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Steady-state and transient analysis of the Peskin-Odell-Oster Brownian
ratchet model in the limit of large but finite diffusion
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We study the model of growing filament against a wall proposed by Peskin, Odell, and Oster [Biophys. J.
65, 316 (1993)] using the ratio of chemical to diffusion timescales as a small expansion parameter. A detailed
multiple-scale analysis allows us to fully describe the spatiotemporal evolution toward a steady-state distribution
for the wall-tip distance, including chemical effects, in very good agreement with numerical simulations.
Implications on the quasistatic approximation, where the force on the wall is allowed to vary slowly in time, are
discussed. A corrected force-velocity relationship together with explicit expressions of the relevant timescales
are provided.
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I. INTRODUCTION

The Brownian Ratchet (BR) model proposed by Peskin,
Odell, and Oster [1] serves as the simplest theory of work
production by filaments growing against a load in living cells.
It describes the stochastic evolution of a rigid straight filament
that can polymerize or depolymerize normally against a rigid
mobile wall subjected to Brownian motion, with diffusion
constant D and a constant force F , see Fig. 1. In this model,
the filament grows or shrinks in a stepwise manner by one
monomer of size d with respective bulk rates U0 and W0.
In the supercritical case, defined by U0 > W0, the filament
tip advances with an average velocity d (U0 − W0) in the
bulk. This growth is slowed down when the filament hits the
loaded wall [2]. From that moment onward, the wall Brownian
motion becomes limited on one side by the filament tip. In
addition, the filament-wall nonoverlapping condition implies
that the polymerization process of the filament is only possible
if the tip-wall distance is larger than d . Based on these
considerations, Peskin et al. derived a Fokker-Planck equation
leading, after a transient, to a probability distribution c(x′)
associated to the tip-wall distance. Given c(x′), the expected
value of the tip velocity is

v = d

[
U0

∫ ∞
d c(x′)dx′∫ ∞
0 c(x′)dx′ − W0

]
. (1)

In the limit where the Brownian motion is characterized by an
infinite diffusion coefficient D, c(x′) is a simple exponential
and the following force-velocity relationship:

v = d (U0e−Fd/kBT − W0) (2)

is obtained, where F is the constant force on the wall that is
taken positive toward the filament tip. The condition of a van-
ishing velocity, or “stalling,” is therefore reached when F =
Fs = (kBT/d ) ln (U0/W0). This result persists in the general
case of a finite D and is in agreement with thermodynamical

prediction [3]. The interest of the Peskin, Odell, and Oster
model is that it simply explains how the free energy released
by filament polymerization can be converted into mechanical
energy for 0 < F < Fs. It thus provides a theoretical basis
to understand such chemomechanical processes in biological
cells. The purpose of this paper is to present new analytical
results on this model when D is large but finite.

The above theory obviously rests on a series of approxi-
mations, which need to be appreciated when the BR model
is used to interpret an in vivo or in vitro experimental result
involving growing filaments against a loaded wall. In short,
the most relevant approximations [2,4] are as follows: the
filaments are usually semiflexible, the self-assembly kinetics
may involve more chemical steps than a simple monomer
interconversion between a free and a bounded state [e.g., as
the hydrolysis of ATP(GTP)-protein monomeric complexes],
the (de)polymerization rates which are treated as constant
could be varying as the tip approaches the obstacle (e.g., free
monomer density inhomogeneities would affect the first order
polymerization rate). Moreover, the hard flat wall describing
the loaded obstacle neglects possible surface fluctuations if
the mobile obstacle is a patch of the cell membrane [5–7].
Theoretically, it is important to stress that with the above
simplifications, the BR model leads to a relatively simple
stochastic problem when the load force is considered as
constant [1]. Indeed, it then leads asymptotically to a time-
independent tip-wall distance distribution and a stationary
velocity. To assess the experimental relevance of this model,
one should pay special attention to two modeling assumptions,
namely the choice of a constant force and the rigid filament
approximation. The hypothesis of a constant force is met in
some in vitro experiments [8] but also in specific in vivo
dynamical situations like the growth or shrinking of filopedia
protrusions [4,9–11]. In this situation, a bundle of parallel
actin filaments, emerging from the cytoskeleton, develop fin-
gerlike membrane-actin structures growing as long as the
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FIG. 1. Schematic representation of the Brownian ratchet. A
polymer filament grows by the addition of monomers of size d at its
tip with a rate U0, under the condition that a gap x′ > d is available
for this process. Meanwhile, the tip suffers detachments with rate W0

and the wall, subjected to a force F , moves with a one-dimensional
Brownian motion with diffusion coefficient D.

polymerizing force overcomes the membrane resisting force
[5]. For strong deformations by a bundle of a few filaments, as
the membrane develops a tubelike protuberance, the resisting
force is essentially constant F ≈ π (8κσ )1/2 where σ is the
cell membrane tension and κ its bending rigidity coefficient
[12]. Hence, the BR model in its elementary form with a
hard wall modeling the tip-membrane contacts and a constant
load force was proposed, in its multifilaments extension, as a
basic model to describe filopodium dynamics [5]. Moreover,
in vitro experiments which probe actin bundle growth against
a load using an actin bundle glued on a colloid growing against
another colloid or against a solid wall in a water solution of
monomeric G-actin have been interpreted with BR models
[8,13,14]. Regarding flexibility, bending effect are known to
be small for single filaments [15–17] as long as the length L of
the working filament satisfies L < L� = [lpd/ ln(U0/W0)]1/2

where lp is the persistence length of the filament [18]. For L >

L�, the filament undergoes a “pushing catastrophe” whereby
large bending fluctuations allow it to escape laterally, thus
decoupling further polymerization from the wall Brownian
motion [16]. For actin filament with lp = 15 μm = 5370 d,
one estimates that L� ≈ 70–75 d. Hence, despite its simplicity,
the BR model by Peskin et al. is still relevant as long as
L < L�.

The single filament BR model contains one obvious natural
length scale d but two intrinsic timescales: the diffusion
timescale d2/D and the chemical timescale U −1

0 . We denote
their ratio as

ε = U0d2

D
. (3)

Usually, it is assumed that ε � 1 and, indeed, Eq. (2) holds in
the limit ε → 0. The purpose of this paper is to provide new
analytical results for finite ε. Indeed, this parameter appears
to be quite variable from one experiment to another. Keeping
the monomer length d fixed, ε can vary either through the
monomer attachment rate U0 or through the diffusion con-
stant D of the obstacle. U0 is proportional to the monomer
concentration. This concentration can be monitored by the
supercriticality parameter U0/W0, since W0 is concentration
independent. Next, the diffusion coefficient D of the obstacle
depends on its size and of the surrounding fluid viscosity, the

latter being significantly larger in a biological cell than in pure
water. In in vitro experiments [8,13] dealing with micron-
size colloids that squeeze actin bundles in water solution at
moderate supercriticality, U0/W0 ≈ 3, one estimates that ε

is on the order of 10−4 [14]. However, ε is closer to unity
when actin polymerization pushes against larger colloids or
bacteria. Considering the more viscous nature of the cellular
fluid and the much higher supercriticality, one has 10 <

U0/W0 < 100, in vivo [19,20]. When the simple BR model
is used to represent filopedium growth, it was argued that
effective values of D for a membrane patch in vivo could be
found in as large a range as 1 nm2 s−1 < D < 107 nm2 s−1 [5].
Assuming a plausible value U0 = 20 s−1, this leads to quite an
uncertainty: 10−5 < ε < 200. Taking membrane deformation
into account, either through softer potentials [16,20] or using
discretized membrane patches [5,6], the definition of D is
not so straightforward, but ε can still be defined as the ratio
of the relaxation time of the local membrane configuration
to the chemical timescale. When the membrane is flexible,
the filament growth velocity generally increases [5] but in
a way that depends on ε [16,20]. On the other hand, re-
cent stochastic filopedium models [7,21] assume very fast
membrane relaxation times in the μs to ms range. In such a
situation, corresponding to ε → 0, the membrane is always in
equilibrium relative to the tip position and simply redistributes
the total force on the tips.

Most of the established knowledge of the BR model, as
for instance expression (2), is restricted to the limit ε → 0,
that is, when the wall instantaneously reaches equilibrium
between successive gain or loss of monomer by the filament.
For multifilament extensions of the BR model, the stationary
velocity also depends on the number of filaments and on
the filament seeds longitudinal distribution. Quite generally,
the ε = 0 case remains much easier to treat theoretically,
given the effective timescale separation. Analytical results are
known for the two-filament case at ε = 0 in the unstaggered
seed disposition [22]. In the same limit, approximate mean-
field approaches have been developed for many filaments BR
models, both for unstaggered [22] and for staggered [8] seed
arrangements.

For general ε, Peskin et al. were able to solve their model
only if W0 = 0. For general value of W0 and finite ε, no
analytical result are documented to our knowledge. Stochastic
dynamics approaches for multifilament cases with different
seed dispositions have shown a systematic and large slowing
down of the wall stationary velocity as ε increases and ap-
proaches unity [19].

Finite-ε values cause correlations between successive
jumps; this is a clear challenge compared to the case ε = 0,
where the wall reaches its equilibrium position between suc-
cessive independent polymerization-depolymerization events.
From the literature survey above, it appears that only limited
information is known about the crucial influence of a finite ε

on the BR dynamics. Hence, in the present work, we propose
a systematic study of the BR model for small but nonzero ε. In
steady state, we find significant deviation from the usually ex-
pected exponential behavior of c(x′) in the immediate vicinity
of the wall; away from the wall, the rate of the exponential is
perturbed by ε. A perturbation framework is presented which
allows a high-precision evaluation of ε-related effects and
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which appears to be quantitatively accurate in the entire range
ε ∈ [0, 1].

In addition, using the method of multiple scales, we an-
alytically determine the time evolution of the probability
distribution toward its steady profile. This yields the timescale
on which O(ε) corrections affect the distribution. Moreover,
we compute the temporal evolution of v, which allows us to
establish the conditions of quasistatic approximation, that is,
when a time-dependent F varies sufficiently slowly for the
system to sample in succession quasistationary states.

II. DIFFUSION MODEL

The Peskin-Odell-Oster model [1] is a Fokker-Planck
equation for the time-dependent probability distribution
c(x′, t ′) associated to the distance x′ between the wall and the
tip of the growing filament:

∂c

∂t ′ = D
∂2c

∂x′2 + FD

kBT

∂c

∂x′ + U0c(x′ + d, t ′) − W0c(x′, t ′)

+ H (x′ − d )[W0c(x′ − d, t ′) − U0c(x′, t ′)] (4)

with boundary conditions

D
∂c

∂x′ + FD

kT
c = 0, x′ = 0, (5)

c → 0, x′ → ∞, (6)

and where H (x′) is the Heaviside function. The chemical
terms in Eq. (4) make it a differential-difference equation and,
hence, generally hard to solve. Fortunately, in situations of
interest, these terms are expected to be sufficiently small to be
treated as perturbation.

III. MULTIPLE-SCALE ANALYSIS

As it tends to zero, the factor ε infinitely separates the
chemical and diffusion timescales. In addition, two asymptot-
ically distinct spatial scales arise, d and D/dU0, also in a ratio
ε : 1 one to the other. The second length scale may be intuited
as follows. Given the length d and the time d2/D, one deduces
a drift speed D/d of a diffusing particle that is “ratcheted”
at d intervals [1]; the length D/dU0 then corresponds to the
distance covered at this drift speed after a time U −1

0 . In the
frame of multiple-scale analysis, we thus define

t = t ′D/d2, τ = U0t ′ = εt, (7)

x = x′/d, X = dU0x′/D = εx, (8)

and formally allow c to depend separately on each of these
space and timescales:

c = c(x, X, t, τ ). (9)

In this way,

∂c

∂t ′ → D

d2

(
∂c

∂t
+ ε

∂c

∂τ

)
, (10)

∂c

∂x′ → 1

d

(
∂c

∂x
+ ε

∂c

∂X

)
, (11)

∂2c

∂x′2 → 1

d2

(
∂2c

∂x2
+ 2ε

∂2c

∂x∂X
+ ε2 ∂2c

∂X 2

)
. (12)

This transforms Eq. (4) into

ct + εcτ = cxx + ωcx + ε{2cxX + ωcX + c(x + 1, t )

−βc(x, t ) + H (x − 1)[βc(x − 1, t ) − c(x, t )]}
+ ε2cXX , (13)

where we have used subscripts to denote differentiation
and where we have introduced the dimensionless force and
monomer detachment rate,

ω = Fd

kBT
, β = W0

U0
. (14)

The boundary condition is also altered and now reads

cx + εcX + ωc = 0, at x = 0. (15)

IV. SHORT-TIME TRANSIENT

Over short timescales, that is, t = O(1) and τ � 1, the
O(ε) terms of Eq. (13) do not affect the solution to leading
order and the dynamics is purely diffusive. Expanding c as

c ∼ c0 + εc1 + . . . , (16)

we find, at leading order, that

c0,t = c0,xx + ωc0,x, (17)

with c0,x + ωc0 on x = 0. Let us assume the initial condition

c0 = δ(x − x0), t = 0. (18)

The solution of this problem is (see Appendix A)

c0 = e−(x−x0+ωt )2/4t

2
√

πt
(1 + e−xx0/t )

+ωe−ωx 1

2
erfc

(
x + x0 − ωt

2
√

t

)
. (19)

As time progresses, with (x0 + x)/ω � t � 1/ε, one has

c0 → ωe−ωx, (20)

an expected result if one considers Eq. (17) in steady state.
Let us now assume that, initially, the tip of the polymer

touches the wall with absolute certainty: x0 = 0. Then, from
Eq. (19) for a given x, the duration of the fast transient is
on the order of x/ω and is therefore position dependent. For
the exponential dependence in Eq. (20) to fully reveal itself,
it must be attained for values of x at least as large as a few
times 1/ω. Therefore, the duration of the fast transient can be
estimated to be on the order of

ts = 1/ω2. (21)

Dimensionally, this is

t ′
s = (

F 2D/k2
BT 2

)−1
. (22)

The above analysis allows us to enunciate a criterion for
quasistatic approximation in the case of a time-dependent
force. If F is a function of time, then one may assume that
c(x, t ) 
 ω(t ) exp[−ω(t )x] + O(ε) with ω(t ) = F (t )d/kBT
provided that F varies slowly over a time ts. The quasistatic
approximation, if satisfied, may greatly simplify the analysis

022132-3



GREGORY KOZYREFF AND JEAN-PAUL RYCKAERT PHYSICAL REVIEW E 100, 022132 (2019)

of generalizations of the Peskin model where F is not con-
stant. Indeed, it was recently found to be applicable when F
is a position-dependent force of the harmonic form, as in an
optical trap [14]. There, even though F was not constant in
time, Eq. (2) was found to be well verified along most of the
trajectory (with some modifications accounting for a bundle of
fibres instead of a single one.) Note that ts diverges as ω → 0,
leading to a breakdown of quasistatic approximation for small
forces.

It is instructive to rewrite the quantity in parenthesis in
Eq. (22) as

F 2D

k2
BT 2

= FV
kBT

, (23)

where V = FD/(kBT ) is the drift velocity of the wall in the
absence of the polymer. It thus represents the rate at which
the force F dissipates an energy kBT in the absence of the
polymer. The condition of quasistatic evolution is therefore
that F , with its point of application moving at speed V ,
must be able to dissipate an energy kBT before it changes
appreciably.

V. LONG-TIME TRANSIENT

Expression (20) only gives the outcome of the initial tran-
sient before chemical effects significantly affect the dynamics.
The general steady-state solution of Eq. (17) is Cωe−ωx, where
C is independent of x and t and is trivially equal to 1 here.
However, Eq. (17) only faithfully represents Eq. (13) for a
brief period of time. In reality, because of the slowly acting
chemistry, C is not a constant but rather a function that varies
slowly with space and time: C = C0(X, τ ). This statement
is compatible with Eq. (17) if limτ→0 C0(X, τ ) = 1. More
generally, after fast temporal processes have died out, we
assume that

c ∼ C0(X, τ )ωe−ωx + εc1(x, X, τ ) + O(ε2). (24)

Substituting this expansion in Eq. (13), we obtain

c1,xx + ωc1,x = ωe−ωx{C0,τ + ωC0,X

− [e−ω − β + H (x − 1)(βeω − 1)]C0}. (25)

For x > 1, it is easy to find that

c1 = C1(X, τ )ωe−ωx − [C0,τ + ωC0,X

+ (e−ω − β )(eω − 1)C0]xeωx, (26)

where C1(X, τ ) is an arbitrary function of X and τ only.
Above, the xeωx contribution is unacceptable because it breaks
the assumption that εc1 � c0 as soon as x = O(1/ε). The
exclusion of this possibility leads to the solvability condition,

C0,τ + ωC0,X = −(e−ω − β )(eω − 1)C0, (27)

which determines the evolution of C0(X, τ ) over long spatial
and temporal scales (see the next section). Therefore, for x >

1, Eq. (25) yields, simply,

c1 = C1(X, τ )ωe−ωx, (28)

while, in the range 0 < x < 1, we have to solve

c1,xx + ωc1,x = −ωe−ωx (e−ω − β )eωC0(X, τ ). (29)

Imposing continuity of c1 and c1,x at x = 1, this gives

c1 =
[

1 − eω(x−1)

ω
+ x − 1

]
(1 − βeω )C0(X, τ )e−ωx

+C1(X, τ )ωe−ωx. (30)

Combining the information gathered so far, we find that

c ∼ ωe−ωx

{
C0(X, τ ) + εC1(X, τ ) − ε

ω
H (1 − x)

×
[

eω(x−1) − 1

ω
+ 1 − x

]
(1 − βeω )C0(X, τ )

}
. (31)

A complete description of c including all O(ε) terms above
requires one to determine the function C1(X, τ ). This function
is again determined by a solvability condition, to be found at
O(ε2) of the calculation. In the Appendix, we show that, in
fact, C1 is an arbitrary multiple of C0. Hence, the presence of
C1 only amounts to change C0 into (1 + ε const)C0, i.e., c into
(1 + ε const)c. Such a factor has no influence when using c
to compute observable quantities; see, for instance, Eq. (1).
Therefore, we may simply omit C1 it and write

c ∼ ωe−ωxC0(X, τ )

{
1 − ε

1 − βeω

ω

×
[

eω(x−1) − 1

ω
+ 1 − x

]
H (1 − x)

}
. (32)

VI. DETERMINATION OF C0(X, τ )

In the previous section, we have derived the evolution
equation

C0,τ + ωC0,X = −(e−ω − β )(eω − 1)C0, (33)

which is a first-order partial differential equation involving
derivatives with respect to the slow variables X and τ . The
domain of definition of C0 is the quarter-plane where both X
and τ are positive. Before we can solve Eq. (33), we must
specify C0 on the semilines τ = 0 and X = 0. On the one
hand, the initial condition follows from Sec. IV:

C0(X, 0) = 1. (34)

On the other hand, in order to determine C0(0, τ ), we consider
the boundary condition (15). Evaluating it with the aid of
Eq. (32), we find

ωC0,X (0, T ) = (1 − βeω )(1 − e−ω )C0(0, T ). (35)

Inserting this expression into Eq. (33) with X = 0, we find
that

C0,τ (0, τ ) = 0. (36)

Hence, we have, simply,

C0(0, τ ) = 1 (37)

for all τ .

A. Resolution of the PDE

Equation (33) can be completely solved by the method of
characteristics [23]. The idea is to find a curve in the (X, τ )
plane along which the partial differential equation becomes
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τ

1

0
X0 ω

s

(Xb(0), τb(0))

(Xa(0), τa(0))

(X(s), τ(s))•

FIG. 2. Schematic drawing of the characteristics of Eq. (33). The
evolution of the solution takes place along the blue characteristic
curves with parameter s. For small τ , a given point X is in the zone
of influence of the initial data on the semiaxis τ = 0, such as the
point (Xa(0), τa(0)). Later, in the shaded region, the point X is on a
characteristic that emanates from a point (Xb(0), τb(0)) the semiaxis
X = 0. From that moment onward, the Cauchy data on that semiaxis
are constant and the length s along the characteristic that reaches X
is also constant. Hence C0(X, τ ) is independent of τ in the shaded
area.

an ordinary one. Such a curve generally exists: It is the
characteristic curve. Let this curve be parameterized as

X = X (s), τ = τ (s). (38)

Along this curve, C0 = C0(s) with

dC0

ds
= C0,τ

dτ

ds
+ C0,X

dX

ds
. (39)

Combining this piece of information with (33), we find
dτ/ds = 1, dX/ds = ω, and

dC0

ds
= −(e−ω − β )(eω − 1)C0(s). (40)

This trivially yields

X (s) = X (0) + ωs, (41)

τ (s) = τ (0) + s, (42)

C0(s) = C0(0)e−(e−ω−β )(eω−1)s. (43)

At the start of the characteristic curve, s = 0, we have the
initial conditions X = X (0), τ = τ (0), and C = C(0). In the
present situation, C(0) = 1 for all characteristics curves.

In the region 0 < τ < X/ω, the characteristic emanates
from τ = 0, see Fig. 2. Hence,

τ = s, X (0) = X − ωτ, C0 = e−(e−ω−β )(eω−1)τ . (44)

At later times, when τ > X/ω, they stem from X = 0. We thus
have

s = X

ω
, τ = τ (0) + X

ω
, C0 = e−(e−ω−β )(eω−1)X/ω. (45)

Combining Eqs. (44) and (45), we obtain

C0(X, τ ) = e−(e−ω−β)(eω−1) min (τ,X/ω). (46)

FIG. 3. Top: Evolution of the slowly varying amplitude
C0(X, τ ) for ω = 0.6 and β = 0.4 according to Eq. (46). Bottom:
ω−1c(x, t )eωx from direct numerical simulation of Eq. (4) with the
same parameters and ε = 0.1. The initial condition is given by
Eq. (20). A MATLAB code to numerically simulate the Fokker-Planck
equation is provided as the Supplemental Material [24] of this article.

This is illustrated in Fig. 3 and compared with c(x, t )/(ωe−ωx )
as obtained by direct numerical integration of Eq. (4), showing
very good agreement.

Considering Eqs. (32) and (46), we have thus established
that, after a transient, when τ > X/ω,

c ∼ ωe−μx

{
1 − ε

1 − βeω

ω

×
[

eω(x−1) − 1

ω
+ 1 − x

]
H (1 − x)

}
, (47)

where

μ ∼ ω + ε

ω
(1 − βeω )(1 − e−ω ) + O(ε2). (48)

022132-5



GREGORY KOZYREFF AND JEAN-PAUL RYCKAERT PHYSICAL REVIEW E 100, 022132 (2019)

Equivalently, at this order of approximation, we may write

c ∼ μe−μx

{
1 − ε

1 − βeμ

μ

×
[

eμ(x−1) − 1

μ
+ 1 − x

]
H (1 − x)

}
. (49)

Equation (46) implies that the duration of the transient is
given by

τ ∼ X/ω ↔ t ∼ x/ω. (50)

In the unscaled coordinate, this is

t ′ ∼ x′

FD/kBT
. (51)

The denominator above is simply the drift velocity of the
obstacle in response to the force F . The time required for
O(ε) effects to reach steady state is equal to the duration of
the transient in the X = O(1) region, which is x′ = O(d/ε).
An estimate of this time is

t ′
ε = d

εFD/kBT
= U −1

0

Fd/kBT
. (52)

VII. STEADY STATE

After having established the transient evolution over short
and long timescales, we now describe the steady-state solution
in more detail. We first note that in the limit x → ∞, Eq. (4)
has the exponential solution c ∼ e−μx with

μ(μ − ω) − ε(e−μ − β )(eμ − 1) = 0. (53)

This is consistent to O(ε) with Eq. (48) derived by the
multiple-scale analysis. By expressing c as

c = μe−μx × h(x) (54)

and making use of Eq. (53), we transform the original equa-
tion into

hxx − μhx = ε{ν(hx − μh) + βh − e−μh(x + 1)

+ H (x − 1)[h − βeμh(x − 1)]}, (55)

with

hx = ενh, x = 0 (56)

h → const, x → ∞, (57)

where we have introduced the shorthand notation

ν = (e−μ − β )(eμ − 1)

μ
. (58)

This puts the differential problem in a convenient form for
further asymptotic analysis in the small-ε limit. Let us expand

h as

h(x) ∼
∑
n�0

εnhn(x). (59)

Collecting terms of equal power of ε in Eq. (55), we first
obtain

h0(x) = 1. (60)

Using this solution, we find at next order that

h1,xx − μh1,x = −(1 − βeμ)H (1 − x), (61)

with

h1,x = ν, x = 0 (62)

h1 → 0, x → ∞. (63)

The solution is

h1 = −1 − βeμ

μ

[
eμ(x−1) − 1

μ
+ 1 − x

]
H (1 − x). (64)

Hence, in terms of c(x) the solution is, up to O(ε)

c ∼ μe−μx

{
1 − ε

1 − βeμ

μ

×
[

eμ(x−1) − 1

μ
+ 1 − x

]
H (1 − x)

}
, (65)

in full O(ε) agreement with Eq. (49), derived by the method
of multiple scales. At second order, we have

h2,xx − μh2,x =
⎧⎨
⎩

f21, 0 < x < 1,

f22, 1 < x < 2,

0, 2 < x,
(66)

where f21 and f22 are given by

f2,1(x) = − 1

μ2
(βeμ − 1){−2βeμ(x−1) + βeμ[μ(2x − 3) + 1]

+β + μ(e−μ − 1)(x − 1)} (67)

and

f2,2(x) = βeμ

μ2
(βeμ − 1)[μ(x − 2) − eμ(x−2) + 1]. (68)

The solution is

h2 = h2,1H (1 − x) + h2,2H (2 − x) (69)

with

h2,1 = (βeμ − 1)

2μ4
{2βeμ[μ2(x2 − 3x + 2) + μ(3x − 4) + 3]

+ (β + 2)2 − 5 − (μx − μ + 1 − β )2

+ 2β(μ − 3)eμx + eμ(x−1)[4βμ(x − 1) − 6β + 2]

+ e−μ[(μx − μ + 1)2 + 1] − 2eμ(x−2)} (70)

and

h2,2 = −βeμ(βeμ − 1)
{
μ2(x − 2)2 + 4μ(x − 2) + 2eμ(x−2)[μ(x − 2) − 3] + 6

}
2μ4

. (71)
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FIG. 4. (a) Comparison of the numerical solution of Eq. (4)
with asymptotic approximations of increasing orders of accuracy.
Parameters used: ε = 1, ω = −0.3, β = 0.4, corresponding to μ =
0.1781. (b) Blow-up in the range 0 < x < 1.5. The arrows indicate
the order of the approximations. The solution including O(ε4) terms
is undistinguishable from the numerical solution. Both the numerical
and the approximate solutions are normalized so that

∫ ∞
0 c(x)dx = 1.

(These expressions are regular as μ → 0, despite the μ−4

factor.) There is no conceptual difficulty to progress to higher
orders, but the expressions rapidly become involved and a
symbolic software becomes necessary. What transpires from
above is that, at order εn of the calculation, one may decom-
pose the solution as

hn =
n∑

k=1

hn,kH (k − x). (72)

This is useful to implement an automated resolution to ar-
bitrary order. A MATHEMATICA code is provided as Sup-
plemental Material [24]. In order to deal with values of ε

as large as ε = 1, we found that the above solution with
O(ε2) contributions already gives very good accuracy and
that including terms up to O(ε4) yields an approximation
that is almost undistinguishable from the numerical one.
We illustrate this claim by the comparison in Fig. 4, done
with ε = 1, β = 0.4 and a dimensionless force ω = −0.3,
corresponding to pulling the obstacle rather than pushing it
(negative values of ω are forbidden if ε = 0). For smaller ε,
the agreement further improves rapidly. Note the markedly
nonexponential behavior of c(x) near x = 0; this results from
the polymerization inhibition caused by the wall.

-0.5 0 0.5 1
-0.1

0

0.1

0.2

0.3

0.4

0.5

ω

v
/

(U
0
d

) e−ω − β

FIG. 5. Numerically computed (full line) and analytically com-
puted (circles) force-velocity relationship with ε = 1 and β = 0.4
using Eqs. (75) and (76). The orange curve shows Eq. (2), known
for ε = 0. Note that a positive power of transduction Fv of chemical
energy into work against the load is only possible where both ω and
v are positive.

Not shown in Fig. 4 is the perfect agreement between c(x)
as computed by direct numerical integration of the Fokker-
Planck Eq. (4) and the distribution obtained from a large
number of trajectories using the space discretization of the
stochastic dynamics algorithm of Wang et al. [14,25]. Note,
however, that it is much faster in the present case to solve
Eq. (4) than to gather the necessary statistics from the discrete
system.

VIII. DISCUSSION

A. Corrected force-velocity relation

At stationarity, the wall velocity coincides with the poly-
mer tip velocity, given by Eq. (1). Using Eq. (65), we obtain∫ ∞

0
cdx ∼ 1 − ε

μ2
[μ − 2 + (μ + 2)e−μ](1 − βeμ) + O(ε2)

(73)

and ∫ ∞

1
cdx ∼ e−μ + O(ε2). (74)

Thus, the force-velocity formula becomes

v/(U0d ) ∼ (e−μ − β )

{
1 + ε

μ2
[μ− 2 + (2 + μ)e−μ]

}
, (75)

ω = μ − ε(e−μ − β )
eμ − 1

μ
. (76)

Given ε and β, the above expressions yield a simple and
explicit parametrization (ω(μ), v(μ)) of the force-velocity
relationship as a function of the rate of exponential decay μ

of the distribution c(x). This representation compares very
favorably with the result of direct numerical resolution of
Eq. (4), even with ε = 1, see Fig. 5.

Apart from the surprisingly good agreement (see dis-
cussion below), the new formula invites several comments.
First, the stalling force is unaffected by the nonzero value
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of ε. Indeed, one finds that stalling (v = 0) happens when
e−μ = β and in this case ω = μ, exactly. Hence, the condition
for stalling remains e−ω = β, which is the usual formula in
reduced notation. Second, when ε differs from zero, the new
force-velocity relationship allows one to describe situations
where the force on the obstacle is negative.

In order for a steady-state distribution to exist, one must
have μ > 0. The limit μ → 0 corresponds to the most nega-
tive force possible: ωmin = −ε(1 − β ), that is, dimensionally,

Fmin = −kBT d

D
(U0 − W0), (77)

an exact formula valid for arbitrary ε. At that point, the
velocity of the tip is given by the unimpeded value vmax =
d (U0 − W0). For F < Fmin, the wall drifts away faster than
the average bulk velocity of the tip and no stationary average
distance x exists. Finally, in the case of zero applied force,
Fig. 5 indicates a significant drop compared to vmax, the value
expected from the usual formula (2). Indeed, when ε = 0,
the diffusion time required to open an interval of length d is
infinitely short compared to the chemical time. On the other
hand, when ε > 0, a finite time is necessary before the gap
can open, which slows down the growth dynamics.

B. Time-dependent filament tip velocity

Above, we have used the steady-state distribution c(x) to
compute the expectation value of the polymer tip velocity.
However, thanks to our analysis, we have access to the time-
dependent distribution c(x, t ) and, hence, to the evolution of
v:

v(t ) = dU0

[∫ ∞
1 c(x, t )dx∫ ∞
0 c(x, t )dx

− β

]
. (78)

In Appendix C, we evaluate the integrals above and find, after
the fast, purely diffusive, transient and for t > 1/ω,

v(t ) ∼ vs(F )(1 + εαe−μ2t ), (79)

where vs(F ) is the stationary force-velocity relation computed
in the preceding section and

α = eμ

(
1 − e−μ

μ

)2

. (80)

Interestingly, the relaxation timescale appearing in Eq. (79)
is completely distinct from tε , which we discovered in Sec. VI,
even though it was obtained thanks to a perturbation expan-
sion based on the smallness of ε. In fact, it coincides, up to
O(ε) with ts derived in Sec. IV. This difference of timescales
can be explained as follows. While tε is the time required
for the distribution to be fully affected by chemical effects,
over a range 0 < x < 1/ε, one should recognize that most of
the probability is concentrated within a range 0 < x < 3/μ.
Therefore, expectation values of observable quantities such
as v only require the transient to die out for values of x on
the order of a few μ−1. Using Eq. (50), we deduce that the
duration of the transient for an observable quantity is not tε
but rather t ∼ 1/(μω) ∼ 1/μ2.

C. Time-dependent filament wall velocity

Outside of steady state, the polymer tip and the wall do not
necessarily move at the same speed. The expected value of the
tip-wall distance

〈x′〉 = d

∫ ∞
0 xc(x, t )dx∫ ∞
0 c(x, t )dx

(81)

is not necessarily constant. The speed of the wall, which we
denote by vw, is thus related to the filament tip velocity by

vw = v + d〈x′〉
dt ′ = v + D

d

d〈x〉
dt

. (82)

In Appendix D, we find that

d〈x〉
dt

= ενμ2te−μ2t . (83)

D. The reasons for the success of the ε expansion

The agreement found between the approximate and numer-
ical solutions of Eq. (4) appears to be undeservedly good,
given that ε is as large as as 1. Equation (72) explains the
success of the above approximation procedure: For x > n, one
has h = 1 + O(εn+1), so that c ∼ μe−μx with at least O(εn+1)
accuracy. Therefore, the accuracy of our approximation im-
proves as x increases. Concerns about precision only arise
for small values of x, and mostly in the range 0 < x < 1,
where slower convergence should be expected. However, if
μ is sufficiently small, then most of the probability is dis-
tributed over large values of x [see Fig. 4(a)] so that the error
for small x is weighted by a small probability. Specifically,
the probability associated to the range 0 < x < 1 is, in first
approximation, 1 − e−μ. In addition to that, Eq. (64) indicates
that h1 and, hence, all higher-order terms, are proportional
to 1 − βeμ, which is less than unity in the range 0 < μ <

ln(1/β ) provided, as usually assumed, that β = W0/U0 < 1.
According to Eq. (75), this range corresponds to the positive
values of v, with stalling arising precisely at μ = ln(1/β ). The
range 0 < μ < ln(1/β ) is thus the region of highest physical
interest. While, for small μ, we have seen that our approxima-
tion scheme is naturally efficient, we further see that for larger
value of μ, the approximation becomes more and more exact
as μ → ln(1/β ), since the corrections εh1, ε

2h2, . . . all tend
to zero in that limit.

E. The large-μ, large-ω limit

To complete the above discussion, let us briefly examine
the opposite limit of a large μ, which corresponds to a large
nondimensional force ω. In that situation, and contrary to
what has been examined before, all the probability is con-
centrated in the range 0 < x < 1. Then, the equation for c is,
approximately, in steady state,

cxx + ωcx ≈ −ε[c(x + 1) − βc(x)]. (84)

Furthermore, in this last expression, we may neglect c(x + 1)
in comparison to c(x). We thus have, with very good approxi-
mation, regardless of ε,

c ∼ ωe−ωx[1 + O(εβ/ω)]. (85)
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Hence, for very large ω, the known formula (2) is recovered,
as ε is effectively replaced by ε/ω.

F. Agreement with the exact formula when β = 0
In their paper, Peskin, Odell, and Oster were able to derive

an exact formula, valid for any value of ε for the particular
case β = 0:

v|β=0 = 2D

d

(ω − μ)ω2/2

ω2 + (eω − ω − 1)μ
. (86)

Substituting, from Eq. (53), ω = μ − ε(1 − e−μ)/μ, and ex-
panding as ε → 0, one obtains

v ∼ U0de−μ

{
1 + ε

μ2
[μ − 2 + (2 + μ)e−μ]

}
, (87)

in agreement with the present theory.

IX. CONCLUSION

By revisiting the Peskin model for small but nonzero values
of ε = U0d2/D, we were able to derive a number of new
analytical results of practical interest. First, we identified the
timescale ts over which the fast, purely diffusive, transient
takes place. This timescale approximately corresponds to the
time required to dissipate an energy kBT by the wall friction in
the absence of the polymer. The knowledge of this timescale
is useful if one wishes to investigate a quasistatic limit where
the applied force F varies slowly in time. Next, we showed
how to apply the method of multiple scales to investigate the
O(ε) chemical effects, including their transient. We showed
analytically how the exponential distribution changes its rate,
from ω to μ after a time tε , in very good agreement with
direct numerical integration. In steady state, we showed how
to obtain higher order approximations in a systematic way.
A new parametrization, Eqs. (75) and (76) of the stationary
force-velocity relationship was deduced, which again showed
very good agreement with numerical integration, even when
ε = O(1). As Fig. 5 illustrates, deviations from the previously
known formula (for ε = 0) can be significant. Finally, the re-
laxation of both the tip and the wall velocities toward their sta-
tionary value was derived. The timescale of this relaxation di-
verges as μ → 0, which corresponds to small applied forces.

From a methodological point of view, this paper showed
how to apply the method of multiple scales to the one-filament
Brownian ratchet equation. This method appears promising to
address the multifilament problem; this will be the object of
future research.
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APPENDIX A: RESOLUTION OF THE
SHORT-TIME TRANSIENT

Here we give the details of the derivation of the solution
(19). The drift term makes the problem given by Eq. (17)
non-self-adjoint. We remove it by writing c0 =

ue−ω(x−x0 )/2−ω2t/4:

ut = uxx, u(x, 0) = δ(x − x0), (A1)

with ux + ω
2 u = 0 on x = 0. On the infinite line, the solution

of the heat equation with a Dirac-δ initial condition would be
S(x − x0, t ), with

S(x, t ) = e−x2/4t

2
√

πt
. (A2)

With the domain of definition of u restricted to positive values
of x, we may write, more generally,

u = S(x − x0, t ) +
∫ ∞

0
S(x + s, t )φ(s)ds, (A3)

where φ(s) amounts to a suitably chosen distribution of point
sources on the negative-x axis. With this ansatz, the boundary
condition for u yields

0 = −Sx(x0, t ) + ω

2
S(x0, t ) + S(0, t )φ(0)

−
∫ ∞

0
S(s, t )

[
φ′(s) − ω

2
φ(s)

]
ds. (A4)

For this condition to be satisfied at all times, one must have
φ(0) = 0 and

φ′(x) − ω

2
φ(x) = δ′(x − x0) + ω

2
δ(x − x0). (A5)

The solution of this equation is

φ(x) = δ(x − x0) + ωeω(x−x0 )/2H (x − x0). (A6)

Therefore

u = S(x − x0, t ) + S(x + x0, t )

+ω

∫ ∞

x0

eω(s−x0 )/2S(x + s, t )ds. (A7)

The integral above is e−(x+x0 )ω/2+ω2t/4 ω
2 erfc( x+x0−ωt

2
√

t
).

Equation (19) then follows directly.

APPENDIX B: EVOLUTION OF C1(X, τ )

The equation of evolution of C1(X, τ ) arises in a similar
fashion as that of C0(X, τ ), namely as a solvability condition
arising at O(ε2). Omitting the detail, one finds unacceptable
terms of the form ε2xeωx unless

C1,τ + ωC1,X − (β − e−ω − βeω + 1)C1

= (e−ω − eω )C0,X + C0,XX . (B1)

Note that the homogeneous part of the above equation is
identical to Eq. (33). Hence any multiple of C0 can be added to
C1. On the other hand, taking Eq. (46) into account, the right-
hand side of the equation above yields a particular solution
that is proportional, for τ > X/ω, to XC0(X, τ ). In other
words, we now have secular divergence on the slow spatial
scale X . To avoid this behavior, one simply needs to introduce
a new, superslow scale,

ζ = ε2x, (B2)
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and require that, in fact,

C0 = C0(X, ζ , τ ). (B3)

Then Eq. (B1) becomes

C1,τ + ωC1,X + ωC0,ζ − (β − e−ω − βeω + 1)C1

= (e−ω − eω )C0,X + C0,XX (B4)

and the solvability condition on that equation is

ωC0,ζ = (e−ω − eω )C0,X + C0,XX . (B5)

This yields, for large-enough τ ,

C0 = e−(1−βeω )(1−e−ω )X/ω+μ2ζ , (B6)

where

μ2 = (1 − βeω )(1 − e−ω )

ω2

×
[

e−ω − βeω − 1

ω
(1 − βeω )(1 − e−ω )

]
. (B7)

This last expression is consistent with directly solving
Eq. (53) up to O(ε2) for μ in terms of ω. Once this superslow
spatial dependence on C0 is established, one finds that the
equation for C1 reduces to the equation for C0 and hence that
C1 is a mere multiple of C0. Such a reasoning carries over to
any desired order.

APPENDIX C: TRANSIENT EXPECTED VALUE
OF TIP VELOCITY

Combining the expressions derived in Secs. VI and VII,

c(x, t ) ∼ μe−μxh(x)

{
1 x < ωt
eεν(x−μt ) x > ωt

, (C1)

where ν is given by Eq. (58). Let us assume that ωt > 1 and
evaluate the expectation value of the polymer tip velocity:

v

U0d
=

∫ ωt
1 cdx + ∫ ∞

ωt cdx∫ 1
0 cdx + ∫ ωt

1 cdx + ∫ ∞
ωt cdx

− β. (C2)

The various integrals above are∫ 1

0
cdx ∼ 1 − e−μ − ε

μ2
[μ − 2 + (μ + 2)e−μ](1 − βeμ),

(C3)∫ ωt

1
cdx ∼ e−μ − e−μωt , (C4)

∫ ∞

ωt
cdx ∼ μ

ω
e−εμνt e−ω2t ∼

(
1 + εν

μ

)
e−ωμt , (C5)

where we have used the fact that μ = ω + εν. Hence,∫ ∞

1
cdx ∼ e−μ + εν

μ
e−ωμt ∼ e−μ + εν

μ
e−μ2t , (C6)∫ ∞

0
cdx ∼ 1 − ε

μ2
[μ − 2 + (μ + 2)e−μ](1 − βeμ)

+ εν

μ
e−μ2t . (C7)

Hence

v

U0d
∼ (e−μ − β )

{
1 + ε

μ2
[μ − 2 + (2 + μ)e−μ]

}

+ εν
1 − e−μ

μ
e−μ2t . (C8)

The last term can be expressed as

(e−μ − β )εeμ

(
1 − e−μ

μ

)2

e−μ2t . (C9)

APPENDIX D: EXPECTED VALUE
OF THE TIP-WALL DISTANCE

Here we want to compute d〈x〉/dt , where

〈x〉 =
∫ ∞

0 xc(x, t )dx∫ ∞
0 c(x, t )dx

. (D1)

The denominator is, using Eq. (C1)

∫ ∞

0
xcdx ∼

∫ ωt

0
xc(x, t )dx +

∫ ∞

ωt
xc(x, t )dx

=
∫ ∞

0
μxe−μxh(x)dx +

∫ ∞

ωt
μxe−μxh(x)[eεν(x−μt ) − 1]dx

∼
∫ ∞

0
μxe−μxh(x)dx + εν

∫ ∞

ωt
μxe−μxh(x)(x − μt )dx,

(D2)

where the expansion of the exponential in the last step is
justified by the fact that the integrand is negligible when
εν(x − μt ) ceases to be small. Hence,

d

dt

∫ ∞

0
xcdx ∼ εν[μxe−μxh(x)(μt − x)]x=ωt

− εμν

∫ ∞

ωt
μxe−μxh(x)dx ∼ −εμ2ν

×
∫ ∞

μt
xe−μxdx + O(ε2)

= −εν(1 + μ2t )e−μ2t + O(ε2). (D3)

On the other hand, with Eq. (C7),

−
∫ ∞

0 xcdx( ∫ ∞
0 cdx

)2

d

dt

∫ ∞

0
cdx ∼ ενe−μ2t . (D4)

Combining the two contributions,

d〈x〉
dt

∼ −ενμ2te−μ2t . (D5)
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