
αβη

= 〈〈Sγ (μ), Sβ (σ)Sη(σ)〉〉V

+
∑

αν

AαβAνη〈〈Sγ (μ), Sα (μ)Sν (μ)〉〉V

− 2
∑

α

Aαη〈〈Sγ (μ), Sβ (σ)Sα (μ)〉〉V , (23)

TABLE VII. au1 + bu2 computed from Table VI for α = 3–5
and β = 2–6.

α Pα2 Pα3 Pα4 Pα5 Pα6

3 2.171 2.230 1.019 2.163 2.194
4 2.214 2.284 1.047 2.204 2.245
5 2.038 2.026 0.872 2.033 2.004
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TABLE VIII. κβη at the same three critical points as in Table I,
calculated from ∂2K (n)

nn /∂K (0)
β ∂K (0)

η . The exact curvature for β = nn
and η = nnn at the Onsager point is also shown [17].

K (0)
nn

�������β

η
nnn � nnnn

0.4407 nn 0.143(8) 0.27(2) 0.21(2)
nnn 0.38(2) 0.341(8)
� 0.20(2)

Exact (nn, nnn) 0.148

0.37 nn 0.18(1) 0.23(1) 0.30(3)
nnn 0.35(2) 0.32(2)
� 0.18(3)

0.228 nn 0.35(2) 0.27(3) 0.49(3)
nnn 0.35(4) 0.29(2)
� 0.20(4)

where the connected correlation functions are again sam-
pled in the biased ensemble 〈·〉V . Note that Bαβη given
above is not symmetric in β and η. In order for it to
be interpreted as a second-order derivative, it needs to be
symmetrized

∂2K (n)
α

∂K (0)
β ∂K (0)

η

= 1

2

(
B(n,0)

αβη + B(n,0)
αηβ

)
. (24)

In the coupling space of any pair β and η:{K (0)
β , K (0)

η },
the critical manifold of the 2D isotropic Ising model is a
curve, and the curvature κβη of the critical curve can be
computed from the curvature formula [23] of the implicit
curve,

K (n)
α

(
K (0)

β , K (0)
η

) = constant, (25)

with the second-order derivatives given in Eq. (24). Again,
this curvature is determined separately by each renormalized
constant α. The result is given Table VIII. Here, we only quote
the result calculated from the nearest-neighbor renormalized
constants K (n)

α , α = nn. The curvature computed from other
renormalized constants has statistical uncertainty much larger
than the ones in Table VIII.

The difficulty in sampling the curvature, or generally, any
higher-order derivatives, compared to the tangent space, can
be seen from Eq. (23). Note that, on the left side of Eq. (23),
the connected correlation function 〈〈Sγ , Sα〉〉 is of order N ,
where N is the system size, but each of the terms on the right
side is of order N2. Thus, a delicate and exact cancellation
of terms of order N2 must happen between the terms on the
right hand side of Eq. (23) to give a final result only of order
N . The variance due to the terms on the right hand side,
however, will accumulate and give an uncertainty typical for
O(N3) quantities as each Sα is of order N . [For the CMTS, the
connected correlation functions of interest are also of order
N , but the statistical uncertainties are those typical of O(N2)
quantities as seen in Eq. (13).] In general, as an mth order
derivative of the critical manifold is computed, the connected
correlation functions of interest will always be of order N , but
the correlation functions that need to sampled will be of order

Nm+1, giving an exceedingly large variance. Thus, although,
in principle, arbitrarily high-order information about the crit-
ical manifold is available by expanding Eq. (11), in practice
only low-order knowledge on the critical manifold can be
obtained with small statistical uncertainty from a simulation
near a single critical point.

V. CONCLUSION

We have presented a MC procedure to obtain the local geo-
metrical information on the critical manifold in the vicinity of
a given critical point. The procedure is, in essence, a projector
Monte Carlo method that is based on the fact that the irrelevant
operators in a system decay exponentially fast along a RG
trajectory. Because of such decay, the truncated RG Jacobian
matrix A(n,0) acquires a structure that is asymptotically clearer
and clearer as n increases, i.e., its kernel emerges with co-
dimension equal to the number of relevant operators of the
system. This structure is quite robust. On one hand, it is
immune from the truncation of the renormalized Hamilto-
nian. On the other hand, it does not depend on what biased
potential of the coarse-grained variables is applied to the
system.

From the perspective of connected correlation functions
between the original spins σ and the coarse-grained spins μ,
the aforementioned structure means the following. Given any
bias potential V (μ) at any critical point, each local observable
Sβ of σ can be viewed as a linear functional 〈〈·, Sβ (σ)〉〉 on the
space of the local observables of μ,

〈〈·, Sβ (σ)〉〉: Sγ (μ) 	→ 〈〈Sγ (μ), Sβ (σ〉〉V . (26)

The presence of the CMTS implies that many distinct linear
functionals are linearly dependent. In fact, by Eq. (13) for any
{δK (0)

β } in the CMTS,

∑

β

〈〈·, Sβ (σ)〉〉δK (0)
β = 0. (27)

This poses an infinite number of conditions which the coarse-
graining procedure has to satisfy to generate a proper RG
structure. The majority-rule coarse-graining considered in
our examples seems to do very well in satisfying these
conditions. But a question still remains. Are the conditions
satisfied exactly or just approximately but so closely that
any violation is overshadowed by the statistical uncertainty?
In the latter case, which coarse-graining procedure, prefer-
ably with a finite number of parameters, can satisfy all the
conditions in Eq. (27)? In the former case, what is the
profound reason why all these conditions can be satisfied
simultaneously?
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