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Noise sharing and Mexican-hat coupling in a stochastic neural field
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A diffusion-type coupling operator that is biologically significant in neuroscience is a difference of Gaussian
functions (Mexican-hat operator) used as a spatial-convolution kernel. We are interested in pattern formation
by stochastic neural field equations, a class of space-time stochastic differential-integral equations using the
Mexican-hat kernel. We explore quantitatively how the parameters that control the shape of the coupling kernel,
the coupling strength, and aspects of spatially smoothed space-time noise influence the pattern in the resulting
evolving random field. We confirm that a spatial pattern that is damped in time in a deterministic system may be
sustained and amplified by stochasticity. We find that spatially smoothed noise alone causes pattern formation
even without direct spatial coupling. Our analysis of the interaction between coupling and noise sharing allows
us to determine parameter combinations that are optimal for the formation of spatial pattern.
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I. INTRODUCTION

In this paper, we explore the formation of a pattern by
a stochastic neural field equation with simple damping as
its reaction term and with both independent and identically
distributed (i.i.d.) and shared noise. The existence and possi-
ble sources of shared noise correlations in stochastic neural
models have been studied recently by Doiron et al. [1], and by
Meyer, Ladenbauer, and Obermayer [2]. We focus instead on
the effect of shared or correlated noise on pattern formation.

Hutt and colleagues [3] showed that a spatial pattern, em-
bedded in deterministic space-time dynamics but immediately
damped, may be excited by noise. Butler and Goldenfeld [4,5]
and McKane, Biancalani, and Rogers [6] showed the existence
of excitable spatial modes that, when noise was added, were
revealed in power spectral densities. The knowledge of this
noise-facilitated source of pattern, also observed in biological
systems, motivated us to explore how certain sample path
properties of evolving stochastic neural fields depend on the
parameters in a basic example. We look at parameters that
control the strength of coupling or local interaction in the field,
and the extent of local sharing, or smoothing, of noise.

We look at the following sample path properties: (i) how
a pattern grows with coupling strength, (ii) how a pattern is
revealed and sustained by noise when field interaction has
no excitable modes, and (iii) how coupling interacts with
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noise smoothing, giving rise to distinct patterns for optimum
smoothing, and then yielding a distorted pattern with “too
much smoothing.” A striking result is that spatial smoothing
of noise alone, without direct neural field interaction, pro-
duces a pattern.

Simulation of the time evolution of one-dimensional fields
yields insight about typical sample path behavior of the evolv-
ing random field, and it illustrates the analytical conclusions
we present. We use two measures of spatial patterns. One
is the spatial fast Fourier transform (FFT) amplitude as a
stochastic process in time (note, for comparison to other
studies, that the power spectral density is the square of the FFT
amplitude; here we compute spatial FFT amplitudes directly
and from simulations). The second is a function of space,
which we call F , that allows direct observation of dominant
frequency, again a stochastic process in time. We believe that
the display of sample paths of both of these processes is
innovative here, and that they will prove to be valuable in
future studies of the model we study and of other stochastic
neural fields.

What has come to be called a neural field equation is an
integrodifferential equation of the form

dY (t, x) =
[

− Y (t, x) +
∫
R

cw(x − y)S(Y (t, y))dy

]
dt,

(1)
where Y is an R1-valued state variable for a neural system, w

is a coupling operator, for example the Mexican-hat convolu-
tion kernel, c is a constant called the coupling strength, and
S is a scaling functional, typically a sigmoid, which keeps Y
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bounded in the diffusion term. In what follows, we take S to
be the identity within a certain bounding range. We study a
stochastic version of (1), wrapped with length L,

dY (t, x) =
[

− Y (t, x) +
∫ L

0
cw(x − y)Y (t, y)dy

]
dt

+ σdG(t, x), (2)

where σ is a constant diffusion coefficient, c � 0 is a constant,
and G(t, x) is a Gaussian process that may depend on both
time, t , and space, x. We study the interaction of coupling and
noise smoothing in (2) theoretically in continuous space and
time, and then discretize both for simulations.

Recently, Faugeras and Inglis [7] performed a rigorous
study of such equations with a continuous-state variable. Con-
veniently for the study of neural field equations that generate
spatial patterns, they singled out the difference-of-Gaussians
coupling operator (often called the Mexican-hat operator)
as one that satisfies established conditions for the existence
and uniqueness of a solution. As will be seen, this coupling
operator generates a pattern when used in equations such as
(2). It is sometimes preferred over the Laplacian as a coupling
operator [8].

In what follows, we compute conditions for the interaction
of the dominant modes produced by coupling and noise
smoothing in the stochastic model (2). When no excitable
modes are present, the spatial pattern generated by the dom-
inant modes is damped, but added noise reveals and sus-
tains the damped spatial pattern. Noise smoothing can either
render the revealed pattern more clearly, or distort it, depend-
ing on the extent of the smoothing.

We present an analytic and graphical study of the solu-
tions of (2) with smoothed noise. We are interested in the
spatial pattern revealed by noise in stochastic sample paths
from the evolving random field of the neural field equation
as parameters are varied. We explore the relation between
the coupling strength constant, c, and a parameter of noise
smoothing, η, which is the standard deviation (SD) of a
Gaussian smoothing kernel. We consider separately the ranges
of c where the eigenvalues are all negative and where the max-
imum eigenvalue is positive. In our computations, a specific
value of c separates these ranges. We also present the result
that smoothed noise, by itself with c = 0 in (2), can produce
spatial patterns similar to those arising from excitable spatial
modes created by the Mexican-hat coupling.

II. INPUT NOISE

In modeling a spatially discrete stochastic neural field, a
default choice (e.g., [9]) has been to introduce an independent
Brownian component for each x. If the locations are tightly
packed, however, as in neural tissue, the same input noise
may be shared in a neighborhood of locations. This is because
the nearer neurons are to each other in the brain, the more
similar is the set of synaptic inputs they receive. Neurons
communicate more extensively with each other the closer they
are to each other because the number and strength of synaptic
connections between neighboring neurons tends to decline
with the distance between them [10,11]. Given that shared
noise would be mostly synaptic noise [11,12], the amount

of shared noise between two neurons should decline with
the amount of effective connectivity between them. We are
interested in the effect on spatial patterns of the size of the
neighborhood in which some of the same input noise is felt.
In our exploration, we have included cases in which noise is
independent at each location, x, and cases in which noise is
averaged over neighborhoods of various sizes. We refer to
this as spatial smoothing of noise. It has been shown that
such noise allows for (Hölder) continuous solutions to a broad
class of stochastic integrodifferential equations, including
equations such as (2) [7,13–15]. In simulations, Sec. IV, for
spatial smoothing we used a Gaussian kernel. The Gaussian
smoothing kernel was convolved with i.i.d. Gaussian noises at
each iteration of the evolving spatial field.

III. INTERACTION OF COUPLING AND NOISE
SMOOTHING IN THE NEURAL FIELD EQUATION

We capture the interaction of coupling and noise smoothing
in terms of the Fourier component processes associated with
(2). We begin with (2), taking w and r to be general functions.
Later we specialize to Mexican-hat and Gaussian functions.
The noise G(x, t ) is Gaussian with mean 0 and covariance

E[G(t, x)G(s, y)] = min(s, t )r(x − y). (3)

Here r is a general positive-semidefinite function. We denote
the Fourier transforms of the coupling kernel w and the noise
smoothing function r by

W (k) =
∫ ∞

−∞
e−ikxw(x) dx, k ∈ R

and

R(k) =
∫ ∞

−∞
e−ikxr(x) dx, k ∈ R.

The spatial variable x is in an interval [0, L] with periodic
boundary conditions, equivalently on the circle R/LZ, so long
as the functions w and r are made periodic. That is, replace
w(x) by ŵ(x) = ∑

n∈Z w(x + nL) and r̂(x) = ∑
n∈Z r(x +

nL) and drop the “hat” notation. In fact, the widths of the
support of r and w will be less than L.

The periodic function w(x) has Fourier coefficients

W (2πk/L) =
∫ L

0
e−2π ikx/Lw(x)dx, k ∈ Z, (4)

and the periodic function r(x) has Fourier coefficients

R(2πk/L) =
∫ L

0
e−2π ikx/Lr(x)dx, k ∈ Z. (5)

Moreover, r is positive-semidefinite. We consider the model
(2), where the noise G(x, t ) is given by (3). A Fourier series
expansion of the solution Y (t, x) of (2) allows us to write it
in terms of a family of Ornstein-Uhlenbeck (OU) processes
indexed by spatial frequencies (wave numbers, k). We can
then compute the expected squared amplitudes of these OU
processes.

Proposition (cf. [16]). There are standard two-dimensional
Brownian motions {Ck (t ) : t � 0} for k � 1 and a stan-
dard scalar Brownian motion {C0(t ) : t � 0}, all mutually

022130-2



NOISE SHARING AND MEXICAN-HAT COUPLING IN A … PHYSICAL REVIEW E 100, 022130 (2019)

independent, such that the solution Y (t, x) of (2) is given by

Y (t, x) = a0(t ) +
∑
k�1

2 Re[ak (t )e2π ikx/L], (6)

where the scalar process a0(t ) satisfies

da0(t ) = [−1 + cW (0)]a0(t ) dt + σ√
L

√
R(0)dC0(t ) (7)

and for k � 1 the complex processes ak (t ) satisfy

dak (t ) = [−1 + cW (2πk/L)]ak (t ) dt

+ σ√
2L

√
R(2πk/L) dCk (t ). (8)

Proof. Substituting the Fourier series expansion

Y (t, x) =
∑
k∈Z

ak (t )e2π ikx/L

into (2) gives∑
k∈Z

dak (t )e2π ikx/L = −
∑
k∈Z

ak (t )e2π ikx/Ldt

+ c
∫ L

0
w(x − y)

∑
k∈Z

ak (t )e2π iky/Ldy dt

+ σdG(t, x).

Since ∫ L

0
w(x − y)e2π iky/L dy

= e2π ikx/L
∫ L

0
w(x − y)e2π ik(y−x)/Ldy

= e2π ikx/LW (2πk/L)

we get∑
k∈Z

dak (t )e2π ikx/L

=
∑
k∈Z

[−1 + cW (2πk/L)]ak (t )e2π ikx/L dt + σdG(t, x).

Now multiply by e−2π i�x/L and integrate with respect to x.
We get

Lda�(t ) = L[−1 + cW (2π�/L)]a�(t ) dt + σdB�(t ),

equivalently

dak (t ) = [−1 + cW (2πk/L)]ak (t ) dt + σ

L
dBk (t ), (9)

where

Bk (t ) =
∫ L

0
e−2π ikx/LG(t, x) dx, k ∈ Z. (10)

Assuming that the initial condition Y (0, x) is real, we
have a−k (0) = ak (0). Since B−k (t ) = Bk (t ) for all t , we
have a−k (t ) = ak (t ) for all t � 0. Therefore, ak (t )e2π ikx/L +
a−k (t )e−2π ikx/L = 2 Re[ak (t )e2π ikx/L], and it suffices to study
ak (t ) for k � 0.

Using the calculations in Appendix, we may write B0(t ) =√
LR(0)C0(t ) and Bk (t ) = √

(L/2)R(2πk/L)Ck (t ) for k � 1,

where the processes Ck are as stated in the proposition. For
k � 1, Eq. (9) can then be rewritten as (7) and (8). �

Corollary 1. Suppose

Y (0, x) = A0 + 2
∑
k�1

Ak cos(2πkx/L + φk ).

Let a0(t ) be the solution of (7) with initial condition a0(0) =
A0, and for k � 1 let ak (t ) be the solution of (8) with initial
condition ak (0) = Akeiφk . Write ak (t ) = Ak (t )eiφk (t ). Then

Y (t, x) = a0(t ) + 2
∑
k�1

Ak (t ) cos[2πkx/L + φk (t )].

Thus the period k part of Y (t, ·) has amplitude 2Ak (t )
and phase φk (t ) determined by the Ornstein-Uhlenbeck
process ak .

Look more closely at the process ak (t ). We consider k � 1
(the k = 0 case is similar). For ease of notation, write (8) as

dak (t ) = λkak (t ) dt + σk dCk (t ).

This complex-valued stochastic differential equation (SDE)
has the solution

ak (t ) = eλkt ak (0) + σk

∫ t

0
eλk (t−s)dCk (s)

≡ eλkt ak (0) + Nk (t ) (11)

[17]. Here

λk = −1 + cW (2πk/L)

and

σk = σ√
2L

√
R(2πk/L)

for k � 1 (and slight modifications to the formulas if k = 0).
We can now outline our overall strategy. Because the

integral (2) is over a bounded set, the eigenvalues of the
operator in (2) are separated, and the mode k of the dominant
eigenvalue determines the spatial frequency of the spatial pat-
tern. For each pair of parameters (c, η), which will determine
the coupling strength and the width of the noise smoothing,
defined in Sec. III B, we are able to evaluate a functional of
the distribution of the process Yc,η that is maximal at that
value of (c, η) for which kc,η is the dominant mode. This
functional, the expected squared amplitude of the kth mode
of Yc,η, can be computed in terms of the drift and diffu-
sion coefficients, λk, σk , of the process ak (t ) defined by (7)
and (8).

Since Ck is standard two-dimensional Brownian motion,
then Nk (t ) is two-dimensional Gaussian with mean zero and
covariance matrix

σ 2
k

(∫ t

0
e2λk (t−s)ds

)
I2 = σ 2

k (e2λkt − 1)

2λk
I2 ≡ vk (t )I2,

where I2 denotes the 2 × 2 identity matrix. Write ak (0) =
αk + iβk . Then the real part of ak is normal with mean
eλktαk and variance vk (t ), and the imaginary part of ak (t ) is
normal with mean eλktβk and variance vk (t ), and the real and
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imaginary parts are independent. Then [17]

EAk (t )2 = E|ak (t )|2 = e2λkt
(
α2

k + β2
k

) + 2v2
k

= e2λkt Ak (0)2 + σ 2
k (e2λkt − 1)

λk
. (12)

This formula is valid for finite t regardless of the sign of λk .
Suppose that λk > 0 [that is, cW (2πk/L) > 1] for some k.
Then ak (t ) will exhibit exponential growth. We treat sepa-
rately the cases in which all λk < 0 and those where there
exist k such that λk > 0.

A. Relationship between σ2
k and λk

Suppose that cW (2πk/L) < 1 for all k, that is, all λk < 0.
Then the effect of the initial condition dies away, and each
Nk (t ) converges to a stationary Ornstein-Uhlenbeck process.
The real and complex (independent) components of Nk (t )
each satisfy a scalar equation

dZt = λkZt dt + σkdWt ,

which has stationary distribution N (0, σ 2
k /(−2λk )), so that,

from (12),

EAk (t )2 ∼ E|Nk (t )|2 = σ 2
k

−λk

= σ 2R(2πk/L)

2L[1 − cW (2πk/L)]
(13)

= σ 2

2L

R(2πk/L)

[1 − cW (2πk/L)]
.

When do we see the kth mode as dominant in a station-
ary solution? We should look for a parameter region where
cW (2πk/L) < 1 and thus λk = −1 + cW (2πk/L) < 0 for all
k and also the max value of R(2πk/L)

[1−cW (2πk/L)] is noticeably larger
than its other values.

Notice that when λk = 0, there exists a critical point at
which center manifold theory applies [16,18]. In this paper,
we do not address center manifold theory. We first confine
ourselves to the study of the case λk < 0 for all k, where we
have an explicit expression for the relationship, (13), between
the noise smoothing and the Mexican-hat influences on the
solutions to (2). We then find that, in spite of the increasing
exponential in (12) when some λk > 0, we can still use the
ratio in (13) to predict the optimal pairings of the width of the
noise smoothing, η, and the coupling strength, c, to obtain a
clear but transient pattern in some range of t .

B. Gaussian noise smoother

As stated earlier, our noise G(t, x) is Gaussian with mean
0 and covariance

E[G(t, x)G(s, y)] = min(s, t )r(x − y).

If Z (t, x) is a Gaussian family, Brownian in time and uncor-
related in space, then E[Z (t, x)Z (s, y)] = min(s, t )δ(x − y),
and, if g is symmetric, then the smoothed noise

G(t, x) =
∫
R

Z (t, y)g(x − y) dy

has

E[G(t, x)G(s, y)] = min(s, t )r(x − y),

where r(x − y) = (g ∗ g)(x − y). Here we used the symmetry
of g. In particular, if g is the density of N (0, η2), then r is the
density of N (0, 2η2), so that

r(x) = 1

2η
√

π
exp(−x2/4η2).

The Fourier transform of r(x) is thus

R(k) =
√

2√
π

exp(−η2k2). (14)

In Sec. V we explore by simulation the effect on the
emerging spatial pattern of changing the standard deviation, η,
of the Gaussian noise smoother. We note that in addition to the
effect of the noise smoother on the dominant Fourier mode,
(13), there is also a variance reduction effect that is dependent
on η as well. That is, the variance, σ 2

s , of the smoothed noise
for each process, ak , is approximated by

σ 2
s ≈ σ 2

∫ +∞

−∞

[
exp(−x2/2η2)

η
√

2π

]2

dx = σ 2

2η
√

π
= σ 2

3.54η
.

(15)

This implies that when η > 1/(2
√

π ) = 0.28, σ 2
s < σ 2. We

should thus expect that smoothed noise might be more effec-
tive at revealing spatial patterns than would i.i.d. noise alone,
at least when η > 0.28 (cf., [19]).

C. Mexican-hat coupling operator

We chose a form for w(x), the difference of the two
Gaussian functions, that expresses the common biological ob-
servation that there is excitation within a small neighborhood
around each location, and inhibition in a somewhat larger
neighborhood around the excitation. Another way to achieve
this effect is to multiply by a Gaussian function and then
operate with a Laplacian [20]; yet another alternative operator
that involves a squared Laplacian is used in [8]. The existence
and identity of excitable spatial modes that lead to spatial
patterns in neural fields has been studied also using other
approaches (see, e.g., [3], and for a review, see [21]).

To be explicit, the Mexican-hat operator [22] is defined as

w(x) = b1 exp ( − (x/d1)2) − b2 exp ( − (x/d2)2) (16)

and its Fourier transform is

W (k) = √
π

[
b1d1 exp

[
− (d1k)2

4

]
− b2d2 exp

[
− (d2k)2

4

]]
.

(17)

For w(x) to have a Mexican-hat shape, we need b1/b2 > 1 and
d2/d1 > 1. Under the additional condition that b2d3

2 > b1d3
1 ,

then kmax, the wave number for which W (k) is largest, is
given by

kmax =
{

4
(
d2

2 − d2
1

)−1
ln

[
b2

b1

(
d2

d1

)3]}0.5

. (18)
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FIG. 1. Effects of spatial noise smoother standard deviation, η,
on the ratio R(k)/[1 − cW (k)] for various values of c. Note that
the largest values of the ratio occur in the top curve in each plot,
where η = 0, with curves descending in value with increase in η.
The vertical line is at k = 2, near the maximum value for all values
of c when η = 0.

D. Interaction of k, c, η

Because of its shape-determining role in (13), we produce
graphs, Fig. 1, displaying the way in which the expression

R(k)
[1−cW (k)] varies with k, c, and η. We use the Mexican-hat
operator with b2 = d1 = 1, b1 = 1.1, d2 = 1.2. With these
values, kmax = 2.026 and W (kmax) = 0.2134 so that −1 +
cW (kmax) < 0 for all c < 4.685. Note that we are treating η

as a parameter of (14) so that it can indeed take the value of 0.
It can be seen in Fig. 1 that when η = 0, the value
R(k)

[1−cW (k)] is maximized at kmax = 2.026 for all values of c.
It follows that the dominant mode k, which is the integer
value of k which maximizes R(2πk/L)

[1−cW (2πk/L)] , is approximately
kmaxL/(2π ) = 0.322L ≈ 8 (for the value of L used in our
simulations). As the width η of the spatial noise smoother
increases, the dominant mode tends to occur at lower values
of k, indicating fewer spatial cycles on the ring. The decline
of the dominant mode with increasing noise smoothing width
occurs for lower values of η when we consider lower values of
c. For the largest values of η, the dominant mode is at k = 0,
as mentioned earlier.

IV. SIMULATIONS

An approach consistent with the preceding theory would
be to simulate each of the Fourier coefficients ak (t ), given
by (11), using the calculations above. For computational
purposes, we would simulate only a finite number of them,

say 0 � k � K , where K is chosen so that EA2
k given by (13)

is small for all k > K .
In fact, we chose to simulate the space-time neural field

equation (2) more directly and implemented a discrete (both
space and time) approximation using the Euler-Maruyama
procedure for obtaining a numerical solution of stochastic dif-
ference equations. This approach has been shown to converge
rapidly to a close approximation of the continuous solution
[23]. For a collection of equally spaced points {x j} write
Y (t, x j ) = Yj (t ) and G(t, x j ) = Gj (t ). The Euler-Maruyama
method gives

Yj (t + �t ) − Yj (t ) =
[

− Yj (t ) + ch
∑

�

w j�Y�(t )

]
�t

+ σ (Gj (t + �t ) − Gj (t )), (19)

where w j� represents the discretized Mexican-hat operator
and h denotes the spacing between points x j . The factor h is
introduced so that the sum in (19) will be a good approxima-
tion to the integral in (2).

A. Simulation implementation

We used n = 128 points spaced at a distance h = 0.2 apart
in a one-dimensional (1D) spatial array, and we implemented
a periodic boundary so that the values of x j , and the corre-
sponding components Yj (t ) of (19), can be thought of as form-
ing a discrete ring of 128 components. This corresponds to a
wrapping length L = nh = 128 × 0.2 = 25.6 in Eq. (2). The
128 components were coupled by the Mexican-hat operator
(16) with parameter values b2 = d1 = 1, b1 = 1.1, d2 = 1.2.
With these values, the function w(x) had an effective width
from −3 to 3, being very near zero outside this interval, so
that our discretized Mexican-hat operator w j� was effectively
31 spatial locations wide. That is, the choice h = 0.2 was
convenient for the implementation of the Mexican hat so that
it operated only on 31 of the 128 components around each
position in the wrapped 1D spatial array. We chose the width
of 31 for the Mexican-hat operator because (a) each single
Mexican-hat-type neural coupling in a neural system should
span only a fraction of the size of the system, and (b) 31
spatial locations, while being only a fraction of the system
size of 128, is large enough to model a Mexican-hat operator
that couples several excitatory and inhibitory components. A
“biologically” based choice would depend on the relative size
of an observed neural field to the span of a neighborhood of
a neural location that includes both excitatory and inhibitory
neighbors.

We implemented space-time noise as described in Sec. II.
In the spatially i.i.d. case, the noise processes Gj (t ) were
independent standard scalar Brownian motions, while for
smoothed noise with parameter η the distribution of Gj (t ) =
G(t, x j ) was as described in Sec. III B. That is, on each
iteration, independent samples of Gaussian noise for each
component were combined for each component by a normal-
ized Gaussian kernel, with standard deviation η centered at
that component. In our simulations, presented in Sec. V, we
studied spatially i.i.d. noise, and values for η = 0.15, 0.5,
0.67, and 1.3, corresponding roughly to kernels effectively
about 1 (i.e., i.i.d., no smoothing), 5, 15, 21, and 39 spatial

022130-5



BAXENDALE, GREENWOOD, AND WARD PHYSICAL REVIEW E 100, 022130 (2019)

locations wide. These widths span a range from spatially i.i.d.
to a smoothing that combines noise from locations over nearly
1/3 of the total ring.

We solved the stochastic difference equation (19), also with
σ = 0, iteratively and typically for 10 000 time steps with
�t = 0.000 05, corresponding to a time interval of length 0.5.
In a few cases, to be indicated, we extended the simulation
to 500 000 iterations and t = 25, and in a few others we
used �t = 0.0025 in order to reach t = 25 in only 10 000
iterations. The initial values Yj (0) for each component were
independent random variables chosen uniformly in the inter-
val [0.5,0.501]. The initial perturbation from the constant 0.5
is necessary to observe a pattern in the evolving coupled field
in the absence of noise [24].

For cases in which all λk < 0, we calculate the amplitude
of the dominant harmonic and compare that with the am-
plitude of this harmonic in simulations. For cases in which
the maximum λk > 0, we illustrate a spatial pattern for each
set of parameter values for a representative realization of
the paths of all 128 components of (19) with the ring flat-
tened out. We also display for those realizations the Fourier
amplitudes (from a FFT) of the spatial frequencies as a
stochastic process in t , and a second measure we term F .
For both the FFT amplitudes and the computation of F , we
coarse-grained time, considering 500-iteration time blocks:
1–500, 751–1250, 1751–2250, . . . , 7751–8250, 8751–9250,
9501–10 000. Note that the gaps between the first two blocks
and between the final two blocks are 250 and the gaps between
the remaining contiguous time blocks are all 500. For the
FFT amplitudes, we averaged Y (t, x) for each component
over each 500-iteration block and then computed the FFT on
the resulting spatial array. F is a function of the time-block
parameter τ and �, written as

F (τ, �) = 1

500

1

m

∑
s ∈ time block τ

m∑
j=1

|Yj+�(s) − Yj (s)|, (20)

where � is a spatial offset and m is the distance across the
array for which we are computing F . In our computations,
m was fixed at m = 64 because the period of the spatial
pattern never exceeded this value. In the computation, � is
increased progressively across the spatial array. Thus, when-
ever the difference |Yj+l (s) − Yj (s)| is large, the value of F
is correspondingly increased. Local maxima in the plot of
F (τ, �) occur wherever the spatial offset � matches half the
period of a spatial pattern. The presence of clear maxima in
F indicates the presence of a periodic spatial pattern, and the
form of the pattern in F displays the pattern in the Yj (t ) but
sometimes more clearly because of the averaging implicit in
the computation of F .

V. RESULTS

A. All λk < 0

In this section, we compare representative calculations
based on the theory outlined earlier with simulations of (19)
for cases in which all λk < 0, and one case in which λk > 0
for illustrative purposes. In our numerical work, the value of c
that separates the case in which all λk < 0 and where λk > 0
for some k is c ≈ 4.685.

1. No noise

Before we launch into our study of the joint effects of
smoothed noise and the Mexican hat on the solutions to (2),
we compute the behavior of (2) without noise.

The values for the Yj (0) are i.i.d. uniform in [0.5,0.501].
Thus each Yj (0) has a mean value μ = 0.5005 and standard
deviation γ = 0.001/

√
12 ≈ 0.0003. Since

Yj (0) = Y (0, jL/n) =
n−1∑
k=0

ak (0)e2π ik( jL/n)/L

=
n−1∑
k=0

ak (0)e2π i jk/n

we obtain

ak (0) = 1

n

n−1∑
j=0

Yj (0)e−2π i jk/n.

Taking k = 0, we see that a0(0) is real with mean μ and
variance γ 2/n. For 1 � k � n − 1 we have E[ak (0)] = 0 and
E|ak (0)|2 = γ 2/n. Thus typically Ak = |ak (0)| is of order
γ /

√
n = (0.001/

√
12)/

√
128 = 0.000 026.

For c < 4.685, −1 + cW (2πk/L) < 0 for all k and
so no persistent pattern is predicted. Consider, for
example, c = 4.5. The eigenvalue −1 + 4.5W (2πk/L)
is maximized when 2πk/L ≈ kmax = 2.0263, that is,
for k = 8. Thus the eigenvalue for the eighth harmonic
is −1 + 4.5W (16π/L) ≈ −1 + 4.5W (kmax) = −1 + 4.5 ×
0.22 = − 1 + 0.99 = − 0.01. Over the time interval [0,0.5]
the eighth harmonic “grows” (actually damps) by a factor of

e[−1+4.5W (16π/L)]×0.5 ≈ e−0.005 = 0.995.

Given that the initial amplitude of the eighth harmonic is
approximately 0.000 026, the typical final amplitude of the
eighth harmonic would be

0.995 × 0.000 026 = 0.000 025 87.

We simulated (19) with c = 4.5, and the average FFT ampli-
tude of the eighth harmonic over the final 500 iterations (up
to t = 0.5) from 10 realizations (different realizations of the
starting values) was 0.000 022 7, very close to the predicted
value for the dominant eighth harmonic calculated from (12)
with no noise and c = 4.5.

To illustrate calculations when λk > 0 for some k, we
now consider a value of c = 15. In this case, the eigen-
value for the eighth harmonic is −1 + 15W (16π/L) ≈ −1 +
15W (kmax) = −1 + 15 × 0.22 = −1 + 3.3 = 2.3. Over the
time interval [0,0.5], the eighth harmonic in this case does
grow by a factor

e[−1+15W (16π/L)]×0.5 ≈ e1.15 = 3.16.

Since the typical initial amplitude of the eighth harmonic is
approximately 0.000 026, then the typical final amplitude of
the eighth harmonic will be

3.16 × 0.000 026 = 0.000 082.

We simulated (19) with c = 15, and Fig. 2(a) dis-
plays the average amplitudes of the spatial harmonics over
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FIG. 2. FFT amplitudes averaged over 10 realizations with
�t = 0.000 05. (a) No noise, c = 15, σ = 0, t = 0.5. (b) i.i.d.
noise, c = 4.5, σ = 1.0, t = 0.5. (c) i.i.d. noise, c = 4.5, σ =
1.0, t = 25. (d) Smoothed noise, c = 4.5, σ = 1.0, η = 0.5, t = 0.5.
(e) Smoothed noise, c = 4.5, σ = 1.0, η = 0.5, t = 25. In all cases,
the FFT amplitudes are computed on the average Yj (t ) over the final
500 iterations (up to t = 0.5 or 25), kmax = 2.0263, and the number
of cycles in L/2π (spatial frequency in graphs) is 8, as described in
the text.

10 realizations (different realizations of the starting values).
The average value of the FFT amplitude at a spatial frequency
of 8 for these 10 realizations of (19) is 0.000 082, exactly the
predicted value for the dominant eighth harmonic calculated
from (12) with no noise and c = 15.

2. i.i.d. noise

For i.i.d. noise, the discrete form of the Fourier expansion
is valid with r(x − y) replaced by r jk = δ jk . This in turn gives
a version of the Proposition (valid for x = x j = jL/n) with
R(2πk/L)/L replaced by 1/n. As an application of the theory,
we can use (12) with random initial values:

E[Ak (t )2] = e2λktE[Ak (0)2] + σ 2
k (e2λkt − 1)

λk
,

where σ 2
k = σ 2/(2n) for k � 1. With c = 4.5 we have λk <

0 for all k � 1, and then E[Ak (t )2] → σ 2
k /(−λk ) as t → ∞.

With σ = 1, the limiting value σ 2
k /(−λk ) is maximized when

k = 8 and has max value 0.092. This corresponds to A8(t ) of
order

√
0.092 = 0.30 for large t .

But this is the limiting value. The value at time t = 0.5 is
much smaller. The first term contributing to E[Ak (t )2] is at

most E[Ak (0)2] = (0.000 026)2. The second term is σ 2
k (eλk −1)

λk
,

which is maximized at k = 8 with max value 0.0038. Together
E [Ak (0.5)2] � 0.0039 for all k � 1. Thus Ak (0.5) is of order
at most

√
0.0039 ≈ 0.06.

We simulated (19) with c = 4.5, and Fig. 2(b) displays
the average FFT amplitudes for 10 realizations (different
realizations of the starting values and the noise). The average
value of the FFT amplitude at a spatial frequency of 8 and time
period 11 (average over the final 500 iterations up to t = 0.5)
for these 10 realizations of (19) is 0.059, very close to the
predicted value for the dominant eighth harmonic from the
theory. Notice, however, that the dominant frequency does not
stand out very well from the noise at other spatial frequencies
in Fig. 2(b). Thus i.i.d. noise does not substantially enhance
the weak pattern expected from c = 4.5 at this short time
interval.

To see the effect of i.i.d. noise over a longer time inter-
val, we simulated 10 realizations of (19) with c = 4.5,�t =
0.000 05 over a time interval from t = 0 to 25 (500 000
iterations). Figure 2(c) shows the average FFT amplitude over
the final 500 iterations. The average FFT amplitude at a spatial
frequency of 8 is approximately 0.27, close to the predicted
value of 0.30 for large t from the theory. To observe the
stochastic paths of Yj (t ), F , and the FFT amplitude, we also
simulated a single realization of (19) with c = 4.5 over a time
interval from t = 0 to 25 but with �t = 0.0025. Figure 3(a)
shows the results of this simulation. After the longer time
interval, the pattern more clearly stands out from the noise,
consistent with the FFT amplitude shown in Fig. 2(c). There is
still considerable noise, however, evident in the spatial pattern
of Yj (t ).

3. Coupling and noise smoothing

The interaction between smoothing width and coupling
strength for λk < 0 with regard to dominant modes is de-
scribed by (13). As depicted in Fig. 1, the ratio R(k)

[1−cW (k)]
predicts the dominant Fourier mode for various values of η

and c. Noticeably, for any value of c, as η increases the dom-
inant mode eventually goes to 0. Also, noticeably, for higher
values of c this approach to 0 occurs at higher values of η. In
addition, the variance reduction property of the spatial noise
smoothing, (15), operates for values of η > 0.28, whereas for
η < 0.28 variance is actually increased by the “smoothing.”
Thus, the noise smoothing has two somewhat conflicting
effects: decreasing the variance of the noise-revealed spatial
pattern induced by the Mexican-hat operator, but also tending
to distort it toward lower spatial frequencies. And this tradeoff
also depends on the value of the coupling strength; higher
values of c allow the variance reduction effect to override the
dominant mode reduction.

To calculate an example of the application of the theory for
smoothed noise, we can use (12) with random initial values as
in the case of i.i.d. noise. With c = 4.5, η = 0.5, the limiting
value σ 2

k /(−λk ) has max value 0.14. This corresponds to A8(t )
of order

√
0.14 = 0.37 for large t .

But again this is the limiting value. The value at time t =
0.5 is much smaller. The first term contributing to E[Ak (0.5)2]
is at most E[Ak (0)2] = (0.000 082)2. The second term is
σ 2

k (eλk −1)
λk

. For η = 0.5, this is maximized at k = 5 with max
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FIG. 3. Spatial patterns in the case λk < 0 over interval t = 0 to
25 for i.i.d. noise (a) and for smoothed noise with η = 0.5 (b). Here
�t = 0.0025, c = 4.5, σ = 1.0. Top row: amplitude Y (t, x); second
row: Y (t, x) at t = 25; third row: F ; bottom row: FFT amplitude.
Here the expected number of cycles in L/2π is again 8, as described
in the text.

value 0.0083. Together E[Ak (0.5)2] � 0.0084 for all k � 1.
Thus Ak (0.5) is of order at most

√
0.0084 ≈ 0.09.

We simulated (19) with c = 4.5, σ = 1.0, η = 0.5, and
Fig. 2(d) displays the average spatial FFT amplitude results
of 10 realizations (different realizations of the starting values
and of the noise). The average value of the FFT amplitude at
a spatial frequency of 8 and time period 11 (average over the
final 500 iterations up to t = 0.5) for these 10 reactions of (19)
is about 0.06, in line with the predicted value from the theory.
Here, however, the dominant mode from the coupling stands
out better from the surrounding spatial frequencies, except
for the lower frequencies where the dominant mode of the
smoother resides. The effect of the smoother is to suppress the
noise at frequencies higher than that of the dominant mode,
rather than to enhance the dominant mode, whose amplitude
is about that with i.i.d. noise. Note, however, that both with
i.i.d. noise and smoothed noise, the amplitude of the dominant
mode is substantially greater than that with no noise, even for
much larger values of c in the no-noise case. Thus, the noise
amplifies the spatial pattern, and smoothed noise makes the
pattern stand out from the noise.

Because for short simulation times and λk < 0 the am-
plitude processes of the Fourier coefficients and Y (x, t ) will
be small, we also simulated 10 realizations of the case

c = 4.5, η = 0.5, σ = 1.0 over the time interval t = 25 with
the same �t = 0.000 05. For t = 25 the limiting value of
the Fourier coefficient of the eighth harmonic for large t is
approximately 0.37. Figure 2(e) displays the average FFT
amplitude from the 10 realizations, which is about 0.24, again
in line with the theory.

In addition, we simulated the case c = 4.5, η = 0.5, σ =
1.0 over the time interval from t = 0 to 25 but with �t =
0.0025 so that we could view the sample paths of Y (t, x),
F , and the FFT amplitude. Figure 3(b) displays the results
of this simulation. The spatial pattern is clearly evident over
this longer time interval, again as predicted by the theory.
Note that the pattern is quite smooth on the final iteration,
in contrast to the pattern with i.i.d. noise. Again, the spatial
smoothing suppresses the noise at higher frequencies, acting
as a bandpass filter rather than enhancing the spatial pattern
itself.

B. Max λk > 0

In this section, we display the results of simulations of
(19) with values of c such that λk > 0 for some k. Here (12)
applies, so we expect exponential increases with time in the
amplitudes of the spatial modes, and thus in the spatial pattern.
Nonetheless, the interaction of the noise smoothing parameter
and the coupling strength are accurately predicted by (13) and
Fig. 1.

1. No noise

Figure 4 displays solutions of (2) with σ = 0, i.e., solu-
tions to the deterministic version of (2) for the 128 spatial
replicants. With the parameters b2 = d1 = 1, b1 = 1.1, d2 =
1.2, as before, we have W (0) ≈ −0.177 and kmax ≈ 2 and
W (kmax) ≈ 0.22. For k = 0 we have an eigenvalue −1 +
cW (0) ≈ −1 − 0.177c. This eigenvalue will be negative for
all c. When c = 5, the most excitable mode has eigen-
value −1 + 5W (kmax) ≈ 0.1, and when c = 25, the most ex-
citable mode has eigenvalue −1 + 25W (kmax) = 4.5. Even
though these eigenvalues are greater than 0, we see decay
both when c = 5 and when c = 25, and we do not see
the effect of the small initial perturbation away from the
constant value Y = 0.5 in time t = 0.5. Here the damping
effect is greater than the exponential in (12) initially, al-
though eventually the exponential causes the pattern to ap-
pear (not shown). When c = 75, however, the most excitable
mode has eigenvalue −1 + 75W (kmax) ≈ 15.5. Moreover,
again, arg max{W (2πk/L : k ∈ Z�0} ≈ (L/2π ) × 2 ≈ 8, and
so (with no noise) the most excitable mode should have period
8. By time t = 0.5 we begin to see the exponential growth and
the pattern of eight spatial cycles for the Yj (t ) amplitude, the
FFT amplitude, and F , produced by the Mexican-hat operator.
See the top graph of Fig. 4(c).

2. i.i.d. noise

Figure 5 displays the effects of adding i.i.d. Gaussian noise
to the neural field equation with the same parameters for
w(x) as in Fig. 4, except that in Fig. 5 c = 22.5 so λk > 0
for some k. We would expect, based on Fig. 4(b), where
c = 25, that little or no indication of a spatial pattern would be
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FIG. 4. Damping of spatial patterns for which cW (kmax) > 1. Top row: amplitude Y (t, x); middle row: F ; bottom row: FFT amplitude. As
c (indicated at the top of the figure) increases, the spatial pattern becomes more apparent. Here σ = 0, and thus noise smoothing is irrelevant.
Here kmax = 2.0263 and the expected number of cycles in L/2π is 8, as described in the text.

apparent when σ = 0, and that is indeed the case [Fig. 5(a)].
When a small amount of i.i.d. Gaussian noise, σ = 0.5, was
added on each iteration in (19), however, a spatial pattern was

evident [Fig. 5(b)]. More noise, σ = 1.0, makes the pattern
more apparent [Fig. 5(c)]. Thus again we verify that noise can
both reveal weak, otherwise initially (at short time intervals)

FIG. 5. Added noise reveals and sustains the spatial pattern. Rows are the same as in Fig. 4; noise level σ is indicated at the top of each
column. Here c = 22.5, with no noise smoothing.

022130-9



BAXENDALE, GREENWOOD, AND WARD PHYSICAL REVIEW E 100, 022130 (2019)

FIG. 6. Smoothed noise reveals and sustains the spatial pattern as well as making it more regular. Rows are the same as in Fig. 4 except for
the addition of row 2, the amplitude after the 10 000th iteration. Smoothing kernel standard deviation, η, is indicated at the top of each column.
Here the standard deviation of the Gaussian noise is σ = 1.0, and the coupling strength is c = 22.5. The two somewhat contrasting effects of
the smoothed noise interact with the spatial pattern created by the Mexican-hat operator.

unobservable, spatial patterns, and also sustain them at ob-
servable levels across time. The dominant wave number (in
the sense defined earlier) of the spatial pattern does not depend
on the standard deviation of the noise, σ . It will depend,
however, on the standard deviation of the smoothing kernel,
η, as predicted by the maximum of R(k)

[1−cW (k)] in Fig. 1. We
explore this relation in the next section.

3. Coupling and noise smoothing

As discussed earlier, noise smoothing can be expected to
affect the spatial pattern created by the Mexican-hat coupling.
When the maximum λk > 0, as here, (12) applies. The in-
teraction of c and η in (12) is still controlled by the ratio of
σ 2

k /λk , so we expect the effects of the noise smoothing to be
consistent with those for the case in which all λk < 0.

These effects are displayed in Fig. 6 for c = 22.5, σ = 1.0
and values of η = 0.15, 0.5, 1.3. Figure 5(c) shows the results
of a simulation with these same parameter values but no noise
smoothing. When η = 0.15 < 0.28, as predicted by (15), the
variance should be increased slightly but the dominant mode
is not affected, and this is apparent in Fig. 6(a). When η =
1.3, the variance is much reduced but the dominant mode is
shifted toward 0, reducing by 1 the number of cycles induced
by the Mexican-hat coupling alone [Fig. 6(c)]. When η =
0.5 > 0.28, however, the dominant mode is unaffected and

the variance is also reduced, creating a more apparent spatial
pattern, the “best” in our collection of solutions [Fig. 6(b)].
The interaction between these various factors in their effects
on the spatial pattern induced by the Mexican-hat coupling
thus creates optimal combinations of c, η for the emergence
of the spatial pattern.

This phenomenon of an optimal pair (c, η) is reminiscent
of stochastic resonance (or stochastic facilitation [25]), in
which tuning of the noise strength and threshold yields op-
timum performance. Of course, the greater c is, the stronger
is the pattern, so this analogy only applies for situations in
which damping is sufficient so that the pattern is only revealed
and sustained by optimally smoothed noise. Smoothing that
is too broad imposes a lower frequency on the array, and
interferes somewhat with the pattern created by the Mexican-
hat operator, as seen in the case in which c = 22.5, η = 1.3.

C. Spatial smoothing of noise without coupling

As described earlier, there are spatial modes of the
smoothed noise itself. For small η these are spread over a
range of values of k, whereas for large η they are concentrated
near k = 0, as shown in Fig. 1, although the dominant mode is
always 0. Because the dominant mode of 0 creates no spatial
pattern, however, we might expect that when there are nonzero
spatial modes of significant amplitude, the noise alone, in the
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FIG. 7. Applying the Gaussian noise-smoothing kernel across neighbors creates a spatial pattern. Rows are the same as in Fig. 4. Here
c = 0 (so no coupling via Mexican-hat operator), σ = 0.5, and standard deviations of the Gaussian smoothing kernel, η, are indicated at the
top of the figure, and i.i.d. indicates no noise smoothing.

absence of Mexican-hat coupling, might induce a spatial pat-
tern. Figure 7 displays solutions to the stochastic neural field
equation (2) with c = 0 and Gaussian-smoothed noise. That
is, there is no coupling via the Mexican-hat operator. In these
cases, however, η has been varied, from i.i.d. spatiotemporal
noise to η = 0.67 and to η = 1.3. We observe that smoothing
the noise itself creates a spatial pattern with the FFT amplitude
depending on η, effecting what we could term a “coupling
through partially shared noise.” The FFT amplitude decays ex-
ponentially toward the higher frequencies, as expected. With
η = 2.4, the FFT amplitude is concentrated close to spatial
frequency 0 (not shown). Indeed, when the Gaussian smoother
has significant weighting over the entire ring, η > 2, there is
only one large bump in the typical simulated path, and the
FFT amplitude is concentrated at a spatial frequency of one
cycle over L (not shown). Finally, the spatial pattern created
by the smoothing kernel can be expected to interact with that
created by the Mexican-hat operator to create a sustained
and powerful standing wave when the noise smoothing is
optimal, as in Fig. 6(b) when η = 0.5, or to overwhelm the
Mexican-hat pattern when noise smoothing is too great, as in
Fig. 6(c) when η = 1.3.

The pattern produced by Gaussian noise smoothing is,
however, significantly different from the pattern produced by
Mexican-hat coupling. Gaussian noise smoothing with c =
0 tends to produce stochastic paths that resemble irregular
bumps over space, and these bumps move around in the spatial
array as the field evolves, making the evolving neural field
resemble a chimera of emerging and fading pattern [26]. The
Mexican-hat coupling with or without smoothing tends to

result in stochastic paths that resemble stripes rather than
bumps (Figs. 5 and 6), although the stripes do move around
somewhat as the field evolves, especially when the noise is
not optimally smoothed.

VI. DISCUSSION

We have illustrated, in the context of a “standard” [7]
stochastic neural field equation [Eq. (2)], that a Mexican-hat
convolution kernel produces spatial patterns that (eventually)
can be revealed and sustained by noise, even when all eigen-
values are negative, whereas without noise the damping tends
to dominate the pattern. Moreover, over long time intervals,
Gaussian-smoothed noise alone also produces a spatial pat-
tern, and the two sources of pattern interact. It has been known
for some time that a Mexican-hat convolution kernel produces
spatial patterns, similar to Turing patterns, in a variety of con-
texts (e.g., [22,24]). It was known previously that noise can
reveal and sustain such patterns that are otherwise damped,
much as quasicycles are revealed and sustained by noise in
temporal stochastic processes. We studied major features of
this process, exploring the dependence of the pattern on the
strength of the Mexican-hat coupling and the width of the
noise smoothing.

First, we found a parametric measure of the interaction
between noise smoothing and Mexican-hat coupling, based
on the Fourier expansion of the neural field equation. We
then demonstrated, for the case in which all eigenvalues of
the operator are negative, a close correspondence between the
predictions of the continuous theory and an Euler-Maruyama
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discretization of the theory. Next we explored, for the case
in which at least one eigenvalue of the operator is positive,
the relationship between the coupling strength, c, and the
width of the noise smoothing, η. We found a family of “best
combinations” of parameters controlling coupling and noise
smoothing that produced the strongest patterns. A particular
finding is that Gaussian noise smoothing can itself, without
coupling, produce spatial patterns in the context of neural field
equations, and likely in other contexts as well.

A. Development of spatial patterns in time

We explored solutions to (2) and (19) over both short,
t = 0.5, and longer, t = 25, time intervals. The results over
the longer time intervals demonstrate that even when all eigen-
values are negative, the Mexican-hat coupling can produce
spatial patterns in the presence of added noise, and these
patterns can be quite clear when noise is shared and smoothed
over a local neighborhood. The brain, however, does not
remain in a single state for such long time intervals. A more
likely scenario for application of our results to real brains
is that the brain’s state changes over shorter time intervals,
typically every few hundred milliseconds or faster. Thus,
our results for the shorter time intervals are probably most
relevant. Importantly, it would be inefficient for the brain to
have evolved a system of local coupling, the Mexican-hat
coupling, for which all eigenvalues are negative, so that very
long time intervals are required for the coupling to create
spatial patterns. To illustrate this, compare Fig. 2(e) with
Fig. 6, middle column. The FFT amplitudes of the spatial
patterns are roughly equivalent in the two cases. The time
required to reach this state, however, is t = 25 for Fig. 2(e),
where c = 4.5 and λk < 0 for all k, whereas the time required
to reach the state in Fig. 6 is t = 0.5, where c = 22.5 and
λk > 0 for at least one k. Thus, even though we do not know in
terms of scaling how this space-time model might relate to real
systems, the scenario in which at least one λk > 0 is the most
likely to be present. Combined with optimal noise sharing,
e.g., with η = 0.5 in our simulations and in the example just
described, this scenario would implicate a functional role for
the local Mexican-hat coupling, such as enhancing edges of
neural representations of visual stimuli.

B. Spatially smoothed, noise-induced patterns

The fact that spatially smoothed noise, i.e., noise that has
nonzero correlation length in space, can by itself produce
spatial patterns has, we believe, been unappreciated until now.
In fact, the Fourier transform of the process (2) predicts its
spatial modes, including the case in which, because c = 0,
the Mexican-hat kernel has no effect. In this case, where the
smoothing kernel acts alone, a greater spread of noise smooth-
ing leads to a narrower range of k with significant power.
Smoothing that is significant over the entire lattice leads to
a range of k that is close to 0. The pattern that results from
the interaction of the Mexican-hat coupling and the coupling
by smoothing of noise is a combination of their respective
spatial modes, as reflected in Fig. 1. Which modes dominate
in a particular implementation depends on the weighting of

the respective operators and their extents with respect to the
size of the system.

C. Relation to other work

There is an extensive literature on stochastic neural field
equations. We have chosen a representative, assorted, sample
from this literature, and we point out similarities to and
differences from the present work, and directions for future
studies.

Meyer, Ladenbauer, and Obermayer [2] produced a grid
array of spiking neurons with a Mexican-hat coupling struc-
ture, and they measured the covariance pattern of the resulting
spike counts while varying the parameters of the Mexican-hat
coupling. They found an oscillating pattern of correlation
decay around particular fixed neurons, produced by Mexican-
hat coupling, with wider inhibitory than excitatory coupling.
This pattern did not appear when an inverse Mexican-hat
coupling, in which the excitatory coupling extended further
than did the inhibitory coupling, was imposed on the grid.
The system was driven by external i.i.d. synaptic noise to
each neuron, so that the output spike pattern correlation was
necessarily produced by the coupling. The approach of the
study [2] was complimentary, or dual, to the approach and
objective of the present paper.

In [16,27] there is a cubic reaction term that succeeds in
keeping the process stochastically bounded. This is different
from the thresholded identity function used in the present
work. In [27] the coupling operator is [1 + (∂2/∂x2)]2, which
has an effect similar to a Mexican hat, whereas in [16] an
effectively Mexican-hat operator, written differently, is used.
Both in [27] and in [16], the noise is either uncorrelated
spatially or, the other extreme, “global fluctuations,” in which
the same noise is added to all components of the neural field
at each time point. This is in contrast to locally spatially
smoothed noise, which we studied here. In these papers,
the analytic method of center manifold theory together with
adiabatic elimination is used to obtain solutions to the neural
field equation.

Reference [24] studied a model that creates a moving
front between states 0 and 1 using a cubic reaction term
as in [27]. At the same time, a Mexican-hat kernel together
with a diffusion term creates a Turing pattern. Homogeneous
solutions coexist with spatially periodic states. There is no
stochastic term, however, and the effects of noise in this model
are unknown.

In [8], Gaussian white noise, as in [28], together with
spatial coupling of the form (K2

o + ∇2)2 and, again, a cubic
reaction term, in a Stratonovich SDE, create patterns in R2.
These patterns resemble various highly regular patterns of
vegetation that occur on slopes in semideserts around the
world.

In Touboul’s paper [9], space-dependent delays are intro-
duced. Again the noise is not smoothed across space. A rele-
vant result is convergence-in-law of network equations. These
are in continuous time and discrete in numbers of neurons
and of populations, both of which increase to infinity, the
“neural-field limit.” The limit is a particular McKean-Vlasov
equation, a stochastic neural mean-field equation with delays.
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These other works suggest various additional ways to
pursue the questions studied here. For example, one could
insert a cubic reaction term in (2) instead of using the function
S to maintain stochastic boundedness of the process. Addi-
tional analytic results might well be obtained using the center
manifold theory for the case k = 0 as in [16,27].

Finally, the present paper can also be seen in the context of
the broader field of pattern formation arising from stochastic
differential equations. A fairly recent text summarizing many
problems and results in this field is that of Blömker [29].
In that work, methods are described for the approximation
of stochastic partial differential equations near a change of
stability using amplitude equations. Blömker focuses on rig-
orous error estimates for such approximations with the aim of

enabling their use in physics and applied mathematics. This
text provides many useful clues about how to extend the
present work, including a detailed description of approxima-
tive center manifold theory.

ACKNOWLEDGMENTS

Lawrence M. Ward was supported by Discovery Grant No.
A9958 from NSERC of Canada.

All authors contributed to the conceptualization and writ-
ing of the paper. The numerical simulations were accom-
plished by L.M.W.

The authors declare that they have no competing interests.

APPENDIX

Proposition. Consider the processes Bk = {Bk (t ) : t � 0} defined in (10) for non-negative integers k.
(i) The processes B0, B1, B2, . . . are independent.
(ii) B0 is scalar Brownian motion with variance LR(0).
(iii) For k � 1, Bk is two-dimensional Brownian motion with variance (L/2)R(2πk/L).
Proof. The family {Bk (t ) : k � 0, t � 0} is a complex-valued mean 0 Gaussian process, so it is enough to calculate

covariances. Each process Bk is a complex-valued Gaussian process with independent increments in time, so it is enough to
calculate covariances of the complex random variables {Bk (1) : k � 0}. Write Bk (1) = B1

k + iB2
k . Since r(x) = r(−x), we have∫ L

0
(cos 2πkx/L)r(x) dx = R(2πk/L),

∫ L

0
(sin 2πkx/L)r(x) dx = 0.

We calculate some covariances for k, � � 0. First the real parts:

E
[
B1

kB1
�

] = E

[(∫ L

0
(cos 2πkx/L)G(1, x) dx

)(∫ L

0
(cos 2π�y/L)G(1, y) dy

)]

=
∫ L

0

∫ L

0
(cos 2πkx/L)(cos 2π�y/L)r(x − y)dx dy

=
∫ L

0
cos

2πkx

L

[∫ L

0

(
cos

2π�x

L
cos

2π�(y − x)

L
− sin

2π�x

L
sin

2π�(y − x)

L

)
r(x − y) dy

]
dx

= R(2π�/L)
∫ L

0
(cos 2πkx/L)(cos 2π�x/L) dx

= R(2π�/L)

⎧⎨
⎩

L if k = � = 0,

L/2 if � = k,

0 else.

Similarly for the imaginary parts:

E
[
B2

kB2
�

] = E

[(∫ L

0
(sin 2πkx/L)G(1, x) dx

)(∫ L

0
(sin 2π�y/L)G(1, y) dy

)]

=
∫ L

0

∫ L

0
(sin 2πkx/L)(sin 2π�y/L)r(x − y) dx dy

=
∫ L

0
sin

2πkx

L

[∫ L

0

(
sin

2π�x

L
cos

2π�(y − x)

L
+ cos

2π�x

L
sin

2π�(y − x)

L

)
r(x − y) dy

]
dx

= R(2π�/L)
∫ L

0
(sin 2πkx/L)(sin 2π�x/L) dx

= R(2π�/L)

{
L/2 if � = k �= 0,

0 else.
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Finally for the “mixed” terms:

E
[
B1

kB2
�

] = E

[(∫ L

0
(cos 2πkx/L)G(1, x) dx

)(∫ L

0
(sin 2π�y/L)G(1, y) dy

)]

=
∫ L

0

∫ L

0
(cos 2πkx/L)(sin 2π�y/L)r(x − y) dx dy

=
∫ L

0
cos

2πkx

L

[∫ L

0

(
sin

2π�x

L
cos

2π�(y − x)

L
+ cos

2π�x

L
sin

2π�(y − x)

L

)
r(x − y) dy

]
dx

= R(2π�/L)
∫ L

0
(cos 2πkx/L)(sin 2π�x/L) dx

= 0.

Since orthogonality implies independence for Gaussian random variables, the results follow directly. �
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