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Heterogeneous materials are often organized in a hierarchical manner, where a basic unit is repeated over
multiple scales. The structure then acquires a self-similar pattern. Examples of such structure are found in various
biological and synthetic materials. The hierarchical structure can have significant consequences for the failure
strength and the mechanical response of such systems. Here we consider a fiber bundle model with hierarchical
structure and study the avalanche dynamics exhibited by the model during the approach to failure. We show that
the failure strength of the model generally decreases in a hierarchical structure, as opposed to the situation where
no such hierarchy exists. However, we also report a special arrangement of the hierarchy for which the failure
threshold could be substantially above that of a nonhierarchical reference structure.
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I. INTRODUCTION

A wide variety of materials, both biological [1–3] and syn-
thetic [4], exhibit structural self-similarity. Essentially, a basic
structural unit is repeated multiple times, bridging across
length scales, for example, from a single carbon nanotube or
molecules of microfibrils to fibrils, fibril bundles, and ropes
to the design of a space-elevator cable [5]. The smallest units
(nanotubes or microfibrils) are coupled together to form one
unit of the higher level and so on, eventually reaching a
macroscopic scale [1].

The advantage of a hierarchical structure is its ability to
carry load due to the inhibitory effect of the hierarchical
structure towards damage propagation. It has been observed
that a hierarchical structure prevents crack growth [6] and
thereby increases the flaw tolerance of the structure com-
pared to a nonhierarchical counterpart of similar system size.
Furthermore, the extreme nature of failure statistics, of a
chain of fibers, for example, tends towards self-averaging
behavior, leading to a more predictable response of the
system.

The earliest attempt to take the advantage of a hierarchical
structure could be traced back to the construction design of
the Eiffel tower [7], which has a three-level hierarchy. There
have been multiple other efforts to build efficient hierarchical
structures, particularly in view of reducing the material mass
and increasing the load-bearing capacity [8–10]. Self-similar
“fractal” structures have been studied in view of optimiz-
ing strength-to-weight ratio, and their fabrication by additive
manufacturing techniques has been discussed [11].

While the failure strengths of hierarchical structures have
received considerable attention recently [12], less is known
about the intermittent dynamics of such systems in the run
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up to failure. Particularly, local failure within one unit of
the hierarchy (damage nucleation) leads to redistribution of
load, and this redistribution and the resulting diffusion of
damage are strongly affected by the hierarchical organization
of the system. The interplay of the competing effects of local
damage nucleation and long-range load redistribution leading
to damage diffusion are manifested in the response statistics
of the system, i.e., the avalanche dynamics.

Here we consider a fiber bundle model that is arranged in
a hierarchical manner, and we study the interplay of damage
nucleation and load redistribution in the avalanche response.
A fiber bundle model is a generic model for studying response
of driven disordered systems leading to fracture [13,14]. Each
fiber has a finite failure threshold drawn from a probability
distribution and therefore can sustain a particular amount of
load. Following the failure of a fiber, the remaining fibers
in the bundle share its load, which might lead to further
failure and so on. The collective response of the model mimics
several features manifested in breakdown experiments in dis-
ordered solids [15]. In this particular study, we are interested
in the avalanche statistics of the fiber bundle model when the
elements or fibers are arranged in a hierarchical structure. We
show that the effects of damage nucleation and hierarchically
structured load redistribution and damage diffusion are clearly
manifested in the avalanche dynamics. Furthermore, we pro-
pose a specific hierarchical structure, which increases the total
strength of the system substantially from the usual random
placing of the fibers.

The paper is organized as follows: First, we describe the
hierarchical fiber bundle model. Then we discuss the effects
of various levels of hierarchy on the avalanche statistics of
the model and note the effect of the hierarchical structure on
the overall strength of the system. Then we propose the struc-
ture of hierarchy that maximizes the strength of the overall
system, for a given distribution of the failure thresholds of
the elementary fibers. Finally, we discuss and summarize the
results.
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II. MODEL

A fiber bundle model, in its simplest form, is a series of
fibers fixed between two rigid parallel plates and the plates
are pulled apart by a force (load) leading to the eventual
collapse of the system. The individual fibers are considered
to be linear elastic and perfectly brittle, i.e., their stress-strain
curves are linear up to the irreversible failure point where
the fibers cease to support any load. The particular points of
failure, however, are not the same for all the fibers but are
drawn from a distribution function. Here we consider mainly
a uniform distribution between (0,1) unless otherwise men-
tioned. But similarly well-behaved distributions give similar
statistics for the failure dynamics. With the application of a
load, the weaker fibers break and the total load is carried by
the stronger fibers. This increases the load per fiber acting on
the remaining fibers and can lead to further breaking events.
The system can eventually reach a stable state, where all fibers
are stronger than their respective load per fiber, or it can suffer
a catastrophic breakdown if no such stable state exists for the
applied load.

The particular load at which stable states cease to exist for
a given system of fibers is the critical load for that system. The
behavior of the fiber bundle model near its critical load is well
studied. A gradual increase of the load from zero to the critical
load visits all the stable configurations of the model. The fiber
breaking between any two successive stable configurations
constitutes one avalanche, and the number of fibers broken
in an avalanche defines its size. The size distribution of all
the avalanches, from zero to the critical load, is a power-law
function. This is similar to what is seen experimentally in
disordered systems under time-dependent loading (see, for
example, Ref. [16]).

In its simplest form described above, the avalanche statis-
tics of a fiber bundle model is universal with respect to a broad
class of failure threshold distributions. The universality, in this
case, is guaranteed by the mean-field nature of the model; i.e.,
following the failure of one fiber, its load is shared equally
among the remaining fibers, irrespective of their distance
from the failed fiber. A departure from the equal-load-sharing
(ELS) mechanism can significantly change the response of the
system [14].

Here we consider a hierarchical structure of the model in
which the load redistribution is drastically modified from the
ELS version. As shown in Fig. 1, we consider a division of
the system into hierarchically organized modules such that,
at the ith level of hierarchy, each one of the Ni fibers in the
ith-level module represents a module of level i − 1 consisting
of a bundle of Ni−1 fibers, and so on. For a total of k hierarchy
levels, the total number of lowest-level fibers is N = ∏k

i=1 Ni.
If a fiber in a ith-level module fails, its load is redistributed

equally among all the surviving fibers within the same hi-
erarchical module. If there are no surviving fibers in that
module, the module is considered as failed and its load is
redistributed among all the surviving level-(i + 1) fibers in the
next-higher (i + 1st)-level module. Note that, in this case, the
load increments received by the individual level-(i + 1) fibers
are equal. But it is possible that the numbers of surviving
fibers within each of those units are different. In that case, the
load shares for the level-i fibers belonging to different units
might differ.

FIG. 1. Schematic illustration of a hierarchical fiber bundle.

It is immediately clear that the dynamics is very different
from the ELS dynamics described before. In particular, there
is a tendency of accumulation of damage within one unit,
until that unit completely fails. This leads to an interesting
competition between damage accumulation and load redistri-
bution. When the unit sizes are very small, damage spreads
rapidly within a unit because the load of a failed fiber is
redistributed very locally. But as the unit size is small, the
whole unit breaks quickly, redistributing the load to other
units and thereby diffusing the load concentration. On the
other hand, if the unit sizes are large, then there is not much
damage accumulation to begin with as the individual units
behave like ELS fiber bundles. Between these limits one finds
a critical size for the units, at which the damage accumulation
is enhanced because of load redistribution confinement and
the hierarchical structure becomes weakest. This effect is also
visible in the avalanche statistics.

Below we investigate the dynamics of such hierarchical
fiber bundles. We start with the simplest case of two hierarchy
levels and later generalize to three and more levels. At the
end we revisit the two-level system but with variable sizes
for each unit and show how the overall strength could be
increased following a particular prescription for the hierarchi-
cal structure which divides the system into units of uneven
size in a manner that correlates unit size with strength of the
constituent subunits.

III. RESULTS

A. Two-level hierarchy

In its simplest form, we study a two-level hierarchical fiber
bundle model. Here we consider a set of N2 fibers, each of
which is made up of N1 fibers, giving the total number of fibers
to be N = N1N2. As mentioned above, if N is kept fixed, the
various combinations of N1 and N2 will give rise to competing
effects of damage nucleation and damage diffusion. In Fig. 2,
we show the critical load of the model, as a function of N1, for
a fixed total number N of elementary fibers. The limits N1 =
1, N2 = N and N1 = N, N2 = 1 are trivially the ELS model,
which has the critical threshold σc = 1/4 [13], when N →
∞. Because load confinement enhances the accumulation of
damage in the subunits, for all intermediate sizes the critical
load falls below this limit.

For illustration purposes, let us consider the case N1 =
2, N2 = N/2. This is indeed equivalent to a system of N/2
fibers in the ELS setting. But the failure threshold distributions
of those N/2 fibers are different from the uniform distribution.
To calculate the failure threshold of the whole system, the job
really is to calculate the failure threshold distribution of the
coupled fibers. Assuming that the lowest level fibers are from
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FIG. 2. The critical load of a two-level hierarchical fiber bundle
model for fixed system size as a function of the level-one unit size.
In the two limiting cases, when the unit size is 1 or equal to the
full system size, the critical load is trivially 1/4, which is the result
for an ELS fiber bundle with uniform threshold distribution. In all
intermediate cases, the critical load is lower due to confinement-
enhanced damage accumulation.

a uniform distribution in (0 : 1), if a load σ is applied, the
probability that both fibers fail is

(1) For σ � 0.5
(a) When both the thresholds are below σ , the proba-

bility is σ 2

(b) When one is below σ and the other one is σ � σt <

2σ , the probability is 2σ (2σ − σ ).
(2) For σ > 0.5

(a) When one of the thresholds is below σ , the proba-
bility is 2σ − σ 2.
Therefore, considering the total probabilities for the two

cases above, the cumulative distribution P(σ ) of the failure
threshold becomes

P(σ ) = 3σ 2 for σ � 0.5

= σ (2 − σ ) otherwise, (1)

giving the corresponding probability distribution p(σ ) as

p(σ ) = 6σ for σ � 0.5

= 2 − 2σ for σ > 0.5. (2)

For an ELS fiber bundle where the distribution and the cumu-
lative distribution of the failure thresholds are, respectively,
p(σ ) and P(σ ), the critical elongation per fiber �c follows
[13]

1 − �c p(�c) − P(�c) = 0, (3)

implying in this case

1 − 9�2
c = 1 (4)

with the only physical solution being �c = 1/3. The critical
force in turn follows

Fc = N (1 − P(�c))�c, (5)

giving σc = Fc/N = 2/9. Therefore, σ (2)
c = 2/9 < σ (1)

c =
1/4, in the limit N → ∞. This estimate agrees well with the
simulation data shown in Fig. 2. As mentioned before, this
apparently counterintuitive feature is the result of enhanced

damage accumulation due to load confinement within a single
unit.

In Fig. 3 the load distribution on the fibers in the last
stable configuration before failure (averaged over an ensem-
ble of ∼2000 realizations) is shown for various values of
N1, N2. As can be seen, the distribution function is widest
when the failure threshold is lowest, which implies that some
fibers carry much larger loads than the average. Such load
concentration leads to enhanced damage accumulation. On
either side of this, the load concentration is decreasing due to
(1) lack of surviving fibers within one unit (small N1 limit) and
(2) due to wider spreading of the load within one unit (large
N1 limit). As far as the shapes of the distribution functions
are concerned, in the two limiting cases mentioned, these are
Gaussian. Essentially these two are the widely studied single
hierarchy systems. Therefore, their critical loads are randomly
fluctuating around the mean-field predicted value 0.5 [13].
One of the simplest cases of two-level hierarchy, therefore,
appears when N1 = 2, N2 = N/2. As calculated above, the
critical elongation �c, or for that matter the critical load
carried, is 1/3 (note that σc is calculated based on the intact
bundle). This is for each of the units, some of which have
two fibers and others have just one. Consequently, the force
distribution splits into two Gaussians, centered at 1/3 and 2/3,
with the peak heights determined by the relative abundance
of the two type of groups. For more complicated structures,
multiple peak positions arise due to a variety of possibilities
of the surviving fiber numbers in various levels of hierarchy.

To demonstrate that the multipeaked distributions of load
in the last stable configuration are stable with respect to sys-
tem size variation, in Fig. 4 we have plotted the distributions
for N1 = 2 and N2 = 100, 300, 500, 1000. As can be seen, the
peak positions remain unaltered at 1/3 and 2/3.

Avalanche size distribution

The effect of damage accumulation is also manifest in
the avalanche size distribution of the model. Figure 5 shows
the avalanche size distributions for various values of N1, N2

with N = 10 000 fixed. The size of an avalanche is defined
as the number of fibers failing, in the course of the avalanche
progressing at fixed external load, at the lowest level of hier-
archy, irrespective of the unit to which they belong. The usual
assumption of separation of time scales between slow external
loading and fast internal load redistribution has been made.
The distributions are averaged over an ensemble of realiza-
tions. The generic feature of the avalanche size distribution is
a dip that occurs at approximately N1. This indicates that small
avalanches are confined within single units, and their size
distribution is essentially that of small ELS fiber bundles with
a cutoff at the finite system size N1. The distributions therefore
exhibit three different regimes depending on the N1/N2 ratio.
First, if N1 � N2 (top row in Fig. 5), single units fail rapidly,
and the dynamics is controlled by avalanches involving multi-
ple units. In this limit, the effects of single-unit avalanches
are barely visible, the dip at N1 is weak, and the overall
behavior is that of an ELS fiber bundle with its analytically
calculable exponent value −5/2 [13]. Second, if N1 is compa-
rable to N2, the intermediate dip is most pronounced, and we
obtain a bimodal distribution consisting of one peak for small
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FIG. 3. Distribution of loads on elementary fibers in two-level hierarchical fiber bundles at the point of failure, with system size N = 10 000
fixed; distributions are averaged over an ensemble of fiber bundle realizations. The width of the distributions is largest for intermediate N1, N2

values, where the system is weak.

avalanches that are confined within one unit, and a second
peak for large avalanches involving multiple units. In the limit
of large avalanche sizes, again power-law behavior with an
exponent of −5/2 is observed (central row in Fig. 5). Third, if
N1 � N2 (bottom row in Fig. 5), the peak at large avalanche
sizes can hardly be resolved due to limited statistics. In this
limit, as N1 increases we again recover a single power law
with the avalanche exponent of the ELS fiber bundle.
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FIG. 4. Distribution of loads on elementary fibers in two-level
hierarchical fiber bundles at the point of failure for fixed N1 value
(N1 = 2) and various N2 values. The peak positions remain un-
changed at approximately 1/3 and 2/3 (see text).

B. Three-level hierarchy

As the next step of generalization, we study the three-level
hierarchical fiber bundle model with N3 fibers at the highest
level, each of which consists of N2 level-two fibers, of which
each is made up of N1 fibers at the lowest level. As before, we
keep N = N1N2N3 fixed.

The critical load of the system, as before, is affected by the
hierarchical structure. As an example, one can calculate the
critical load for the case N1 = 2, N2 = 2, N3 = N/4. Assum-
ing that at the lowest level the failure threshold distributions of
the fibers are drawn from a uniform distribution in (0,1), the
probability that one element at the highest level (consisting
of two elements in the intermediate level, which in turn are
made up of two fibers at the lowest level) fails when a load σ

is applied is given by (for σ � 0.5)
(1) When both the elements in the intermediate level have

failure threshold below σ , [
∫ σ

0 6σ dσ ]
2 = 9σ 4

(2) When one element in the intermediate level has
a failure threshold below σ , and the other element has
a failure threshold between σ and 2σ , is 2[

∫ σ

0 6σ dσ ]

[
∫ 2σ

σ
6σ dσ ] = 27σ 4.

Consequently, the cumulative distribution and the proba-
bility distribution for the failure thresholds at the highest level
of hierarchy respectively become (for σ � 0.5): P(σ ) = 63σ 4

and p(σ ) = 252σ 3. The critical load follows Eq. (3), giving

�c = 4

√
1

315 and σc = (1 − 63
315 ) 4

√
1

315 ≈ 0.1898. In Fig. 6 we
plot σc as a function of N3 when N1 = N2 = 2. The variation is
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FIG. 5. Size distribution of avalanches for the same systems as in Fig. 3. Large avalanches that span multiple units show a power-law
decay with exponent value −5/2, and smaller avalanches which are confined in one unit show an exponentially truncated power-law decay.
The crossover occurs for avalanche sizes approximately equal to the unit size N1 and is marked by a dip in the distribution.

of the form σc(N3) = σc(∞) + AN−1/ν

3 , where ν = 3/2 gives
a reasonable fit. This is exactly the scaling form and exponent
value seen for the usual ELS model [17].
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FIG. 6. The horizontal line shows the analytical estimate σc ≈
0.1898 for the critical load of a three-level hierarchical fiber bundle
model where N1 = 2, N2 = 2, and N3 is large. The points, joined by
a curve, are the simulation results for various values of N3. For large
values, the critical load approaches the analytical estimate according
to the finite-size scaling relation σc(N3) = σc(∞) + AN−1/ν

3 . This is
verified in the inset plot, and ν = 3/2, which is the finite-size scaling
exponent of the ELS fiber bundle model [17], gives a reasonable fit.

For the total range of N1, N2, N3 = N/(N1N2), the critical
loads tend to the ELS limit 1/4 if either N1 = N , N2 = N ,
or N3 = N . The load-bearing capacity is smaller for all the
intermediate configurations where the effect of confinement-
enhanced damage accumulation is prominent. Notably, in all
hierarchical configurations, the critical load is lower than for
the ELS model.

Figure 7 shows the distribution of the load per lowest order
fiber in the last stable configuration. The width of the distribu-
tion is maximum for the lowest failure thresholds, confirming
the effect of confinement-enhanced damage nucleation. As
before, the extreme limits show Gaussian distributions (not
shown), and in all intermediate steps, multiple peaks arise due
to various numbers of surviving fibers in different levels.

Avalanche size distribution

The avalanche size distribution, shown in Fig. 8, reflects
the damage nucleation process described above. As before,
large avalanches which span many units of the lowest and/or
the intermediate hierarchy level define a −5/2 power-law
tail. But the effect of damage nucleation is visible in smaller
avalanches that do not span multiple units and are exponen-
tially decaying in size, leading to dips in the avalanche size
distribution. There are two length scales, corresponding to the
two levels of lower hierarchies, where such decays are seen.
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FIG. 7. Distribution of loads on elementary fibers in three-level hierarchical fiber bundle models at the point of failure, system size N =
10000 fixed, for different values of N1, N2 and N3 = N/(N1N2). The effects of stress confinement are evident for intermediate values of N1, N2,
where the stress distribution is widest.

FIG. 8. Size distribution of avalanches for the same systems as in Fig. 7. Large avalanches that span multiple units show a power-law decay
with exponent value −3/2, and smaller avalanches which are confined in units of lower hierarchy show an exponential decay.
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FIG. 9. Size distributions of avalanches for a hierarchical struc-
ture with two fibers in each unit and multiple levels of hierarchy;
the peaks at large avalanche sizes correspond to system-spanning
avalanches at the point of failure.

C. Higher level hierarchy

In cases where the number of levels is high, but the size
of each level is small, the effect of damage accumulation is
rather intriguing. As shown before, there will be a length-
scale cutoff for each level, but the number of such cutoffs is
high. The overall distribution, therefore, is affected at multiple
scales. Due to the exponential growth in the system size with
the number of levels, only a limited range is accessible for
numerical analysis. In analyzing this case, we use the same
value Ni = N1 = 2 value for all hierarchy levels, producing a
self-similar structure. Figure 9 shows avalanche size distribu-
tions for various values of the number of levels. The avalanche
size distributions have power-law characteristics but are much
steeper than what is expected for a ELS reference structure.
The simulations are shown for a Weibull distribution of
thresholds, and results are similar for the uniform distribution.

D. Maximizing the global failure threshold

A common observation for the hierarchical fiber bundle
models studied here is that the failure threshold of any hi-
erarchical structure is lower than the failure threshold of a
system with equal size and one level of hierarchy (i.e., the
usual FBM). In this section, we deal with the question whether
the failure threshold of the hierarchical structure could be
increased beyond the limit of the single-level arrangement.

The idea is to use a set of elements with failure thresholds
drawn from a given distribution, to classify them according
to their failure threshold, and then to arrange them in a suit-
able hierarchical structure to maximize the effective failure
threshold of the system. Such situations could arise in various
design problems with shared load, such as the power grid
network, computer redundancies, traffic networks, and so on.
The crucial feature is to group the elements into units by
correlating the unit size with the failure thresholds of the
individual elements. (Of course, in practice this depends on
availability of a method to determine the failure threshold of
a unit without destroying it). For simplicity, we consider a
two-level hierarchy.

The key to increase the failure strength in fiber bundles is
to distribute the total load in such a way (a) that the fibers

receive loads according to their failure threshold (see, e.g.,
Ref. [18]) or (b) to make sure that all fibers are of equal
strength. In the second case, even an equal load redistribution
scheme would give the maximum failure threshold (assuming
that the total strength of all fibers together is constant). In a
hierarchical fiber bundle model, we use both of these ways
together. Sticking to the two-level hierarchy, the basic idea
is that on the lower level the fibers of approximately equal
strength are partitioned into groups. These groups are made
of unequal size, such that also total strength of each group is
approximately equal; i.e., both on the lower and on the higher
hierarchical level we create bundles consisting of elements
of approximately equal strength. As a consequence, weaker
fibers are partitioned into larger groups and stronger fibers
into smaller groups. The precise values of the group sizes will
depend on (1) the total number of groups to be created and
(2) the failure threshold distribution. After this partitioning,
in the higher level, one ends up with fibers of equal strength,
for which a uniform load redistribution gives the maximum
failure threshold, as mentioned before. Note that due to the
unequal sizes of the groups, the stronger fibers need to carry
higher load (since they belong to smaller size groups) and
weaker fibers carry smaller load (since they belong to larger
groups). In this way, the two mechanisms mentioned before
work together in hierarchical systems to maximize the global
failure threshold. A computational procedure to achieve this
objective is the following.

Let the elementary fibers be arranged in the ascending
order of their failure thresholds. Then divide this ordered list
into m groups with population fractions ni, with

∑m
i ni = 1. If

the average value of the failure thresholds in each group is fi,
then

m∑
i=1

ni fi = 1

2
(6)

for a uniform distribution in (0,1). We now require that
the numbers and failure thresholds in each group fulfill the
relation

ni

ni+1
= fi+1

fi
. (7)

Combining Eq. (6) and Eq. (7), we can see that this require-
ment is tantamount to

ni fi = 1

2m
; (8)

i.e., each group has the same average load-bearing capacity.
Now, if the partition between i − 1st and ith group in terms

of threshold values is at xi, then

ni = xi − xi−1 (9)

and

fi = xi−1 + xi − xi−1

2
. (10)

Putting Eq. (9) and Eq. (10) into Eq. (8), we get

(xi − xi−1)
(xi − xi−1)

2
= 1

2m
(11)
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FIG. 10. The critical load σc, as a function of the partitioning
parameter σl in Eq. (14). The maximum strength is obtained for large
m values when the groups are well partitioned into almost equal
strengths and is substantially higher than the single hierarchy limit
1/4, which is in turn higher than all other hierarchical arrangements.

or

x2
i − x2

i−1 = 1

m
with xm = 1, x0 = 0. (12)

This implies xi =
√

i
m .

Next, we make use of the fact that, in a ELS fiber bundle,
the weakest fibers may well be rather useless in terms of the
strength of the system. This is especially true when the num-
ber of partitions is small. This can be easily seen by looking
at a ELS fiber bundle with N fibers and uniformly distributed
thresholds on the interval (0,1) that has a critical stress of
σc = 0.25 and thus carries a load of 0.25N : Throw away the
weaker half of the fibers to create a bundle with N/2 fibers and
thresholds on the interval (0.5,1), which has a critical stress of
0.5 and carries a load of 0.25N still. This simply follows from
the fact that at the critical point, the weaker half of the system
is broken, and it is the stronger half that carries the total load.
We apply a similar strategy by lumping, prior to partitioning,
all level-one fibers with a threshold below σl into a single
level-two fiber i = 0, which means that in the thermodynamic
limit N, m → ∞ they become irrelevant to the dynamics of
the system.

The above calculation can, then, be repeated for the re-
maining fraction (1 − σl ) of fibers, with new variables x′

i ,
which are related to the old variables xi as

x′
i = xi − σl

1 − σl
. (13)

Therefore, the optimized partitioning of the fibers in hierar-
chical modules under a threshold σl is

xi =
√

i

m
(1 − σl ) + σl , (14)

when there are m units in the second level of hierarchy, in a
two-level hierarchical system. Finally, to answer the question
for what value of σl an optimal configuration may be obtained,
Fig. 10 shows the value of the critical load σc for two-level
hierarchical fiber bundles partitioned according to Eq. (14)
with various values of the truncation parameter σl and the
number of groups m. For m = 1, the critical load is trivially at

0.25. For all other values of m, there are at least some values
of σl for which the critical load is higher than this reference
value. Indeed, the gain of minimizing the effects of weaker
fibers, as described above, could be seen for small σl values.
On the other hand, for large m, the system gets well partitioned
into m equally strong groups. Under that circumstance, given
that the average threshold of the whole system cannot change,
the only option is that the strength of each group tends to
that average value, i.e., 0.5. Therefore we see that the critical
strength tends to 0.5 for high m at low σl values. This implies
a 100% increase in the strength and is much higher than other
attempts to maximize strength [18].

Therefore, we find that for a suitable arrangement of the
hierarchical structure, it is possible to reach close to the
maximum possible failure threshold under uniform loading
and uniform load redistribution.

IV. DISCUSSION AND CONCLUSIONS

The hierarchical nature of a heterogeneous material can
have major consequences on its dynamics and load-bearing
capacity. We consistently find that, for fiber bundle models, a
hierarchical arrangement generally reduces the global failure
threshold as opposed to the one without such an arrangement.
The reason behind the lower failure threshold for hierarchical
fiber bundle structures is simply the mean-field nature of the
fiber bundle model. Due to the mean-field nature, the broadest
possible range of load redistribution is the one where all fibers
can equally share the load of a failed fiber. For any hierarchical
arrangement, there is necessarily a load localization, since
the load of a failed fiber must be shared by fibers belonging
to the same hierarchical unit. This will always make a part
of the system inaccessible for load redistribution following
the failure of a given fiber, and the local confinement of
load enhances local damage accumulation. This effect of load
or damage localization due to hierarchical structures is also
manifest in the avalanche dynamics of the system. In the
avalanche dynamics, large avalanches that span several hier-
archical units behave like in the mean-field model. However,
smaller avalanches, that are confined within single units, differ
significantly from the mean-field limit. Indeed, looking at the
avalanche size distributions, is a possible way to understand
the hierarchical nature of a material for which the detailed
internal structures are not known.

It is important to note, however, that the hierarchical
structure works (shows interesting dynamics) only when there
are fluctuations within the individual units. In this case that
fluctuation comes from the failure threshold distributions. If
the set of failure threshold values for each fiber at the lowest
level were identical, then we would end up with multiple
copies of the same unit at the lowest level. Similarly, if the
unit sizes at each level become large, then we end up with
multiple copies of an usual equal load-sharing fiber bundle
model. It is the fluctuations in the failure threshold values
that come from relatively small sizes of the units that give
the interesting dynamics of the hierarchical fiber bundles. The
so-called thermodynamic limit here needs to be only

∏
i Ni →

∞, rather than taking each Ni → ∞ individually. Even in the
simplest case of the two-level hierarchy, the limits N1 → ∞,
finite N2 and finite N1, N2 → ∞ do not give the same resulting
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dynamics. It has been analytically shown here that N1 = 2,
N2 → ∞ gives σc = 2/9, while N1 → ∞, N2 = 2 will retain
the usual fiber bundle mean-field result of σc = 1/4.

It is interesting to discuss the relation between hierar-
chical FBM as studied here and fiber bundle models with
local load sharing (LLS). By imposing load redistribution to
occur within a unit of the same hierarchical level only, the
hierarchical fiber bundles imply a certain degree of locality
in their load-sharing rule. At the same time, we note that the
adjacency structure that is imposed by the hierarchy (adjacent
are fibers that belong to the same hierarchical unit) is dis-
tinct from adjacency in an Euclidean or network sense. Both
concepts of locality might be combined, e.g., by embedding
the hierarchical structure into an Euclidean space, to produce
LLS hierarchical fiber bundle models for which there exists
(depending on hierarchical structure and load-sharing rule) a
huge space of possible variations.

For the ELS hierarchical FBM as considered here, we have
been able to show that the adjacency structure imposed by
the hierarchical organization, with its confinement of load
redistribution after a local failure within the same unit, can
be used to enhance the load-bearing capacity of the entire
system. The key idea is to make all units have the same total
capacity, i.e., combining a large number of weaker fibers in
one group and a small number of stronger fibers in another
and intermediate sizes in between. A specific recipe of such

a division is proposed which can significantly increase the
total capacity. In practice this is contingent upon knowledge
of the fiber failure thresholds, which depends on availability
of a suitable nondestructive testing method.

In conclusion, we have studied the avalanche dynamics of
hierarchical fiber bundles and have shown that its nature bears
the signature of the underlying hierarchy. While the failure
thresholds of the fiber bundles in usual hierarchical structures
are less than the one without such structures, we propose a
mechanism in which the critical load could be made much
higher. The observation that hierarchy does not necessarily
make a structure stronger matches findings on the failure
strength of hierarchical fuse models, where hierarchically
organized structures were found to be slightly weaker than
nonhierarchical reference structures [6]. On the other hand,
the main advantage of hierarchical structures, namely, that
they effectively suppress crack propagation driven by crack-
tip stress concentrations and therefore possess a high degree of
flaw tolerance [6], has no counterpart in fiber bundle models,
which by their nature are devoid of spatial structure.
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