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We extend the theory of stochastic thermodynamics in three directions: (i) instead of a continuously monitored
system we consider measurements only at an arbitrary set of discrete times, (ii) we allow for imperfect
measurements and incomplete information in the description, and (iii) we treat arbitrary manipulations (e.g.,
feedback control operations) which are allowed to depend on the entire measurement record. For this purpose
we define for a driven system in contact with a single heat bath the four key thermodynamic quantities—internal
energy, heat, work, and entropy—along a single “trajectory” for a causal model. The first law at the trajectory
level and the second law on average is verified. We highlight the special case of Bayesian or “bare” measurements
(incomplete information, but no average disturbance) which allows us to compare our theory with the literature
and to derive a general inequality for the estimated free energy difference in Jarzynski-type experiments. An
analysis of a recent Maxwell demon experiment using real-time feedback control is also given. As a mathematical
tool, we prove a classical version of Stinespring’s dilation theorem, which might be of independent interest.
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I. INTRODUCTION

Stochastic thermodynamics has become a very successful
theory to describe the thermodynamics of small, fluctuating
systems arbitrarily far from equilibrium and even along a
single stochastic trajectory (see Refs. [1–6] for introductions
and reviews). Its theoretical foundation rests on three pillars:
(i) the system under study is continuously monitored; i.e., the
time in between two observations is effectively zero; (ii) the
system is perfectly measured; i.e., there is no uncertainty left
in its state along a single trajectory; (iii) the system is only
passively observed; i.e., no external interventions in the form
of disturbing measurements or feedback control operations
are allowed.

To the best of the authors’ knowledge, no thorough
study has been undertaken to overcome the first assumption,
whereas a few interesting results have been obtained already
to go beyond the second assumption, namely, incomplete
information in the thermodynamic description of a stochas-
tic system [7–13]. Beyond doubt, most progress has been
achieved in incorporating feedback control, Maxwell’s de-
mon, and different sorts of information processing in the de-
scription (see Refs. [14,15] for an introduction). Nevertheless,
many feedback scenarios, such as real-time or time-delayed
feedback, are not covered by that framework.

Here, we will show how to overcome all three assumptions
(i)–(iii) by following a recent proposal to build a consistent
thermodynamic interpretation for a quantum stochastic pro-
cess [16]. More precisely, for a system which is possibly
driven by an external time-dependent force and in contact
with a single heat bath, we will equip a causal model with
a consistent thermodynamic framework. Causal models ex-
tend the standard notion of stochastic processes where an
external agent (e.g., the experimenter) is not only passively

observing a system, but where she is also allowed, e.g., to
actively intervene in the process. This allows for a much
richer theory where correlation and causation can be distin-
guished [17]. We suggest calling our framework operational
stochastic thermodynamics to emphasize the fact that from
the perspective of the external agent, the control operations
performed on the system are the primary objects of interest.
Here, the notion “control operation” is used in a wide sense
and includes measurements, state preparations, and feedback
control operations, among other things. Only three rather
standard assumptions are used here: first, in the absence of
any interventions or observations the system obeys the usual
laws of thermodynamics; second, the system dynamics is
Markovian; and third, the control operations of the external
agent are idealized to happen instantaneously.

We note that the first steps to combine stochastic thermo-
dynamics and causal models have been already undertaken
by Ito and Sagawa [18,19]. There, stochastic thermodynamics
was established for Bayesian networks, which are a particular
representation of a causal model (here we will use a different
one). A detailed comparison with their framework is post-
poned to later on.

Outline. As our framework requires extending the usual
notion of stochastic processes, Sec. II gives a brief self-
contained introduction to the mathematical theory needed in
the following, including a classical version of Stinespring’s
theorem. Section III then establishes the thermodynamic de-
scription of a causal model along a single trajectory and on
average. While our theory is very general, it also appears
quite abstract. Therefore, the special case of nondisturbing
measurements, which is conventionally studied in the liter-
ature, is considered in Sec. IV. There, we will show that
our abstract framework allows us to draw physically relevant
conclusions about, e.g., the estimated free energy differences
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in Jarzynski-type experiments [20–23] or the second law in
a recently realized “continuous Maxwell demon” experiment
[24]. Finally, we conclude with some remarks in Sec. V.

II. MATHEMATICAL PRELIMINARIES

In classical physics, it is customary to assume that a system
can be perfectly observed without disturbing it. If we label
the elementary states of a physical system by x, then—by
measuring the system at an arbitrary set of discrete times
tn > . . . > t1—we can infer the joint probability distribution
P(xn, . . . , x1) of finding the system in state xn, . . . , x1 at the
respective times tn, . . . , t1. The assumption of a nondisturbing
measurement implies the consistency condition∑

xk

P(xn, . . . , xk, . . . , x1) = P(xn, . . . ,��xk, . . . , x1), (1)

where the joint probability on the right-hand side is obtained
by measuring the system only at the times tn > . . . > tk+1 >

tk−1 > . . . > t1 (i.e., there is no measurement at time tk).
Based on this consistency condition, the Daniell-Kolmogorov
extension theorem guarantees that there is an underlying
continuous-time stochastic process which generates the joint
probabilities P(xn, . . . , x1) as its marginals. This is the foun-
dational cornerstone for the theory of stochastic processes,
which allows us to bridge the discrepancy between experi-
mental reality (where always only a finite amount of measure-
ment data is available) and its theoretical description (where
the mathematical description is usually provided in the form
of a differential equation, say a master equation).

In reality, however, an experimenter usually also influences
a physical system. This can happen actively for a number of
different reasons, e.g., to manipulate a system via feedback
control, to prepare a certain state of the system, or to learn
something about the process by unraveling its causal structure
(for instance, to test the effect of a certain drug in a clinical
trial one usually splits the patients into two groups: those who
receive the drug and those who receive only placebos). The
experimenter can also inactively influence a physical system,
for instance, when the measurement adds an unwanted amount
of noise to the system, which does not vanish on average. All
those examples violate the consistency condition (1).

In Sec. II A, we will review how to describe an arbitrary
intervention or control operation performed at a single time.
A causal model can then be seen as a set of control operations
applied at different times to the system as reviewed in
Sec. II B. Finally, for our thermodynamic analysis it will be
important that each control operation can be represented in
terms of more primitive operations in a larger space. Quantum
mechanically, this representation is provided by Stinespring’s
theorem, and in Sec. II C we will provide a classical analog
of it.

A. Control operations

As emphasized above, we view the terminology control
operation in a broad sense, as any possible allowed state
transformation applied to a physical system. The only re-
quirement is that each control operation respects the statistical
interpretation of the theory.

Before we come to the most general case, it is convenient
to review Bayes’ theorem, which describes the limiting case
of a “bare measurement.” By this we mean a measurement
which is nondisturbing on average but not necessarily perfect.
Let px(t−

n ) be the probability to find the system in state x ∈ X
(we consider for definiteness only a finite state space X ) prior
to the measurement at time tn (in general, by t±

n we will
denote the time just before or after time tn). Furthermore,
let P(rn|x) be the conditional probability to obtain result rn

in the measurement given that the system is in state x. The
conditional state of the system after the measurement is then
determined by Bayes’ rule,

px(t+
n , rn) = P(rn|x)px(t−

n )

P(rn)
, (2)

where the normalization factor P(rn) = ∑
x P(rn|x)px(t−

n ) de-
notes the probability to obtain result rn. In passing we note
the slightly unusual notation with px(t+

n , rn) denoting the
conditional state of X given the result rn [instead of using,
maybe, pt+

n
(x|rn)], which, however, turns out to be beneficial

later on. Thus, whereas our state of knowledge changes along
a single trajectory, i.e., px(t+

n , rn) �= px(t−
n ), it does not change

on average:

px(t+
n ) =

∑
rn

P(rn)px(t+
n , rn) = px(t−

n ). (3)

This is the essence of a nondisturbing measurement.
In turns out to be possible to generalize the above picture to

the case where the classical control operation also changes the
state of the system on average. This generalized description is
indeed very close to quantum measurement theory [25]. For
this purpose it is convenient to introduce the notion of a non-
normalized system state p̃x(t+

n , rn), which allows us to rewrite
Bayes’ rule as

p̃x(t+
n , rn) =

∑
x′

Ax,x′ (rn)px′ (t−
n ). (4)

Here, in accordance with the notation used below, we have in-
troduced the matrix A(rn) with entries Ax,x′ (rn) = δx,x′P(rn|x).
In terms of the vectors p̃(t+

n , rn) and p(t−
n ) with entries

p̃x(t+
n , rn) and px′ (t−

n ), respectively, the above can be com-
pactly expressed as p̃(t+

n , rn) = A(rn)p(t−
n ). The only differ-

ence compared to Eq. (2) is then the missing normalization
factor P(rn). This, in fact, implies that Eq. (4) is linear with
respect to the initial state of the system px(t−

n , rn), which turns
out to be convenient from a mathematical as well as numerical
perspective. Furthermore, this step is of no harm, as the
normalization factor is encoded in the non-normalized state by
noting that P(rn) = ∑

x p̃x(t+
n , rn) =: τ p̃(t+

n , rn), introducing
the probability sum operator (“trace”) τ .

By generalizing this picture, every possible intervention
will be described by a set of matrices {A(rn) = [Ax,x′ (rn)]},
which we call control operations. Each matrix A(rn) describes
the action of the experimenter based on a (generalized)
measurement result rn according to Eq. (4). To preserve the
positivity of the non-normalized state, every control operation
is required to satisfy Ax,x′ (rn) � 0, but it no longer needs
to be diagonal. Moreover, the average effect of the control
operation is described by a single matrix A ≡ ∑

rn
A(rn), i.e.,
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p(t+
n ) = Ap(t−

n ), because

px(t+
n ) =

∑
rn

P(rn)px(t+
n , rn) =

∑
x′

Ax,x′ px′ (t−
n ). (5)

To preserve the statistical interpretation of the theory, A is
required to be a stochastic matrix (meaning that each column
is also normalized:

∑
x Ax,x′ = 1 for all x′). This describes the

most general state transformation at the ensemble-averaged
level. Note that in general, px(t+

n ) �= px(t−
n ).

Hence, to conclude, classical systems which are described
by probability vectors can be manipulated by an arbitrary set
of positive matrices {A(rn)} with the sole requirement that they
sum up to a stochastic matrix A ≡ ∑

rn
A(rn).

B. Causal models

So far we focused on a single intervention happening at a
single time tn. A causal model can be seen as a prescription for
how to compute the effect of multiple interventions happening
at a discrete set of times tn > . . . > t1 on the system. At
each step some result rk , k ∈ {1, . . . , n}, is obtained, and
we denote the entire sequence of measurement results by
rn = (rn, . . . , r1) in the following. Given the outcome rk , we
assume that the experimenter knows which control operation
A(rk ) she has implemented at time tk . Moreover, we allow the
experimenter to change her plan of interventions depending
on the previous results rk−1 and thus, we will write A(rk|rk−1)
for the chosen control operation. Obviously, if the control
operations describe bare measurements in the sense of Bayes’
rule, Eq. (2), and if we do not use the measurement results to
manipulate the process, we recover the standard notion of a
stochastic process. Causal models generalize this picture by
allowing for any mathematically admissible control operation
A(rk|rk−1).

To add some intrinsic time evolution of the system to the
picture, we will assume for simplicity, and in view of our
thermodynamic theory in Sec. III, that the system dynamics
is Markovian. This means that the time-evolution in between
two times tk and tk+1 can be described by a transition matrix
Tk+1,k , which propagates the system state forward in time:

p(tk+1) = Tk+1,kp(tk ). (6)

Note that Markovianity implies that the transition matrix
Tk+1,k is well defined independently of which state vector it
acts on. Mathematically, Tk+1,k is nothing else than a stochas-
tic matrix, but to emphasize its dynamical role we will call it
a transition matrix. We will make no further assumption on
Tk+1,k here.

Now, let us denote by p(t−
1 ) the initial state of the system

(which can be arbitrary) prior to the first control operation.
The non-normalized system state at time t+

n after the nth
control operation reads

p̃(t+
n , rn) = A(rn|rn−1)Tn,n−1 . . . A(r2|r1)T2,1A(r1)p(t−

1 ).

(7)

In words, the state of the system given the measurement his-
tory rn is obtained by acting with the first control operation on
it (obtaining result r1), then letting the system evolve in time
via T2,1 until t2, then applying the second control operation

(obtaining result r2), etc., until time t+
n . Equivalently, we can

express Eq. (7) iteratively,

p̃(t+
k , rk ) = A(rk|rk−1)Tk,k−1p̃(t+

k−1, rk−1), (8)

with k ∈ {2, . . . , n} and p̃(t+
1 , r1) = A(r1)p(t−

1 ).
Finally, recall that each control operation can decrease the

“trace” of the system state and its value after the control oper-
ation is precisely the probability of obtaining the respective
measurement result. Applied to multiple control operations
this means that the probability P(rn) to obtain the sequence
of results rn is

P(rn) = τ p̃(t+
k , rk ) =

∑
x

p̃x(t+
k , rn). (9)

Hence, the normalized system state after n control operations
is p(t+

n , rn) = p̃(t+
n , rn)/P(rn) and the average system state at

time t+
n reads

p(t+
n ) =

∑
rn

P(rn)p(t+
n , rn). (10)

Here, we used the notational convention that an averaged
quantity (with respect to the measurement results rn) is de-
noted by simply dropping the dependence on rn in it [as in
Eq. (3)].

To close this section, we remark that causal models can
be also represented in different ways [17] (see also Sec. IV E)
and the picture we have given here follows closely the descrip-
tion in the quantum case [26–28]. The particular and simple
description (7) is a consequence of the Markov property [26].
Causal models can, however, also be defined for arbitrary non-
Markovian systems, where the dynamics is more complicated
but the control operations A(rn|rn−1) remain the essential
ingredients [27]. A detailed comparison with classical causal
models and the proof of a generalized extension theorem can
be found in Ref. [28].

C. A classical version of Stinespring’s theorem

This paper aims at providing a minimal but consistent
thermodynamic description for an arbitrary set of control
operations. Obviously, as the control operations can be any
possible state transformation, the resulting framework will on
the most general level appear quite abstract. For instance, it
is a priori not clear how to split the energetic changes caused
by the action of some control operation A(r) into work and
heat. We will see that the following theorem helps us fix
this issue, based only on the knowledge of A(r). Moreover,
it is indispensable for finding a valid second law during the
control operation. Clearly, if additional knowledge about the
experiment is available, telling us how the control operations
are generated physically (knowledge which we assume not to
have here), the present description should not necessarily be
taken literally.

Moreover, we believe that the following theorem could be
also useful for other applications. It tells us that any stochastic
dynamics always arises from a reversible evolution in a larger
space about which we have incomplete information. It is now
commonly known as Stinespring’s theorem [29], but—to the
best of our knowledge—there is no precise corresponding
classical statement in the literature. We stress that the theorem,
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despite its similarity, does not automatically follow from its
quantum version.

Theorem 1. Every stochastic matrix A : Rd → Rd can be
represented as

Ap = [(id ⊗τ ) ◦ �]p ⊗ q, (11)

where q ∈ RD is a probability vector with a dimension D �
d (d2 − d + 1) and � : Rd ⊗ RD → Rd ⊗ RD is a permuta-
tion matrix. Recall that τ is the marginal (“trace”) operator. In
terms of the matrix elements, the above equation expands to

Ax,x′ =
D∑

y,y′=1

�xy,x′y′qy′ .

Moreover, for an arbitrary decomposition of A into a set of
control operations A(r) such that Ax,x′ (r) � 0 for all x, x′, and
r, we can write

A(r)p = {[id ⊗τB(r)] ◦ �}p ⊗ q, (12)

meaning

Ax,x′ (r) =
D∑

y,y′=1

By,y(r)�xy,x′y′qy′ ,

where B(r) describes the effect of a bare measurement: all
B(r) are diagonal, non-negative matrices, whose sum is the
identity matrix. The permutation matrix � and the probability
vector q in Eq. (12) are the same as in Eq. (11).

In words, any stochastic evolution of a system can be seen
as arising from marginalizing a reversible evolution in a larger
“system-ancilla” space. The ancilla, initially described by the
probabilities qy, is a priori only an auxiliary system without
physical meaning. Often, however, it can be connected to a
part of the real physical environment, for instance a detector
or memory which is used to record the outcome of a mea-
surement. Furthermore, any “selective” evolution conditioned
on a generalized measurement result r can be modeled by an
ideal bare (or “Bayesian”) measurement acting on this ancilla
state only. This nicely encodes the fact that an experimenter
usually never observes the system directly, but rather infers its
state by looking at a secondary object, e.g., a display, which
in turn is not affected by the observation.

A proof of Theorem 1 is given in the Appendix, where
we also show that the minimum dimension D of the extra
space is in general strictly smaller than d (d2 − d + 1). We
do not know how to characterize the minimum D, except as a
nontrivial optimization problem.

Finally, to complete this digression, let us compare the
classical with the quantum version of the theorem. Quantum
mechanically, instead of using a stochastic matrix, one de-
scribes the dissipative evolution of a system by a completely
positive and trace-preserving (cptp) map. In the extended
system-ancilla space, � becomes a unitary matrix and the
dimension D can be fixed to be d2 (where d denotes the
dimension of the system Hilbert space). Crucially, the initial
state of the ancilla can be always chosen to be a pure state, in
which case the minimum D is the so-called Kraus rank of the
cptp map, which coincides with the matrix rank of its Choi
matrix. Especially the last point is in strong contrast to the

classical version of the theorem, where a pure ancilla state
can never suffice.

III. OPERATIONAL STOCHASTIC THERMODYNAMICS

We now turn to the physical situation we wish to study
and understand thermodynamically. We consider systems de-
scribed by a finite set of states {x}, whose dynamics is de-
scribed by a rate master equation

d

dt
px(t ) =

∑
x′

Wx,x′ (λt )px′ (t ). (13)

Here, W (λt ) is a rate matrix obeying
∑

x Wx,x′ (λt ) = 0 and
Wx,x′ (λt ) � 0 for all x �= x′. In terms of the probability vec-
tor p(t ), the above can be stated compactly as d

dt p(t ) =
W (λt )p(t ).

As evidenced in the notation, W is allowed to depend
on an external control parameter λt , which can change in
time. Physically speaking, such a time dependence arises from
manipulating the free energy landscape of the system. To each
state x we will thus associate a free energy fx(λt ) = ex(λt ) −
T sx(λt ), where T is the temperature of the surrounding heat
bath and ex(λt ) and sx(λt ) are the internal energy and the
intrinsic entropy of state x, respectively. The intrinsic entropy
arises because x is not necessarily a “single microstate” in
a Hamiltonian sense, but could be an effective mesostate
obtained from coarse-graining over a set of microstates (e.g.,
many microscopic configurations of a molecule can give rise
to the same conformational state); see also Refs. [30,31].
Furthermore, we assume that the rates satisfy local detailed
balance,

Wx,x′ (λt )

Wx′,x(λt )
= e−β[ fx (λt )− fx′ (λt )], (14)

where β = T −1 (we set kB ≡ 1). This condition allows us to
link changes in the system state to entropic changes in the
bath. We define the following key thermodynamic quantities.
First, the internal energy is

U (t ) ≡
∑

x

ex(λt )px(t ) = e(λt ) · p(t ), (15)

which we have expressed as a scalar product for later conve-
nience. Then, the heat flux and power are

Q̇(t ) ≡ e(λt ) · dp(t )

dt
, (16)

Ẇ (t ) ≡ de(λt )

dt
· p(t ), (17)

such that the first law takes on the familiar form

d

dt
U (t ) = Q̇(t ) + Ẇ (t ). (18)

Furthermore, the system entropy reads

SS (t ) ≡
∑

x

px(t )[− ln px(t ) + sx(λt )]

= SSh[{px(t )}x] + s(λt ) · p(t ), (19)

where SSh[{px(t )}x] ≡ −∑
x px(t ) ln px(t ) denotes the Shan-

non entropy. Then, the second law of nonequilibrium
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thermodynamics becomes

�̇(t ) = d

dt
SS (t ) − βQ(t ) − ∂s(λt )

∂t
· p(t ) � 0, (20)

where the reversible change in intrinsic entropy needs to be
subtracted as it also appears in the time derivative of the
system entropy (19) [30,31]. Furthermore, �̇(t ) denotes the
entropy production rate. We emphasize that the present setup
covers a large class of systems studied in stochastic thermo-
dynamics [1–6]. What is, however, unclear at present is how
to incorporate multiple heat reservoirs into the description.

The goal of the present paper can now be formulated as
follows. We consider a system which evolves according to a
Markovian rate master equation as above. Furthermore, we
assume it obeys the laws of thermodynamics as specified
above at the unmeasured level (i.e., without any sort of
interventions). Now, we seek for a consistent set of definitions
of internal energy, heat, work, and entropy along a single
trajectory for an arbitrary causal model as described in Sec. II;
see in particular Eq. (7). Note that here we take an explicitly
observer-dependent point of view: any action (including mea-
surements) must be explicitly modeled within our framework;
no further “hidden” knowledge is used. A “single trajectory”
is therefore defined by the sequence of measurement results
rn, which, in general, refers to a discrete set of times and
can include arbitrary generalized measurements. In view of
Eq. (13) the transition matrices in Eq. (7) are given by

Tk, j ≡ T+ exp

[∫ tk

t j

W (λt )dt

]
(21)

with the time-ordering operator T+. Furthermore, albeit im-
plicit in the notation, we also allow the control protocol λt =
λt (rn) (t � tn) to depend on all previous measurement out-
comes. Thus, we can treat all conceivable feedback scenarios
within our framework.

We remark that the sole assumptions behind the dynamical
description (7) are that the system as described by Eq. (13) is
Markovian (but see Refs. [32,33] for extensions) and that the
external agent effectively implements the control operations
instantaneously, which ensures that she has full control over
them. To derive a consistent thermodynamic interpretation for
a causal model, we will use Theorem 1 and model explicitly
the stream of ancilla systems interacting sequentially with
the system, similar to the repeated interaction framework in
Refs. [16,34].

A. First law

In between two control operations, the first law is simply
given by

d

dt
U (t, rn−1) = Q̇(t, rn−1) + Ẇ (t, rn−1). (22)

This is essentially Eq. (18), only that here we have explic-
itly emphasized that all quantities can depend on the entire
measurement record rn−1, either because the state at time tn−1

or the control protocol λt (or both) depend on it. The time
interval of validity, tn−1 < t < tn, is unambiguously indicated
by the index on the sequence rn−1.

Through the control operation at time tn, nontrivial changes
may happen, as the internal energy can jump:

	U ctrl(rn) = e(λt ) ·
[

A(rn|rn−1)

P(rn|rn−1)
− id

]
p(t−

n , rn−1). (23)

Notice that we are careful to use the normalized system
state here. Hence, we needed to normalize the system state
after the control operation by using the conditional probabil-
ity P(rn|rn−1) ≡ P(rn)/P(rn−1). To attribute to each control
operation a meaningful heat and work, we make use of
Theorem 1. The representation (12), where the action of an
arbitrary control operation is split into a reversible, deter-
ministic part (the permutation matrix �) and an irreversible,
nondeterministic part (the bare measurement B), strongly sug-
gests associating changes caused by the first part as work and
changes caused by the second part as heat [16,35]. However,
in contrast to the quantum case we have to be more careful
here as we are not only changing the energy of the system, but
also its intrinsic entropy. Therefore,

W ctrl(tn, rn−1) ≡
f (λt ) · {[(id ⊗τ ) ◦ �]p(t−

n , rn−1) ⊗ q − p(t−
n , rn−1)},

(24)

which describes the change in the system’s free energy due
to the reversible and deterministic permutation. Note that
we suppressed in the notation that the choice of the initial
ancilla state q = q(rn−1) and of the permutation matrix � =
�(rn−1) can depend on previous measurement results rn−1.
However, due to causality they cannot depend on the actual
outcome rn obtained at time tn, and therefore the work does
not depend on it, either. In fact, the work during the control
operation can be computed by knowing only the state after the
control operation averaged over the last measurement result,
which is

p(t+
n , rn−1) =

∑
rn

P(rn|rn−1)p(t+
n , rn)

= [(id ⊗τ ) ◦ �]p(t−
n , rn−1) ⊗ q

=
∑

rn

A(rn|rn−1)p(t−
n , rn−1). (25)

Hence, the work is uniquely determined by the average control
operation An ≡ ∑

rn
A(rn|rn−1) (we again suppressed the de-

pendence on rn−1 for notational convenience) and the system
state before the control operation. This can be compactly
expressed as

W ctrl(tn, rn−1) = f (λt ) · (An − id)p(t−
n , rn−1). (26)

Next, the heat injected during the control operation is
demanded to fulfill the first law of thermodynamics
Qctrl(tn, rn) = 	U ctrl(rn) − W ctrl(tn, rn−1). Hence, it is given
by

Qctrl(tn, rn) = e(λt ) ·
[

A(rn|rn−1)

P(rn|rn−1)
− An

]
p(t−

n , rn−1)

+ T s(λt ) · (An − id)p(t−
n , rn−1). (27)

022135-5



PHILIPP STRASBERG AND ANDREAS WINTER PHYSICAL REVIEW E 100, 022135 (2019)

Thus, the heat depends on the last measurement result rn at
the trajectory level. Averaging over it, we confirm that∑

rn

P(rn|rn−1)Qctrl(tn, rn) = T s(λt ) · (An − id)p(t−
n , rn−1).

(28)

Finally, we remark that we have assumed that the states y of
the ancilla are energetically neutral and thus do not contribute
to the energy balance. This is indeed the conventional choice
when considering Maxwell demon feedbacks, where—as we
will see—the memory of the demon can be identified with
the ancilla. The generalization to energetically non-neutral
ancillas is straightforward [16] and will not be considered
here.

To summarize, over an interval denoted by a superscript
(n], which starts at time t+

n−1, just after the (n − 1)st control
operation, and ends at time t+

n , just after the nth control
operation, the first law at the trajectory level can be written
as usual,

	U (n](rn) = Q(n](rn) + W (n](rn−1), (29)

but each term is now composed of parts referring to the
unobserved evolution [Eq. (22)] and to the control operation
[Eq. (23)], e.g.,

W (n](rn−1) =
∫ t−

n

t+
n−1

dtẆ (t, rn−1) + W ctrl(rn−1). (30)

The first law over multiple time intervals can be obtained by
concatenating the first laws for each time interval.

B. Stochastic entropy

Whereas we did not need to redefine the notion of internal
energy, but could simply apply Eq. (15) with respect to the
conditional state of the system, it turns out to be necessary
to redefine the entropy of the system, explicitly taking into
account the external ancillas and the generated measurement
record, too. In fact, as we allow our control protocol to depend
on the entire measurement record, it is important to store
also all available information about the past. Thus, let us
denote by px,yn (t, rn) the joint probability, conditioned on rn,
to find the system in state x and the stream of ancillas in state
yn = (yn, . . . , y1), where yk denotes the state of the ancilla
responsible for the kth control operation. Then, we define

S(t, rn) ≡ SSh
[{

px,yn (t, rn)
}

x,yn

]
+ s(λt ) · p(t, rn) − ln P(rn). (31)

The entropy of the system along a particular trajectory is
given by three terms. The first term describes nothing but
the remaining uncertainty about the system and ancilla state,
which is quantified by the Shannon entropy, as usual. The
second term simply denotes the average intrinsic entropy
conditioned on the measurement results. The third term de-
scribes the stochastic uncertainty left about the measurement
outcomes rn. When averaged over the probability P(rn) to
obtain the results rn, it gives the usual Shannon entropy of the
measurement outcomes. Two important remarks are in order.

First, while the definition (31) looks quite cumbersome in
general, in can often be significantly simplified. For instance,

when the final measurement of the ancilla system is perfect,
then the information content stored in all ancillas is identical
to the information content of the measurement results because

px,yn (t, rn) = px(t, rn)δyn,rn . . . δy1,r1 (32)

for t > tn. If the ancillas are also prepared in a zero-entropy
state, SSh(q) = 0, then Eq. (31) reduces for all times to

S(t, rn) = SSh[p(t, rn)] + s(λt ) · p(t, rn) − ln P(rn). (33)

Furthermore, let us consider the case in which the measure-
ment is perfect such that we have complete information about
the system state. Then, SSh[p(t+

n , rn)] = 0 and if we also set
s(λt ) = 0 for simplicity, we obtain the important limit

S(t+
n , rn) = − ln P(rn). (34)

We are now in a position to compare our definition with the
conventional one [36], which is − ln p(xt ), where p(xt ) is the
probability to find the system in state x at time t as determined
by the master equation (13). Undeniably, this definition has
turned out to be very successful and we do not want to
question it per se within the traditional scope of stochastic
thermodynamics. Nevertheless, it is conceptually not fully
satisfactory. If we are confident that Shannon entropy is the
correct thermodynamic entropy to describe a small system in
contact with a large bath and if we have perfect knowledge
about the system state, then its Shannon entropy should be
zero and not − ln p(xt ) �= 0. Furthermore, if information is
really physical [37], then it matters whether we measure a
system or not. Thus, when we average the standard definition
− ln p(xt ), we neglect a large part of the entropy production,
which is generated in the memory of the measurement appa-
ratus.

We therefore believe that our definition (31) fills an im-
portant conceptual gap in stochastic thermodynamics. First,
it reassures us that Shannon entropy is the correct thermody-
namic entropy for a small system as considered here. Second,
it tells us that within the conventional (perfect measurement)
limit of stochastic thermodynamics, the stochastic entropy
is not − ln p(xt ), but actually − ln p(rn). Both terms agree
numerically at time t = t+

n , but the latter corresponds to the
stochastic entropy generated in the memory. This should be
compared with our notion (34) in the perfect measurement
limit, which solely differs by explicitly accounting for the
entropy generated in the entire memory. In the following we
will also refer to Eq. (31) as “stochastic entropy”: it is an
entropy defined along a single trajectory and, as we will now
see, gives rise to an always positive entropy production when
averaged.

C. Second law

The second law in the absence of any control operation
follows basically from Eq. (20), where all quantities can now
depend on the measurement record rn−1 as we are working at
the trajectory level. Specifically,

�̇(t, rn−1) = d

dt
S(t, rn−1) − βQ(t, rn−1)

− ∂s(λt )

∂t
· p(t, rn−1) � 0. (35)

022135-6



STOCHASTIC THERMODYNAMICS WITH ARBITRARY … PHYSICAL REVIEW E 100, 022135 (2019)

Note, however, that here we used our definition (31) and not
Eq. (19), which differs by taking into account the entropy of
the ancillas and the system-ancilla correlations. Positivity of
Eq. (35) is nevertheless ensured as the transition matrices Tk, j

of Eq. (21) act only locally on the system. Hence, they do
not change the entropy of the ancillas and can only decrease
the system-ancilla correlations. Proving this statement follows
identical steps to those in Ref. [16]; compare also with the
“modularity cost” of Ref. [38].

The more interesting part concerns the entropy production
during the control step, which we define as

�ctrl(tn, rn) ≡ 	Sctrl(tn, rn) − βQctrl(tn, rn), (36)

where 	Sctrl(tn, rn) ≡ S(t+
n , rn) − S(t−

n , rn−1) denotes the
change in entropy due to the control operation. Note that
we assume that the control operation happens instantaneously
such that λt does not vary around t = tn. This implies that
there is no reversible change in intrinsic entropy, which could
contribute to the entropy production. It remains to be shown
that the entropy production is positive on average, i.e.,∑

rn

P(rn|rn−1)�ctrl(tn, rn) � 0. (37)

This then implies
∑

rn
P(rn)�ctrl(tn, rn) � 0, too. To prove

Eq. (37), we first notice that due to Eq. (28) and − ln P(rn) +
ln P(rn−1) = ln P(rn|rn−1) we have∑

rn

P(rn|rn−1)�ctrl(tn, rn)

=
∑

rn

P(rn|rn−1)SSh
[{

px,yn (t+
n , rn)

}
x,yn

]
+ SSh

[{P(rn|rn−1)}rn

] − SSh
[{

px,yn (t−
n , rn−1)

}
x,yn

]
. (38)

This expression characterizes the change in informational
entropy of the system, the ancilla, and the nth measurement
record during the control operation. We then use Eqs. (11)
and (12) to write the non-normalized state of the system and
all ancillas after the control operation as

p̃x,yn (t+
n , rn) = P(rn|rn−1)px,yn (t+

n , rn)

=
∑
x′,y′

n

Byn,yn (rn)�xyn,x′y′
n
px′,y′

nyn−1 (t−
n , rn−1).

(39)

Note that both the permutation matrix � and the bare mea-
surement B(rn) can depend on rn−1 if A(rn|rn−1) depends on
it. Now recall that the Shannon entropy is invariant under
permutations and that the bare measurement in Eq. (39), when
summed over the outcomes rn, has no effect. Thus,

SSh
[{

px,yn (t−
n , rn−1)

}
x,yn

]
= SSh

⎡
⎣

⎧⎨
⎩∑

x′,y′
n

�xyn,x′y′
n
px′,y′

nyn−1 (t−
n , rn−1)

⎫⎬
⎭

x,yn

⎤
⎦

= SSh

⎡
⎣{∑

rn

P(rn|rn−1)px,yn (t+
n , rn)

}
x,yn

⎤
⎦. (40)

The term P(rn|rn−1)px,yn (t+
n , rn) can be viewed as a joint

probability distribution over the probability space of the sys-
tem, the ancilla, and the nth measurement record. But for any
bipartite probability distribution {pab}ab with marginal {pa =∑

b pab}a, we have the inequality SSh[{pa}a] � SSh[{pab}ab].
Hence, Eq. (37) is proved by noting that

SSh
[{

px,yn (t−
n , rn−1)

}
x,yn

]
� SSh

[{P(rn|rn−1)px,yn (t+
n , rn)}x,yn,rn

]
= SSh

[{P(rn|rn−1)}rn

]
+

∑
rn

P(rn|rn−1)SSh
[{

px,yn (t+
n , rn)

}
x,yn

]
. (41)

As for the first law (29), the stochastic entropy production
during the control step and during the unperturbed evolution
can now be concatenated to give

�(n](rn) = S(t+
n , rn) − S(t+

n−1, rn−1) − βQ(n](rn)

−
∫ tn

tn−1

dt
∂s(λt )

∂t
· p(t, rn). (42)

Thus, the stochastic entropy production has the same form as
in traditional stochastic thermodynamics, but it now involves
a redefined entropy and heat flow. Along a single trajectory,
Eq. (42) can be negative, but on average it is always positive.

To summarize this entire section, we have introduced def-
initions for internal energy, heat, work, entropy, and entropy
production along a single trajectory of causal models. These
quantities satisfy the minimum requirements of any consistent
theory of nonequilibrium thermodynamics: the first law holds
at the trajectory level and the second law, with an entropy
production related to entropy and heat in the usual way, holds
on average.

IV. THE CASE OF BARE MEASUREMENTS

We will now consider a subclass of problems, which can
be treated within our framework and which is close to other
approaches in the literature. This subclass consists of control
operations which are bare measurements, i.e., simply updates
of our state of knowledge according to Bayes’ rule (2). We
still allow for imprecise measurements happening at arbitrary
discrete times; thus we still have to deal with incomplete infor-
mation similar to the situations considered in Refs. [7–13]. As
incomplete information can be handled in many very different
ways, we do not make an attempt to compare our framework
in detail with any of those proposed in those references.
However, it is worth emphasizing that while they all deal with
some form of incomplete information, they do not allow any
disturbing control operations. Thus, they fall into the class of
“bare measurements.”

Moreover, although we only observe the system, we still
allow that the control protocol λt can change depending on the
measurement record (kept implicit in the notation, as before).
Thus, here we can still incorporate the conventional feedback
and Maxwell demon scenarios [14], which typically rely on
conditioning λt on the last measurement outcome obtained at
a fixed predetermined time. More importantly and beyond the
standard analysis [14], we can also treat the complicated cases
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of real-time and time-delayed feedback, where the external
agent can adapt her control strategy during the run of an
experiment and where λt can depend for t > tn also on rn−1

and not only on rn. Progress in this direction was so far only
achieved for model-specific studies [39–43], apart from the
general framework of Refs. [18,19], to which we will return
below in Sec. IV E.

A. Stinespring’s theorem for bare measurements

One key insight of our framework was the need to model
the control operations in a larger system-ancilla space. Hence,
we will first construct this ancilla space for a bare measure-
ment according to our Theorem 1. We will see that in this
case the ancilla can indeed be identified with the degrees of
freedom of a physical memory.

We start by constructing a perfect measurement at an
arbitrary time t and add uncertainties later on. To this end,
consider a d-dimensional ancilla with initial state qy = δy,1

and the permutation matrix �xy,x′y′ = δx,x′δy,x′+y′−1, where the
sum x′ + y′ − 1 is in general interpreted modulo d . Given
an arbitrary initial system state px(t−), it is straightforward
to confirm that the system-ancilla state after the permutation
is pxy(t+) = px(t−)δy,x; i.e., it is perfectly correlated and
has maximum mutual information given the marginal state
px(t−). Finally, by applying a perfect measurement described
by the matrix By,y′ (r) = δy,y′δy,r , where r ∈ {1, . . . , d}, the
postmeasurement state of system and ancilla—given outcome
r—reads pxy(t+, r) = δx,rδy,r .

Uncertainty can now be added in various ways: the ancilla
could be initialized wrongly, we could choose a different
permutation matrix, or the final readout could be imperfect.
Here, we assume that the experimenter has complete control
over the system-ancilla interaction and can read out the state
of the ancilla perfectly. Thus, we consider only the case where
the initial ancilla state contains uncertainty, i.e., qy �= δy,1.

B. Discussion of the first and second law of thermodynamics

We start with the energetics during the measurement pro-
cess. From the preceding section we can straightforwardly
conclude that the work invested during the measurement,
Eq. (26), must be 0, as we simply copy the system state to the
ancilla and do not change the system: W ctrl(tn, rn−1) = 0. The
heat exchanged during the control operation can, however,
fluctuate along a trajectory and take on nonzero values:

Qctrl(tn, rn) = e(λt ) · [p(t+
n , rn) − p(t−

n , rn−1)]. (43)

That is, we interpret the random changes in energy caused
by an update of our state of knowledge as heat, which only
vanishes on average (similarly to the “quantum heat” in
Ref. [35]).

The terminology “heat” is justified at least in two limiting
cases. The first case is a nondriven system, where any change
in its internal energy is due to heat: for instance, if we have
found a two-level system in state “0” at time tn−1 and later
at time tn we find it in state “1,” then we know that at some
time t ∈ (tn−1, tn) the system must have jumped from state
“0” to “1” by receiving an amount of heat e1 − e0. Combining
Eq. (43) together with the average heat exchanged in between

the two measurements [obtained by integrating Eq. (16)], we
see that our definitions exactly reproduce this intuition. On the
other hand, if the system is driven, it was shown in Ref. [16]
that in the limit of a perfect and continuous measurement, we
reproduce the conventional definitions of stochastic energetics
[2,4,5], where the contribution (43) indeed plays an essential
role and cannot be neglected. Obviously, when the system is
driven and measured only at a finite set of discrete times, we
are leaving the realm where we can meaningfully compare
Eq. (43) with already established results, but we conjecture
that also under these general circumstances it is justified to
use the terminology “heat.” At least the way the term (43)
appears in the first and second law strongly suggests it.

Next, we look at the second law during the control op-
eration. We start with the change of stochastic entropy (31)
during the control operation, which becomes

	Sctrl(tn, rn) = SSh[p(t+
n , rn)] − SSh[p(t−

n , rn−1)]

− ln P(rn|rn−1) − SSh(q)

+ s(λt ) · [p(t+
n , rn) − p(t−

n , rn−1)]. (44)

Here, SSh(q) = SSh[{qy}y] denotes the entropy of the initial
ancilla state before the measurement. We tacitly assume
that we are always implementing the same measurement (in
general, qy could depend on tn and rn−1). Furthermore, due
to the final perfect measurement of the ancilla, its entropy
after the control operation is zero and on average coincides
with SSh[{P(rn|rn−1)}rn ] [i.e., the state of the ancillas after
the measurements is identical to the measurement record rn;
compare with Eq. (32)]. Summing up the stochastic entropy
production (42) over all intervals and using Eq. (44), we
obtain

�tot(rn) ≡
n∑


=0

�(
](r
)

= SSh[p(t+
n , rn)] − SSh[p(t0)]

− ln P(rn) − nSSh(q) − βQtot(rn)

+ s(λt ) · [p(t+
n , rn) − p(t0)], (45)

where t0 < t1 denotes some initial time prior to the first
measurement and Qtot(rn) ≡ ∑n


=0 Q(
](rn). If we combine
this with the integrated first law,

	U tot(rn) ≡
n∑


=0

	U (
](r
) = Qtot(rn) + W tot(rn), (46)

and introduce the nonequilibrium free energy

F (p) ≡ f (λt ) · p − T SSh(p) (47)

for an arbitrary distribution p of the system, we obtain

�tot(rn) = βW tot(rn) − ln P(rn) − nSSh(q)

−β{F [p(t+
n , rn)] − F [p(t0)]}. (48)

On average, this yields the second law

�tot = βW tot + SSh
[{

P(rn)}rn

] − nSSh(q)

−β

{∑
rn

P(rn)F [p(t+
n , rn)] − F [p(t0)]

}
� 0, (49)
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where the missing explicit dependence on the trajectory
rn is used to denote the ensemble average, that is, �tot =∑

rn
P(rn)�tot(rn) and W tot = ∑

rn
P(rn)W tot(rn).

We can discuss the second law (49) also in view of other
results in the literature. First, it is expressed in terms of three
competing terms with a transparent interpretation: the work
injected into the system, the change of entropy of the external
stream of ancillas, and the change in free energy of the system.
Typically, in an experiment involving feedback control, one
either tries to extract work or to maximize the free energy of
the controlled system at the expense of generating information
in a memory. This information generation is exactly captured
by the term SSh[{P(rn)}rn ] − nSSh(q). Our general second law
is therefore close to the ones derived using an external tape of
bits as an information reservoir [44,45] (see also Ref. [34]),
whereas the mutual information [14] does not seem to play
any role (compare also with the discussion in the Sec. IV E).
Furthermore, it is in general important to take into account
the entire entropy SSh[{P(rn)}rn ] of the measurement results
including correlations.

Nevertheless, there is also an important difference: the
observer-dependent point of view including the measurement
and feedback loop is explicit in our construction, whereas it
is, at most, implicit in Refs. [34,44,45]. This has mathematical
consequences, as our second law involves the average change
of free energy of the conditional system states, whereas the
conventionally derived second laws involving feedback con-
trol contain the change of free energy of the average system
state [14,34,44,45]. These two quantities can be related as
follows: if the final value λn of the control parameter is the
same for any measurement sequence rn, then, due to concavity
of entropy, we have the inequality∑

rn

P(rn)F [p(t+
n , rn)] � F [p(t+

n )], (50)

where p(t+
n ) = ∑

rn
P(rn)p(t+

n , rn) denotes the average sys-
tem state. Thus, the second law involving the average uncon-
ditional system state,

�̃tot ≡ βW tot + SSh
[{P(rn)}rn

] − nSSh[q]

−β{F [p(t+
n )] − F [p(t0)]},w (51)

is not as stringent as our second law:

�̃tot � �tot � 0. (52)

This makes sense: as the external agent knows the measure-
ment record rn, the associated thermodynamic entropy (free
energy) is lower (higher). But if that external agent passes the
ensemble of systems to a second agent without sharing the
measurement records, the uncertainty increases and �̃tot � 0
becomes the second law associated with an uninformed agent.

C. Analysis of a continuous Maxwell demon

To demonstrate the versatility of our approach, we consider
the “continuous Maxwell demon” analyzed in Ref. [24]. As
in the standard Szilard engine we consider a single particle
in a box of volume V , which we partition into two sub-
volumes V0 + V1 = V . However, in contrast to the standard
Szilard-type analysis we do not measure the system only

FIG. 1. Sketch of the continuous Maxwell demon setup taken
from Fig. 1(b) of Ref. [24].

once to extract an amount of work W0 = −T ln V0/V (W1 =
−T ln V1/V ) if we find the particle in the volume V0 (V1).
Instead, we repeatedly measure the location of the particle at
fixed intervals τ and extract work, when we see a change in
the particle’s position from one compartment to the other. This
is a particular example of real-time feedback control where
the external agent adapts her control strategy during the run
of the experiment; i.e., in each experiment the time when we
extract work is different. Similar feedback strategies were also
proposed and analyzed in Refs. [39,46–49].

More specifically, we consider the setup shown in Fig. 1.
Initially, the particle is in equilibrium occupying with proba-
bility π0 = V0/V (π1 = V1/V ) the volume V0 (V1). Then, we
perform a first measurement of the compartment and repeat
the measurement until we see a change of the compartment.
Accordingly, we can classify the sequence of measurement
results into 0- and 1-cycles denoted by

0
 = (0, . . . , 0︸ ︷︷ ︸



, 1), 1
 = (1, . . . , 1︸ ︷︷ ︸



, 0), (53)

where 
 � 1 denotes the number of measurements before we
measured a change of the compartment. If we have a 0-cycle
(1-cycle), we extract an amount of work W1 (W0) from the
system such that the extracted work is on average

W ext = −T (π0 ln π1 + π1 ln π0). (54)

Interestingly [24], the standard Landauer limit gives a lower
instead of an upper bound on the extractable work: W ext �
T SSh[{π0, π1}]. The resolution to this “paradox” is, of course,
that we have to evaluate the information content of the mem-
ory with respect to the cycles of Eq. (53). In the rest of
this section we are going to demonstrate that this follows
automatically from our general framework.

For this purpose we label by x ∈ {0, 1} the mesostates to
find the particle in volume V0 or V1. Importantly, we have
to associate an intrinsic entropy to these states given by
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(remember that kB ≡ 1)

s0 = ln V0/V, s1 = ln V1/V. (55)

They are computed by assuming that the single particle be-
haves like an ideal gas such that we can use T ds = pdV with
the pressure p = T/V . Furthermore, we set the entropy for
the state where the particle can occupy the entire volume
V for convenience and without loss of generality to zero.
Then, the extractable work reads Wi = −T si provided that
the last measurement outcome is i. Obviously, the sequence
of measurement results r
+1 is given by the cycles (53)
with each rk ∈ {i} = {0, 1}. As in Ref. [24] we now assume
perfect measurements such that SSh(q) = 0 where q denotes
the initial state of the ancilla (or memory) used to record
the measurement result. Furthermore, we do not perform any
work on the system by changing some protocol λt , thus W tot =
0. Note that here we equate the final extracted work W ext with
the final change in nonequilibrium free energy when we return
the system to its initial state. Therefore, W ext does not appear
in the expression of W tot. Our generalized second law (49)
reduces in this case to

�tot = SSh
[{P(rn)}rn

]
−β

{∑
rn

P(rn)F [p(t+
n , rn)] − F [p(t0)]

}
� 0. (56)

Here, n is a sufficiently large natural number in the following
sense: In each run of the experiment, we will observe a change
of the compartment at a different time 
τ , 
 ∈ N. After that
time we extract the work and restart the experiment. Now, we
choose n large enough such that it is almost certain that the
particle has changed the compartment by the time nτ , i.e.,
P(0n) ≈ P(1n) ≈ 0. The measurement sequences rn, e.g., in
case of a 0-cycle if the particle has changed compartment at

τ , is then written as

rn(0
) = (0, . . . , 0︸ ︷︷ ︸



, 1, 0, . . . , 0︸ ︷︷ ︸
n−
−1

), (57)

where we have simply “filled in” zeros for the missing mea-
surement results after we have aborted the experiment. This
does not change the probability, i.e., P[rn(0
)] = P(0
). To
complete the analysis, we take into account that the energy
of the particle does not depend on which volume it occupies
such that we will conveniently set ex = 0. Then, if we start in
equilibrium as in Ref. [24], the initial free energy becomes

F [p(t0)] = −T
∑

x

πx(− ln πx + sx ) = 0 (58)

since sx = ln Vx/V = ln πx. On the other hand, the final free
energy reads −T ln s1 (−T ln s0) in the case of a 0-cycle
(1-cycle) and appears with probability π0 (π1). Hence, our
second law takes on the simple form

�tot = SSh
[{P(rn)}rn

] + (π0 ln π1 + π1 ln π0)

= SSh
[{P(rn)}rn

] − βW ext � 0. (59)

In the final step we have used that the extractable work W ext

is precisely given by the change of free energy by letting the
particle expand and thereby the system returns to its initial
equilibrium configuration.

Thus, our framework immediately leads to the desired
result without the need to explicitly compute SSh[{P(rn)}rn ],
which was done in Ref. [24] in order to confirm the second
law. Remarkably, the above abstract experiment was realized
using single molecule pulling experiments, finding very good
agreement with theory [24].

D. Fluctuation theorems

In this paper we have so far focused on definitions for key
thermodynamic quantities along a single stochastic trajectory,
but not yet on fluctuation theorems, which are a milestone
in nonequilibrium statistical physics [3–5]. Here, we limit
ourselves to a few observations about fluctuations in our
framework.

First, the derivation of fluctuation theorems relies on a
perfectly observed system state and the microreservability of
the underlying Hamiltonian dynamics of the system and the
heat bath. For the causal model considered here, which can
deal with any amount of uncertainty and explicitly allows
including (subjective, observer-dependent) control operations
in the description, there is no hope of deducing a phys-
ically meaningful fluctuation theorem in general—at least
none which only depends on the information available in the
measurement record rn. Note that fluctuation theorems, as
typically derived in the presence of feedback control [14], still
rely on the ability to perfectly measure the system; compare
also with the discussion in Ref. [11].

Second, there always exists a “formal” fluctuation theorem,
which we can derive by defining a suitable “backward” or
“time-reversed” process. For this purpose, let r†

n denote the
sequence of measurement results rn in reverse order and let
Q(r†

n ) be the probability to observe this sequence in the back-
ward experiment, typically carried out by reversing the driving
protocol λt . Then, given that Q(r†

n ) = 0 only if P(rn) = 0, we
always have the trivial fluctuation theorem

〈e−�̃(rn )〉rn
≡

∑
rn

P(rn)e−�̃(rn ) = 1, (60)

if we define the “entropy production”

�̃(rn) ≡ ln
P(rn)

Q(r†
n )

. (61)

While this quantity measures some asymmetry of the mea-
surement statistics under time reversal, there is no obvious
connection of it to any thermodynamic quantity introduced
above. Thus, outside the traditional limit of stochastic thermo-
dynamics, Eq. (60) lacks any relation to a meaningful physical
quantity and therefore does not share the same status as the
conventional fluctuation theorem [3–5].

Obviously, in the limit of a perfect and continuous bare
measurement, our definitions allow sampling, e.g., the exact
microscopic work statistics, and derivations of fluctuation
theorems become possible again. Remarkably, even outside
this limit we can derive a general inequality, which links the
observed work statistics to the Jarzynski equality [50,51]. Let
us write the observed Jarzynski equality as

〈e−βW (rn )〉rn
≡ e−β	Fest , (62)
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where 	Fest denotes the estimated free energy difference
based on the available work statistics. Furthermore, let us
denote by γ a system trajectory obtained from a perfect
continuous measurement such that [50,51]

〈e−βW (γ )〉γ = e−β	F . (63)

Finally, we introduce the conditional probability P(γ|rn) that
the microscopic trajectory was γ given that we obtained the
measurement record rn. Now, for bare measurements we can
always view the observed work W (rn) as resulting from a
coarse-grained measurement of the perfectly measured work
W (γ ), i.e.,

W (rn) =
∑

γ

W (γ )P(γ|rn). (64)

Since the exponential function is convex, we immediately
obtain, by Jensen’s inequality,

〈e−βW (rn )〉rn
� 〈e−βW (γ )〉γ , (65)

or, equivalently for the free energy differences,

	Fest � 	F. (66)

Hence, as any experiment involves measurement errors and
since the exponential function is actually strictly convex, we
can conclude that the estimated free energy difference in any
Jarzynski-type experiment always overestimates the actual
free energy difference: 	Fest > 	F . Particular estimates for
the difference 	Fest − 	F are hard to compute in general, but
were worked out for particular models in Refs. [10,11].

E. Comparison with the framework of Ito and Sagawa

Stochastic thermodynamics of a causal model was already
studied by Ito and Sagawa for so-called Bayesian networks
[18,19]. For an early study in that direction connecting infor-
mation theory, entropy, and causal models on an average level,
see also Ref. [52]. Here we will outline how to connect our
description to a Bayesian network and we will briefly high-
light a few key differences in the thermodynamic description.
A thorough comparison, however, is beyond the scope of the
present paper, as in its most general form both frameworks, the
present one and the one of Refs. [18,19], are quite involved.

Bayesian networks are a graphical representation of a prob-
abilistic model, in which all random variables are specified
by the nodes of the network and the conditional dependencies
are represented by directed edges. Mathematically, a Bayesian
network is thus given by a directed acyclic graph, which re-
flects the causal structure of the problem. Physically speaking,
a directed acyclic graph corresponds to the fact that time
“flows” in one direction and no time loops are possible. The
Bayesian network is fully specified once the probability distri-
bution of the input variables and the conditional probabilities
for all edges are known.

For illustration, we depict the Bayesian network for two
control operations in Fig. 2. It basically consists of three
“layers.” The first layer describes the evolution of the system
X , where we used x±

i to denote the state of the system at
time t±

i . To construct the control operations at time ti, we
use a second layer of auxiliary systems Yi with states y±

i (the
ancillas). The final layer of observations by the external agent

FIG. 2. Bayesian network associated with a process with two
control operations.

is described by the measurement results ri. Based on these
measurement results, the external agent can decide to change
the system evolution controlled by the protocol λt or to change
the next control operation, or both. For simplicity, we depicted
only two control operations in Fig. 2 because the density of
arrows in the picture quickly becomes very large as all previ-
ous results are allowed to influence the future evolution and
control operations. Thus, our framework can be formulated
in terms of a Bayesian network and could be analyzed using
the tools of Refs. [18,19], but there are also some essential
differences in our setting and thermodynamic analysis.

First, Ito and Sagawa assume that the control protocol λt

is constant in between two control operations and changes
only in a stepwise fashion at the times ti. This seems to be
an essential element in their formulation in order to derive the
second law based on the concept of a “backward trajectory,”
where transitions in the system state are required to be linked
to entropy exchanges in the bath. Within our formalism we
see that there is no need to assume that λt remains fixed in
between two control operations. Moreover, Ito and Sagawa
assume that any change in energy due to a transition in the
system state is due to an entropy change in the bath; see
for instance Eq. (4) in Ref. [18]. This, however, implies that
they exclude the possibility of any deterministic changes in
the state of the system due to an external control operation.
In other words, the work invested in the control operation
is always zero in their case, W ctrl(tn, rn−1) = 0, and hence it
seems reasonable to compare their framework with the “bare
measurement” case of our framework.

Also their thermodynamic conclusions are slightly differ-
ent from ours. Apart from the already mentioned missing
work contribution during the control step, our second laws
are different, too. Instead of the change in entropy in the
external stream of ancillas and the measurement record [cf.
Eq. (49)], their second law contains the transfer entropy from
the first layer (the system) to the second and third layer. The
transfer entropy is an asymmetric, directed generalization of
the mutual information concept [53], and therefore the second
law derived in Refs. [18,19] is closer in spirit to the second law
of Ref. [14]. In our language, their second law corresponds to
the case of an “uninformed” agent as discussed at the end of
the previous section.

V. FINAL REMARKS

We have provided definitions for stochastic internal en-
ergy, heat, work, and entropy, which can be computed by an
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external observer who can manipulate a small system with
arbitrary instantaneous interventions and who has no access
to any further information. While the definition of internal
energy remained the same as usual, the nontrivial effect of
the external interventions forced us to associate a different
notion of work [Eq. (26)] and heat [Eq. (27)] to it. Math-
ematically, we achieved this by using a classical version of
Stinespring’s dilation theorem (Theorem 1), and we ensured
that we reproduce previous notions for already well-studied
limiting cases. Hence, the first law at the trajectory level takes
on the same form as usual and can reproduce the standard case
of stochastic thermodynamics for a perfectly and continuously
measured system [16].

In contrast to the internal energy, we had to redefine the no-
tion of system entropy from the start [Eq. (31)]. Following the
motto “information is physical” [37], we explicitly included
the information generated by the measurements. We then
showed that the stochastic entropy production—defined in
the standard way as the change in (redefined) system entropy
plus the change in entropy of the bath (which is proportional
to the heat flow from it)—is positive on average for any
set of external interventions. While we do not reproduce the
standard notion of stochastic entropy [4,5,36] in the respective
limit, our choice guarantees that there is no need to modify the
second law in the presence of feedback control.

To summarize, the present paper puts forward a formally
consistent framework of stochastic thermodynamics for an
arbitrarily controlled system in contact with a single heat
bath. Our causal model relies solely on the approximation that
the external interventions are happening instantaneously. The
very general but also abstract framework of Sec. III allows
us to draw three conclusions. First, the second law in the
presence of feedback control is more naturally expressed in
terms of the Shannon entropy of the memory than the mutual
information between the system and the memory. Second, our
definition of stochastic entropy suggests that the stochastic
entropy of Ref. [36] actually measures the entropy of the
memory and not the system. Third, on a very abstract level,
it appears that this framework is very similar to its quantum
counterpart [16], demonstrating that thermodynamics is a uni-
versal theory where similar principles apply to both classical
and quantum systems alike. In addition, we have also shown in
Sec. IV that our theory allows us to draw practically relevant
conclusions.

For the future we connect the hope with our framework
that it lays the foundation to study problems of thermody-
namic inference, such as those in Refs. [7,8,12,13], within
one common unified framework. In that respect it would be
very important to extend the present theory to multiple heat
reservoirs too [12,13]. In addition, for practical applications
it would be desirable to gain further insights into the physical
nature of the rather abstract ancillas introduced by us.
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APPENDIX: PROOF OF THE CLASSICAL STINESPRING
REPRESENTATION THEOREM 1

Our proof will be constructive and we start with the rep-
resentation provided in Eq. (11). For this purpose we use
the fact (see Ref. [54]) that every stochastic matrix A can be
decomposed as

A =
N∑

ξ=1

λξ F (ξ ), (A1)

with N � d2 − d + 1. Here, the λξ are probabilities (i.e.,
λξ � 0 and

∑
ξ λξ = 1) and F (ξ ) are deterministic transition

matrices. This means they are binary, F (ξ )
x,x′ ∈ {0, 1}, and they

have exactly one “1” in each column; otherwise all entries
are 0. In general, F (ξ ) is not invertible, but the set of in-
vertible deterministic transition matrices coincides with the
set of permutation matrices. Furthermore, we remark that the
decomposition (A1) is in general not unique.

To prove Eq. (11), we notice that the matrix elements
of every deterministic transition matrix can be expressed as
F (ξ )

x,x′ = δx, fξ (x′ ), where fξ : X → X is a function on the state
space X = {1, . . . , d} of the system, mapping x′ ∈ X to x =
fξ (x′) ∈ X , and δx,x′ denotes the Kronecker delta. We now
need to extend the set of functions { fξ } to a single function,
which is invertible and defined on a larger space X × Y , where
Y denotes the state space of the ancilla. A construction that
achieves this is given by Y = Z × , where Z = {1, . . . , d}
can be regarded as a register to copy the state of X , and
 = {1, . . . , d2 − d + 1} labels the different functions used
in Eq. (A1). Then, we define

� : X × Z ×  � (x, z, ξ ) → ( fξ (x) + z − 1, x, ξ )

∈ X × Z × , (A2)

where the summation in the first register is understood modulo
d . This function is clearly invertible, hence it is a permutation:
Namely, given x and ξ , which are copied into the second and
third register, we know fξ (x) and from that we obtain z from
the first register. Hence, we can associate a permutation matrix
� with it, which has elements

�xzξ,x′z′ξ ′ = δx, fξ ′ (x′ )+z′−1δz,x′δξ,ξ ′ . (A3)

Finally, we choose the initial state of the environment to be
qzξ = δz,1λξ , which gives∑

z,ξ ,z′,ξ ′
�xzξ,x′z′ξ ′qz′ξ ′ =

∑
ξ

δx, fξ (x′ )λξ =
∑

ξ

F (ξ )
x,x′λξ , (A4)

as desired.
Next, to prove Eq. (12), we first of all note that any stochas-

tic matrix A can be decomposed into at most d2 many different
independent control operations A(r) such that A = ∑

r A(r).
Any further control operation must then be a linear combina-
tion of the previous operations and as any representation of a
causal model is linear in the applied operations A(r) [27,28],
it suffices to consider d2 independent ones. Thus, we choose r
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to have two components, labeled r = (x̄, x̄′), and consider the
elementary control operations A(x̄, x̄′) with elements

Ax,x′ (x̄, x̄′) = δx,x̄δx′,x̄′Ax,x′ . (A5)

Any other decomposition of A into different control operations
Ã(r) can be obtained from the above decomposition via linear
combination, i.e., Ã(r) = ∑

x̄,x̄′ μx̄,x̄′ (r)A(x̄, x̄′), for some set
of positive coefficients {μx̄,x̄′ (r)} which satisfy

∑
r μx̄,x̄′ (r) =

1 for all (x̄, x̄′).
Now we construct the bare measurement matrix By,y′ (x̄, x̄′)

for the elementary decomposition considered above. For this
purpose, we introduce the subsets

x,x′ = {ξ ∈ | fξ (x′) = x} ⊂ . (A6)

These sets collect all ξ ∈  which map a chosen x′ to a chosen
x. We then define the diagonal matrix B(r) via

Bzξ,zξ (x̄, x̄′) ≡
∑

ξ̄∈x̄,x̄′

δz,x̄′δξ,ξ̄ . (A7)

Using the constructions for the permutation matrix � and the
probability vector q from above, we confirm that∑

y,y′
By,y(x̄, x̄′)�xy,x′y′qz′ξ ′ =

∑
ξ̄∈x̄,x̄′

δx′,x̄′δx, fξ̄ (x̄′ )λξ̄ . (A8)

On the other hand, by the definition of A(r) in Eq. (A5) and
the decomposition (A1), we have

Ax,x′ (x̄, x̄′) = δx,x̄δx′,x̄′
∑

ξ

δx, fξ (x′ )λξ

=
∑

ξ̄∈x̄,x̄′

δx,x̄δx′,x̄′δx, fξ̄ (x̄′ )λξ̄ .
(A9)

Apart from the factor δx,x̄ this is identical to Eq. (A8). But
this factor is actually redundant: once we know the input x′ =
x̄′, the output x is fixed because the sum is restricted to only
those functions which map a given input x̄′ to a given output
x̄. Hence, we have proven Eq. (12). �

While the above construction is quite convenient, we em-
phasize that it is not necessarily optimal, in the sense that in
general it will be possible to find a representation with an
ancilla space of dimension D < d (d2 − d + 1). In fact, all
that we need to ensure when constructing the permutation
matrix � is that, for any given output state x ∈ X and any
fixed decomposition (A1) into N � d2 − d + 1 deterministic
transition matrices, the ancilla space Y has enough states to
label which actual state x′ ∈ X was mapped to x = fξ (x′) for

every possible ξ ∈ {1, . . . , N}. This would then allow us to
construct an injection F : X × {1, . . . , N} ↪→ X × Y , which
we could extend to a bijection and represent by a permutation
matrix �. Let us denote by | f −1

ξ (x)| the number of elements
in the preimage of x under fξ . Then, the state space Y must
have dimension

D = max
x

∑
ξ

∣∣ f −1
ξ (x)

∣∣, (A10)

which fulfills Nd > D � N . The latter inequality implies that
the state space Y must have, for a fixed decomposition (A1), at
least N elements. To see this, consider the table of cardinalities
Mξ,x ≡ | f −1

ξ (x)|. Because every fξ is a function, every row of
Mξ,x must sum up to d . This means that Dd � ∑

x

∑
ξ Mξ,x =∑

ξ d = Nd , hence D � N . On the other hand, the worst-case
scenario for a single function ξ is that | f −1

ξ (x)| = d; i.e., all
input states get mapped to the same output state x. Then, D =
Nd implies that all functions ξ map all states to the same x.
But then the decomposition (A1) is actually redundant as all
functions ξ were identical. Hence, we can always choose D <

Nd = d (d2 − d + 1) implying that our construction above is
not optimal.

Finally, we have to keep in mind that the decomposition
(A1) is not unique. Hence, the minimum dimension Dmin of
the ancilla space is obtained by minimizing over all possible
decompositions, i.e.,

Dmin = min
{ξ}

max
x

∑
ξ

∣∣ f −1
ξ (x)

∣∣. (A11)

Let us exemplify this reasoning in the simplest possible
case of A being a 2 × 2 matrix; i.e., it describes a 1-bit
channel. There are exactly four deterministic transition ma-
trices: the identity, the bit-flip operation, and the two matrices
which map any input either to “0” or to “1,” respectively. Any
possible A can then be written as a convex combination of
the invertible identity map, the invertible bit-flip, and one (but
only one) of the two other noninvertible maps. For the invert-
ible maps we obviously have | f −1

ξ (x)| = 1 for every x and

for any of the noninvertible maps we have maxx | f −1
ξ (x)| = 2.

Thus, we need at most D = d2 = 4 ancilla states for the case
of the 1-bit channel, whereas our explicit construction above
suggested that D = d (d2 − d + 1) = 6 is needed. Unfortu-
nately, evaluating Eq. (A11) for higher dimensions becomes
hard very quickly.
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