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Phase-field crystal for an antiferromagnet with elastic interactions
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We introduce a model which contains the essential elements to formulate and study antiferromagnetism, using
the phase-field crystal framework. We focus on the question of how magneto-elastic coupling could lift the
frustration in the two-dimensional hexagonal antiferromagnetic phase. Using simulations we observe a rich
variety of different phases stable in this model. To characterize different phases we calculate the chiral order
parameter and identify the scaling behavior of this order parameter. Furthermore, we observe that vortices
appear and are stable close to the nonmagnetic defects. Finally, we studied the ferrimagnetic and spin-flop phase
transition in the presence of an external magnetic field.
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I. INTRODUCTION

In a geometrically frustrated magnet the symmetry of the
lattice inhibits every pairwise interaction of the system to be
satisfied concurrently. For example, antiferromagnetic spins
on a two-dimensional triangular lattice have three neighboring
spins which can not be pairwise antialigned, and so the system
is frustrated. Such two-dimensional frustrated antiferromag-
netic systems have been the subject of several theoretical
[1–9] as well as experimental studies [10–13]. Geometrical
frustration often gives rise to a series of degenerate ground
states rather than a single stable ground state [14]. As a result
even a minimal perturbation to the Hamiltonian can induce
significant changes, selecting one specific ground state.

One of the perturbations that can lift the ground state
degeneracy of a frustrated Ising (or Heisenberg) lattice is
magnetoelastic coupling and has been the subject of many
experimental studies [15–18]. A coupling between the elastic
and magnetic degrees of freedom removes the ground state
degeneracy by distorting the lattice [19]. Chen and Kardar
calculated the phase diagram of an elastic antiferromagnetic
system on a triangular lattice [19]. Depending on the system
parameters the following phases are stable: disordered, stripe,
helical, and ferromagnetic. In the stripe phase, the original tri-
angular structure is deformed, one set of bonds are expanded,
and the other two sets are contracted so that the degeneracy of
the ground state is removed.

In this paper we apply the phase-field crystal (PFC) ap-
proach to study how magnetoelastic coupling can give rise
to the removal of magnetic frustration. Moreover we report
magnetic frustration causes phase transformation in antiferro-
magnetic materials.

The PFC approach is a powerful computational method
to study microstructure formation in diffusive (mesoscopic)
timescales and the atomic length scales [20–22]. It has been
applied to study different phenomena such as nucleation,
polycrystalline solidification, grain boundaries, and disloca-
tions [23–28]. The main idea of the PFC approach is that

the free energy is minimized by structures that are periodic
in space with the symmetries of the crystal phases such as
hexagonal in two dimensions and body centered cubic (BCC)
in three dimensions. It was shown that the free energy of the
PFC can be crudely derived from the the classical density
functional theory of freezing, by retaining only the first peak
in the two-point correlation function [29]. This minimal model
can capture the basic elastic and plastic effects [21] but
benefits from representing atoms as low-amplitude periodic
modulation that are computationally simpler to simulate.

The PFC formalism has been exploited to study multifer-
roic materials. To study the interrelation between magnetic
and elastic properties of ferromagnetic solid, the original PFC
kernel was coupled to the Ginzburg-Landau free energy for a
ferromagnetic phase transition [30]. The position of the Curie
line in the phase diagram as a function of the temperature
and the mean density of the system was calculated. Using
an amplitude expansion method and elastic calculations the
relationship between elastic strains and magnetization was
calculated. It was shown that the existence of a grain boundary
facilitates the formation of the magnetic domains. Also the
influence of the grain misorientation on the magnetic coerciv-
ity of the system was studied. In another study [31] the free
energy of the structural PFC model [32–34] was coupled to the
order parameters describing ferromagnetic and ferroelectric
ordering, as well as to the solute impurity field. In this study
the position of Curie line was calculated on the liquid-BCC-
FCC (face centered cubic) phase transition region on the
phase diagram. Using the elastic calculations this model also
extended the original magneto-PFC introduced in Ref. [30]
to include the (magnetic and electric) anisotropy, and the
effect of an external magnetic field on the grain orientation
was investigated. Furthermore the relationship between the
electric coercivity and grain size was considered.

The formation of magnetic islands and the influence of
an external magnetic field on phase transformation has been
investigated in Ref. [35]. In this study the multimode PFC
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free energy [36] was coupled to the magnetic order parameter.
Unlike the two previous studies on magnetoelastic PFC mod-
els in which the magnetization modulations were much larger
than the the atomic length scales, in this case a coupling term
was introduced so that the magnetic moments are localized on
the atomic sites and the magnetization is zero in the distances
between the density peaks.

In this paper, we couple the original PFC free energy
to magnetism to provide an alternative approach to study
antiferromagnetism. Using a pseudospectral algorithm in the
message passing interface (MPI) framework we conducted
simulations in two dimensions. We observe that a triangular
phase is not stable in the presence of the antiferromagnetic
interaction, and the system goes through a phase transition
from a triangular phase to a square phase. We also studied the
stability diagram of the system and confirmed that the stripe,
helical, square, and ferromagnetic phases can be stabilized
depending on two parameters of the free energy: one of
the parameters characterizes the stiffness of the crystalline
structure of the phase-field crystal formalism, and the other
parameter is related to how strong the magnetic and elastic
degrees of freedom are coupled to each other.

Furthermore, we studied the growth of a helical phase in a
square lattice, and we have evidence to support the idea that
this dynamics is overdamped. As well, vortices form close to
the grain boundaries. This is in agreement with experimental
and theoretical studies that suggest that nonmagnetic impuri-
ties stabilize vortices [37,38]. Finally, we studied the behavior
of the system in the presence of an external magnetic field
and observed a stable ferrimagnetic phase as well as what we
believe is a novel spin-flop phase, arising from an initially
helical state.

II. FREE ENERGY FUNCTIONAL

We propose the model for an antiferromagnet by modifying
the Landau-Ginzburg ferromagnetic free energy [39] as

FAF =
∫

d�r
{

− W 2
0 |∇ �m|2+|∇2 �m|2+ rN

2
| �m|2+ γ

4
| �m|4− �m · �B

}
.

(1)

The term −W 2
0 |∇ �m|2, unlike the normal Landau-Ginzburg

free energy for a ferromagnetic phase transition, has a negative
sign which makes it favorable for the neighboring spins to
have spatial gradients. But in order for the free energy to have
finite gradients we need to add the next order in terms of the
gradients, consistent with the symmetries of the system. In
this case this term is the fourth-order gradient term. Similar
to the arguments of the phase-field-crystal model [20,21] this
free energy favors a length scale which corresponds to the
equilibrium periodicity of the system. In this free energy,
W0, rN , and γ are phenomenological constants. W0 sets the
length scale for the antiferromagnetic order, rN is related to
the Néel’s temperature of antiferromagnetic phase transition,
and γ is related to the saturation magnetization and magnetic
susceptibility of the system. The term �m · �B accounts for the
interaction between the external magnetic field, �B, and the
magnetization vectors, �m.

We couple this magnetic interaction with the classi-
cal phase-field-crystal formalism (PFC) [20,21] for crystal

growth,

FPFC = β

∫
d�r

{
ψ

2

(
q2

0 + ∇2
)2

ψ + r

2
ψ2 + ψ4

4

}
, (2)

where ψ is the particle number density and r and q0 are
phenomenological constants. The phase diagram of this model
consists of a liquid phase, a stripe phase, and a hexagonal
phase. The wave vector magnitude q0 determines the lattice
constant of the equilibrium phase. The bulk free energy
terms produce the two-well curve as a function of the order
parameter, which favors one of the two phases of liquid or
solid depending on the temperature, r, and the mean density
of the system. The parameter β acts as the crystal stiffness
coefficient. The larger the value of β, the stiffer the PFC
crystal.

We propose the coupling free energy to have the simple
form

FC =
∫

d�r{−α �m2ψ}, (3)

where α is a parameter which determines the strength of the
coupling between the density and magnetization fields. This
equation guarantees that the magnetic moments are localized
on the atomic sites and the magnetic islands form [35].

In order to conduct simulations we solve dissipative dy-
namics to minimize the free energy. We use conserved dy-
namics (model B) for the density field (ψ) and noncon-
served dynamics (model A) for the magnetization fields [ �m =
(mx, my)]:

∂ψ

∂t
= μψ∇2

(
δF

δψ

)
(4)

for the density and

∂mi

∂t
= −μm

δF

δmi
(5)

for the magnetization, where F = FAF + FPFC + FC is the total
free energy of the system and mi refers to mx or my. In these
equations, μψ is the mobility of the density field and μm is the
mobility of the magnetization field, and in general they can be
different.

In the following simulations we implemented periodic
boundary conditions, and unless otherwise stated, the param-
eters of the free energy are chosen as (q0, r,W0, rN , γ ) =
(1,−0.15, 1,−0.1, 1) and �B = 0.

III. RESULTS

A. Stability diagram

We checked the stability of the helical, stripe, square,
ferromagnetic, and disordered phase, and we find the regions
in the α-β phase diagram in which various phases are stable.
One point to note is that in order to depict the magnetization
field more clearly, we developed a method which identifies
the magnetic islands separately. Each magnetic island corre-
sponds to an atomic site. We then calculate the mean value of
the magnetization vectors at each island and depict the average
value as a single arrow on the center of each island, as shown
in Fig. 1. Therefore each arrow in the inset of Fig. 1 depicts
the average magnetization at each atomic site.
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FIG. 1. Configuration of the magnetization field. It should be
mentioned that the small magnetic moments existing between the
atoms are on average of order of 0.25 or less, while the moments on
atomistic sites are on average of order of 1.75 or more. Inset: Arrows
depict the magnetization field averaged over each atomic site. The
system size is 144dx × 84dy, and each island’s radius is roughly
7dx, where dx and dy are the simulation’s mesh sizes in the x and
y directions, respectively.

We run the single-mode PFC model as defined in Eq. (2),
yet we find a square phase is stable in certain regions of the
phase diagram. This is interesting because the phase diagram
of the single-mode PFC model does not predict a square
phase. The reason we can stabilize the square phase with
the single-mode PFC, as we will see in more detail, is the
coupling to the antiferromagnetic free energy in Eq. (1). The
configurations of the perfect helical, stripe, and square phases
are presented in Fig. 2. Moreover, the disordered phase is
obtained when rN > 0 in Eq. (1).

We ran two series of simulations, and in both we used
the following values for the temperature and mean density:
(r, ψ0) = (−0.15, 0.2). In the first series we started from
the perfect stripe, perfect helical, perfect square, and perfect
hexagonal ferromagnetic phases, separately, and calculated
the energy of the system by letting the system equilibrate. We
prepared the perfect helical phase by starting from a system
with the minimum number of particles needed to model a
helical phase, i.e., six particles. For the helical and stripe
phases which have hexagonal symmetries we chose dy =
[Lxdx/(

√
3Ly)] so that a particle can perfectly fit inside the

simulation box in a hexagonal lattice, where Lx and Ly are the
system dimensions and dx and dy are the simulation’s mesh
sizes.

In order to find the lattice constant value, ax = Lxdx,
that minimizes the free energy, we manually varied ax and
calculated the free energy. We repeated this process to find the
ax for which the free energy is minimized. The values of mean
energy as a function of ax are shown in the inset of Fig. 3(a)
for a stripe phase with α = 1 and β = 3.

For each value of α and β we performed the procedure
explained above and found the correct value of ax. We then
run the simulation to equilibrate the system using the correct
value of ax and calculated the free energy as a function of β

for each value of α = 0.5, 1, 1.5.
We also prepared a perfect ferromagnetic phase and a

perfect square phase to compare their free energies to the free
energies of the helical and stripe phases. The plots of the free

FIG. 2. (a) Configuration of the magnetization vectors of a per-
fect helical phase; inset (a): the density field corresponding to the
helical phase. (b) Configuration of the magnetization vectors of
a perfect stripe phase; inset (b): the density field corresponding
to the stripe phase. The density field of a stripe phase contains
a deformed hexagonal structure, in such a way that the magnetic
frustration is lifted. (c) Antiferromagnetic square phase; inset (c): the
corresponding density. In order to produce a perfect square phase, the
shape of the simulation box should be of the form of a square as well.
That is why the scale of panel (c) is different from panels (a) and (b).

energy as a function of β are shown in Figs. 3(a) and 3(b) for
α = 0.5, 1, 1.5, respectively.

From these figures we can determine which phase is more
stable for each value of α and β. For α = 0.5, Fig. 3(a) shows
that the helical phase is more stable than the stripe phase. In
this diagram the energies of the square phase are not plotted
because we could not find a stable square phase in this range
of parameters except at β = 1 for which the energy is about
the same value of the energy of the helical phase. In this case,
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FIG. 3. (a) Free energies of the perfect stripe, helical, and square
phases as a function of β for α = 0.5. There is not any ferromagnetic
free energy in this plot because we could not stabilize any ferro-
magnetic phase with these parameters. The simulations are done at
β = 1, 3, 5, 7, 10, and the lines are plotted to guide the eye. Inset:
The plot of the mean energy of the system as a function of the lattice
constant, ax , for a stripe phase with α = 1 and β = 3. In this case,
the minimum mean energy of −0.071 occurs at ax = 23.1 (b) Free
energies of the perfect stripe, helical, and square and ferromagnetic
phases as a function of β for α = 1 and α = 1.5.

we determined whether a helical phase or the square phase is
the more stable phase by looking at the configurations from
simulations that will follow.

For α = 1 Fig. 3(b) shows that the ferromagnetic phase
has a larger free energy and hence cannot be the stable phase.
This figure also shows that for β � 7 the stripe phase is more
stable, but for β > 7 the helical phase becomes more stable.
Finally for α = 1.5 the square phase is more stable for β = 1.
For the rest of the β values the stripe phase is more stable.

Since the free energies of the helical and stripe phases are
very close, we designed a simulation to better identify the
more stable phase. In the second series of simulations we pre-
pare the system in an initial condition in which the stripe and
helical phases coexist. A slab of the helical phase was placed
in a box filled with the stripe phase. The total system size
was 84 × 144. This simulation was conducted to check the
competition between the stripe and helical phases and which
phase is more stable at each α and β value. We noticed that
for each constant value of α, as β is increased, the stability of
the helical phase increases. Also for a constant value of β, as
α is increased, the stripe phase becomes more stable. For very

small values of β and for larger values of α the square phase
becomes more stable. The stripe and helical configurations
shown in Figs. 4(a) and 4(b) are two configurations of the
system at α = 1, β = 10 and α = 1.5, β = 3, respectively.

The results of these simulations are summarized in the
stability diagram of Fig. 5. The continuous lines are plotted
by interpolating the simulation results performed at different
regions of the diagram. We expect coexistence regions for
square-stripe and stripe-helical phases, and each of the phases
will stabilize at different densities which would give coexis-
tence points, but these points would lie along a third (density)
axis and we did not calculate those regions.

It should be mentioned that for α = 1 and α = 1.5 with
β = 1, these simulations converge to the square phase, for
which the density field is shown in Fig. 4(c). This is interesting
as the phase-field crystal model we are implementing is the
one-mode PFC formalism in which based on Ref. [21] no
square phase is stable in this model. However, the antifer-
romagnetic interaction dictates a phase transformation from
hexagonal to square phase. The reason is that the antiferro-
magnetic interaction on a hexagonal lattice cannot be satisfied
while it can perfectly take advantage of coupling to a square
lattice. The square phase, however, is not stable at large values
of β. The reason is that large β means there is a strong
phase-field crystal elastic energy which favors the hexagonal
phase.

These results are consistent with those obtained from the
energy calculations. For α = 1 and small value of β = 1 the
square phase is more stable. The system never converges to a
ferromagnetic phase, which is in agreement with the energy
calculations where the energy of the ferromagnetic phase is
larger than all the other three phases for all of the β values.

B. Chirality

To obtain a better understanding of the phase diagram, we
characterize the helical phase using the chiral order parameter
defined as [40,41]

κp = 2

3
√

3

∑
〈i j〉∈p

(
Sx

i Sy
j − Sy

i Sx
j

)
, (6)

where Si and S j are the normalized magnetization vectors on
each lattice point and the summation,

∑
〈i j〉∈p, runs over the

three directed bonds surrounding each plaquette, p. Physi-
cally, the chirality captures the sense of the noncollinear 120◦
structure.

The chirality values are consistent with the stability di-
agram’s results. We run simulations similar to those in
Sec. III A except that instead of starting from a coexistence of
stripe and helical, we start them from the configuration of the
perfect helical phase and let the system equilibrate. For β = 3
and α = 1.5, the chirality is obtained to be, to two significant
figures, κp = 0.00028, where, as expected for a stripe phase,
the chirality is very small (theoretically zero). If β = 1 and
α = 0.5, we have the helical phase with κp = 0.87. As we
increase β the hexagonal phase become stiffer and more stable
and the square phase less stable. For β = 9 and α = 1 the
chirality is κp ≈ 1.

022128-4



PHASE-FIELD CRYSTAL FOR AN ANTIFERROMAGNET … PHYSICAL REVIEW E 100, 022128 (2019)

FIG. 4. (a) The magnetization vectors on a helical phase obtained at α = 1 and β = 10. (b) The corresponding density field, showing
hexagonal symmetry. (c) The magnetization vectors in a hexagonal stripe phase at α = 1.5 and β = 3. (d) The corresponding density
field, showing a stripe (deformed hexagonal symmetry) phase. (e) The magnetization configuration of the square phase obtained from
antiferromagnetic one-mode phase-field-crystal formalism with α = 1 and β = 1. (f) The corresponding density field, showing square
symmetry.

C. Chirality as a function of time

Starting the simulation from two square structures with a
symmetric grain boundary in the middle of the simulation
box, we prepared the system parameters corresponding to a

FIG. 5. Stability diagram of the system obtained from full system
simulations. Three phases are stable for different values of α and β:
square, stripe, and helical.

helical equilibrium phase, i.e., (α, β ) = (0.5, 1). We chose the
mesh size to be dx = dy = 0.5 and the size of the system is
1024 × 1024. The time step is dt = 0.01 for the evolution
of the density field and dtm = 0.1 for the evolution of the
magnetization field. This means that we set μm/μψ = 10 in
Eqs. (4) and (5). We chose dtm > dt because we intended to
allow for the magnetization vectors to form a chiral configu-
ration in the regions already phase transformed to hexagonal.
As we ran the simulation, we noticed that the hexagonal phase
started to form from the grain boundary. Figures 6(a) and 6(b)
show the configuration of the density field for the early time
in simulations and final step of the simulation, respectively.
We used different colors to show the atomic positions with
number of neighbors not equal to four (blue) as opposed to
the atomic positions with number of neighbors equal to four,
i.e., a square lattice (red). It can be seen in Fig. 6(a) that
the helical phase starts to grow from the grain boundaries.
Furthermore, in the later times it can be seen that the chiral
phase is nucleated from the defect regions.

Calculating the chirality, we observe that this hexagonal
phase is a helical antiferromagnetic phase, as expected. We
calculated the chirality as a function of time and noted that it
increases with time, as the helical phase grows.
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FIG. 6. (a) Density field of the helical phase (blue) starting to
grow from the grain boundary in the square lattice (red), at the early
time step of t = 2 × 103dt . (b) Density field of the helical phase
(blue) grown in the square lattice (red), at the late time step of
t = 105dt .

It should be mentioned that in the process of calculation
of the chirality, we first find the plaquettes and then calculate
Eq. (6). As a result when calculating the total chirality over the
whole system, the square phase does not have any contribution
[42].

Analyzing the scaling behavior of the chirality as a func-
tion of time, we can fit the chirality versus time curve to an
exponential function. We expect such behavior as this is an
overdamped system attempting to minimize the free energy.
Therefore, we can write the differential equation governing
the chirality as d2κ/dt2 = (−1/τ )dκ/dt . Solving this equa-
tion gives κ (t ) = (κ∞ − κ0)(1 − e−t/τ ) + κ0. Figure 7 shows
the chirality as a function of time for the system parameters
(ψ0, r,W0, rN , α, β ) = (0.25,−0.2, 1,−0.1, 0.5, 1) in which
we expect a helical configuration for the equilibrium phase.
We fit the simulation using the exponential form and obtain
the following fitting parameters: κ0 = 0.63, κ∞ = 0.88, and
τ = 6400. If we run the simulations so that the helical phases
impinge, we will have domain walls. If the domain walls
appear, we expect the dynamics to be slower, i.e., power law
scaling.

× × × × × × × × ×

FIG. 7. Purple: chirality as a function of time for a growing heli-
cal phase in a square lattice, obtained from simulations. Green: fit to
the equation κ (t ) = (κ∞ − κ0 )(1 − e−t/τ ) + κ0 with the appropriate
parameters. The dynamics of the chirality follows the dynamics of an
overdamped system. The values on the time axis are in units of dtm.

D. Vortices

Vortices have been observed in two-dimensional antiferro-
magnetic systems [43,44]. It is known that crystalline defects
and nonmagnetic impurities tend to stabilize the vortices in
antiferromagnetic materials [37,38]. We noticed this hap-
pens in our simulations: when the system contains a grain
boundary, we observe stabilized vortices. If there is no grain
boundary in the system, we do not see any vortices in our
simulations. The vortex configuration is shown in Fig. 8. The
grain boundary is located along the line of x = 512, and there
are vortices formed about the grain boundary. We also noticed
that in the regions where there is a vortex, there is an increase
in the elastic free energy of the system of less than 1%, and
in the regions where there is grain boundary, the elastic free
energy increases about 1.5%.

E. External magnetic field

To confirm the model can recover well-known phases in
antiferromagnetic systems such as the ferrimagnetic and the
spin-flop phases, we ran some simulations under the applica-
tion of an external magnetic field.

1. Ferrimagnetic phase

Starting the simulations from a hexagonal ferromagnetic
system with (r, ψ0, α, β ) = (−0.15, 0.2, 1, 1), we decreased
the value of α from 1, in the presence of an external magnetic
field of �B = (0.1, 0). We noticed that the system undergoes a
phase transition to a square ferrimagnetic phase at α = 0.3,
where the system clearly has a net magnetization. The net
magnetization over the unit cell in this case is mnet = 0.14.
Figure 9 shows the configuration of the ferrimagnetic phase.
This phase has been studied previously both theoretically and
experimentally [13,45].

2. Spin-flop transition

It is known that by applying an external magnetic field
at sufficiently low temperatures, the magnetization vectors
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FIG. 8. A snapshot of the magnetization vectors of part of a
system of size 1024 × 1024, close to the grain boundary. The grain
boundary is located along the line of x = 512 in this configuration.
Vortices can be observed, which suggests that grain boundaries and
defects stabilize vortices. Two easily seen vortices are encircled. We
did not observe any vortices in the absence of a grain boundary.

in an antiferromagnetic material change direction from the
easy axis of magnetization to a transverse direction [1,46].
By applying a small external magnetic field to the system at a
temperature below the Néel’s temperature, if the field is small,
the magnetization vectors will be parallel and antiparallel to
the easy axis of magnetization. If the field is increased, a
phase transition occurs and the magnetization vectors “flop”

FIG. 9. Configuration of the magnetization vectors of a ferri-
magnetic phase in the presence of an external magnetic field �B =
(0.1, 0). Inset: The corresponding density field clearly shows a
square symmetry.

FIG. 10. (a) Spin-flop phase transition when we apply an exter-
nal field of �B = 0.4x̂. The black arrows depict the magnetization
vectors. The subtraction of the two vectors of the sublattice magneti-
zation (the red arrow) lies perpendicular to the applied magnetic field
(the blue arrow, labeled “B”). (b) Spin-flop phase transition when we
apply an external magnetic field of �B = 0.1x̂ + 0.1ŷ. The subtraction
of the two vectors of the sublattice magnetization lies perpendicular
to the applied magnetic field. While the system size is 50 × 50, we
plot these figures for x ∈ [−5, 55] because we locate the middle of
the arrows on each point, and therefore the arrows may start and end
out of the size of the system.

to a transverse direction with respect to the external magnetic
field. This is the spin-flop phase transition.

In our simulations we observe that by increasing the ex-
ternal magnetic field from zero, the vector �MA − �MB, which
is the subtraction of the sublattice magnetizations, will lie
perpendicular to the applied magnetic field. In Fig. 10(a)
the magnetic field is applied along the x direction on a
square lattice: �B = 0.4x̂. We see �MA − �MB (the red arrow
in the figure) lies perpendicular to the magnetic field. If we
apply the magnetic field of �B = 0.1(x̂ + ŷ) we observe that
the subtraction vector [the red arrow in Fig. 10(b)] again will
be directed perpendicular to the applied magnetic field.

Starting from a helical phase, we applied an external
magnetic field in the x direction and increased in steps of
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FIG. 11. Spin-flop phase transition when we apply an external
magnetic field of �B = 0.3x̂ to an initially helical phase. The black
arrows depict the magnetization vectors. The vertical red arrow
shows the direction of the subtraction of the square sublattice mag-
netization, and the horizontal blue arrow (labeled “B”) shows the
direction of the applied magnetic field.


B = 0.05 until we reach �B = 0.3x̂, where what we believe
is a novel spin-flop transition happens (see Fig. 11). It is
interesting to see that this spin-flop phase results from an
initially chiral state. If we look at the magnetization vectors
in the y direction, we see that there are points for which
my = 0. These points lie on a hexagonal lattice with lattice
constant two times of the system’s hexagonal lattice. In this
scheme, as can be seen in Fig. 11, the subtraction of the two
sublattice magnetizations on the square lattice (red arrow) lies
perpendicular to the applied magnetic field (blue arrow). We
observe a similar effect if we apply the external magnetic field
in the �B = 0.15(x̂ + ŷ) direction.

IV. CONCLUSION

We presented a minimal formalism in the framework of the
phase-field crystal approach to couple antiferromagnetism and

elastic interaction. The model extends the classical Ginzburg-
Landau free energy of ferromagnetic phase transitions so
that adjacent antiparallel magnetization vectors are favorable.
This modified Ginzburg-Landau free energy is coupled to the
customary phase-field crystal approach so that the peaks of
the magnetization field are located where the atomic sites are
located.

We observed that elasticity could lift the magnetic frus-
tration in the two-dimensional hexagonal antiferromagnetic
phase. In particular the model stabilizes a square phase in
the presence of antiferromagnetic interaction, to avoid the
geometrical frustration in the two-dimensional hexagonal an-
tiferromagnetic phase.

Using this model we presented the stability diagram of the
system containing square, stripe, helical, and ferromagnetic
phases. Conducting simulations we calculated the energy of
these competing phases to determine which phase is more
stable. Since the energy values of different phases are close,
we also performed simulations to check if two phases of
stripe and helical phase coexist, which one will take over
the simulation box. We also calculated the chirality order
parameter for these phases.

Furthermore, we studied the growth of the helical phase in
a square phase and calculated the chirality as a function of
time. These calculations show that this dynamics is similar
to an overdamped dynamics. We confirmed that we could
recover the ferrimagnetic phase. Using this model, we also
found a spin-flop phase resulting from applying a field to the
helical phase.
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[13] I. Krešić, G. Labeyrie, G. R. M. Robb, G.-L. Oppo, P. M.
Gomes, P. Griffin, R. Kaiser, and T. Ackemann, Commun. Phys.
1, 33 (2018).

[14] R. Moessner and P. Ramirez, Phys. Today 59(2), 24 (2006).
[15] E. Sagi, O. Ofer, A. Keren, and J. S. Gardner, Phys. Rev. Lett.

94, 237202 (2005).
[16] A. Keren and J. S. Gardner, Phys. Rev. Lett. 87, 177201 (2001).
[17] J. C. E. Rasch, M. Boehm, C. Ritter, H. Mutka, J. Schefer, L.

Keller, G. Abramova, A. Cervellino, and J. F. Löffler, Phys. Rev.
B 80, 104431 (2009).

[18] P. Carretta, N. Papinutto, C. B. Azzoni, M. C. Mozzati, E.
Pavarini, S. Gonthier, and P. Millet, Phys. Rev. B 66, 094420
(2002).

[19] Z.-Y. Chen and M. Kardar, J. Phys. C 19, 6825 (1986).
[20] K. R. Elder, M. Katakowski, M. Haataja, and M. Grant, Phys.

Rev. Lett. 88, 245701 (2002).
[21] K. R. Elder and M. Grant, Phys. Rev. E 70, 051605 (2004).

022128-8

https://doi.org/10.1103/PhysRevB.24.1391
https://doi.org/10.1103/PhysRevB.24.1391
https://doi.org/10.1103/PhysRevB.24.1391
https://doi.org/10.1103/PhysRevB.24.1391
https://doi.org/10.1103/PhysRevB.70.174425
https://doi.org/10.1103/PhysRevB.70.174425
https://doi.org/10.1103/PhysRevB.70.174425
https://doi.org/10.1103/PhysRevB.70.174425
https://doi.org/10.1103/PhysRevLett.52.433
https://doi.org/10.1103/PhysRevLett.52.433
https://doi.org/10.1103/PhysRevLett.52.433
https://doi.org/10.1103/PhysRevLett.52.433
https://doi.org/10.1103/PhysRevB.33.450
https://doi.org/10.1103/PhysRevB.33.450
https://doi.org/10.1103/PhysRevB.33.450
https://doi.org/10.1103/PhysRevB.33.450
https://doi.org/10.1103/PhysRevB.29.2680
https://doi.org/10.1103/PhysRevB.29.2680
https://doi.org/10.1103/PhysRevB.29.2680
https://doi.org/10.1103/PhysRevB.29.2680
https://doi.org/10.1103/PhysRevB.27.598
https://doi.org/10.1103/PhysRevB.27.598
https://doi.org/10.1103/PhysRevB.27.598
https://doi.org/10.1103/PhysRevB.27.598
https://doi.org/10.1103/PhysRevB.53.11985
https://doi.org/10.1103/PhysRevB.53.11985
https://doi.org/10.1103/PhysRevB.53.11985
https://doi.org/10.1103/PhysRevB.53.11985
https://doi.org/10.1103/PhysRevB.66.140403
https://doi.org/10.1103/PhysRevB.66.140403
https://doi.org/10.1103/PhysRevB.66.140403
https://doi.org/10.1103/PhysRevB.66.140403
https://doi.org/10.1103/PhysRevE.68.066127
https://doi.org/10.1103/PhysRevE.68.066127
https://doi.org/10.1103/PhysRevE.68.066127
https://doi.org/10.1103/PhysRevE.68.066127
https://doi.org/10.1088/0953-8984/16/11/028
https://doi.org/10.1088/0953-8984/16/11/028
https://doi.org/10.1088/0953-8984/16/11/028
https://doi.org/10.1088/0953-8984/16/11/028
https://doi.org/10.1103/PhysRevLett.86.1335
https://doi.org/10.1103/PhysRevLett.86.1335
https://doi.org/10.1103/PhysRevLett.86.1335
https://doi.org/10.1103/PhysRevLett.86.1335
https://doi.org/10.1103/PhysRevLett.88.137203
https://doi.org/10.1103/PhysRevLett.88.137203
https://doi.org/10.1103/PhysRevLett.88.137203
https://doi.org/10.1103/PhysRevLett.88.137203
https://doi.org/10.1038/s42005-018-0034-3
https://doi.org/10.1038/s42005-018-0034-3
https://doi.org/10.1038/s42005-018-0034-3
https://doi.org/10.1038/s42005-018-0034-3
https://doi.org/10.1063/1.2186278
https://doi.org/10.1063/1.2186278
https://doi.org/10.1063/1.2186278
https://doi.org/10.1063/1.2186278
https://doi.org/10.1063/1.2186278
https://doi.org/10.1103/PhysRevLett.94.237202
https://doi.org/10.1103/PhysRevLett.94.237202
https://doi.org/10.1103/PhysRevLett.94.237202
https://doi.org/10.1103/PhysRevLett.94.237202
https://doi.org/10.1103/PhysRevLett.87.177201
https://doi.org/10.1103/PhysRevLett.87.177201
https://doi.org/10.1103/PhysRevLett.87.177201
https://doi.org/10.1103/PhysRevLett.87.177201
https://doi.org/10.1103/PhysRevB.80.104431
https://doi.org/10.1103/PhysRevB.80.104431
https://doi.org/10.1103/PhysRevB.80.104431
https://doi.org/10.1103/PhysRevB.80.104431
https://doi.org/10.1103/PhysRevB.66.094420
https://doi.org/10.1103/PhysRevB.66.094420
https://doi.org/10.1103/PhysRevB.66.094420
https://doi.org/10.1103/PhysRevB.66.094420
https://doi.org/10.1088/0022-3719/19/34/019
https://doi.org/10.1088/0022-3719/19/34/019
https://doi.org/10.1088/0022-3719/19/34/019
https://doi.org/10.1088/0022-3719/19/34/019
https://doi.org/10.1103/PhysRevLett.88.245701
https://doi.org/10.1103/PhysRevLett.88.245701
https://doi.org/10.1103/PhysRevLett.88.245701
https://doi.org/10.1103/PhysRevLett.88.245701
https://doi.org/10.1103/PhysRevE.70.051605
https://doi.org/10.1103/PhysRevE.70.051605
https://doi.org/10.1103/PhysRevE.70.051605
https://doi.org/10.1103/PhysRevE.70.051605


PHASE-FIELD CRYSTAL FOR AN ANTIFERROMAGNET … PHYSICAL REVIEW E 100, 022128 (2019)

[22] P. F. Tupper and M. Grant, Europhys. Lett. 81, 40007 (2008).
[23] J. Mellenthin, A. Karma, and M. Plapp, Phys. Rev. B 78,

184110 (2008).
[24] G. I. Tóth, T. Pusztai, G. Tegze, G. Tóth, and L. Gránásy, Phys.

Rev. Lett. 107, 175702 (2011).
[25] H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G. L. Tóth,

G. Tegze, and L. Gránásy, Adv. Phys. 61, 665 (2012).
[26] L. Gránásy, F. Podmaniczky, G. I. Tóth, G. Tegze, and T.

Puszta, Chem. Soc. Rev. 43, 2159 (2014).
[27] J. Berry, N. Provatas, J. Rottler, and C. W. Sinclair, Phys. Rev.

B 86, 224112 (2012).
[28] J. Berry, N. Provatas, J. Rottler, and C. W. Sinclair, Phys. Rev.

B 89, 214117 (2014).
[29] K. R. Elder, N. Provatas, J. Berry, P. Stefanovic, and M. Grant,

Phys. Rev. B 75, 064107 (2007).
[30] N. Faghihi, N. Provatas, K. R. Elder, M. Grant, and M.

Karttunen, Phys. Rev. E 88, 032407 (2013).
[31] M. Seymour, F. Sanches, K. Elder, and N. Provatas, Phys. Rev.

B 92, 184109 (2015).
[32] M. Greenwood, N. Provatas, and J. Röttler, Phys. Rev. Lett. 105,

045702 (2010).
[33] M. Greenwood, J. Röttler, and N. Provatas, Phys. Rev. E 83,

031601 (2011).
[34] M. Greenwood, N. Ofori-Opoku, J. Röttler, and N. Provatas,

Phys. Rev. B 84, 064104 (2011).
[35] N. Faghihi, S. Mkhonta, K. R. Elder, and M. Grant, Eur. Phys.

J. B 91, 55 (2018).

[36] S. K. Mkhonta, K. R. Elder, and Z.-F. Huang, Phys. Rev. Lett.
111, 035501 (2013).

[37] A. R. Pereira and G. M. Wysin, Phys. Rev. B 73, 214402 (2006).
[38] K. Subbaraman, C. E. Zaspel, and J. E. Drumheller, Phys. Rev.

Lett. 80, 2201 (1998).
[39] P. M. Chaikin and T. C Lubensky, Principles of Condensed Mat-

ter Physics (Cambridge University Press, Cambridge, 2000).
[40] H. Kawamura, J. Appl. Phys. 63, 3086 (1988).
[41] T. Obuchi and H. Kawamura, J. Phys. Soc. Jpn. 81, 054003

(2012).
[42] To calculate the chirality we need to find the nearest neighbors

of the ith atomic site, therefore we need a threshold distance,
d0, based on which we can decide whether an arbitrary atom
is a neighbor to the ith atom or not. We chose d0 by knowing
the value of the interatomic distance in a hexagonal lattice in
the phase-field crystal formalism (with the chosen free energy
parameters) and adopting a value for d0 which is slightly larger
than the interatomic distance.

[43] F. P. Chmiel, N. W. Price, R. D. Johnson, A. D. Lamirand, J.
Schad, G. van der Laan, D. T. Harris, J. Irwin, M. S. Rzchowski,
C. B. Eom et al., Nat. Mater. 17, 581 (2018).

[44] J. Wu, D. Carlton, J. S. Park, Y. Meng, E. Arenholz, A. Doran,
A. T. Young, A. Scholl, C. Hwang, H. W. Zhao et al., Nat. Phys.
7, 303 (2011).

[45] M. A. Griffith, A. S. T. Pires, and J. R. Sousa, Solid State
Commun. 152, 1850 (2012).

[46] F. B. Anderson and H. B. Callen, Phys. Rev. 136, A1068 (1964).

022128-9

https://doi.org/10.1209/0295-5075/81/40007
https://doi.org/10.1209/0295-5075/81/40007
https://doi.org/10.1209/0295-5075/81/40007
https://doi.org/10.1209/0295-5075/81/40007
https://doi.org/10.1103/PhysRevB.78.184110
https://doi.org/10.1103/PhysRevB.78.184110
https://doi.org/10.1103/PhysRevB.78.184110
https://doi.org/10.1103/PhysRevB.78.184110
https://doi.org/10.1103/PhysRevLett.107.175702
https://doi.org/10.1103/PhysRevLett.107.175702
https://doi.org/10.1103/PhysRevLett.107.175702
https://doi.org/10.1103/PhysRevLett.107.175702
https://doi.org/10.1080/00018732.2012.737555
https://doi.org/10.1080/00018732.2012.737555
https://doi.org/10.1080/00018732.2012.737555
https://doi.org/10.1080/00018732.2012.737555
https://doi.org/10.1039/c3cs60225g
https://doi.org/10.1039/c3cs60225g
https://doi.org/10.1039/c3cs60225g
https://doi.org/10.1039/c3cs60225g
https://doi.org/10.1103/PhysRevB.86.224112
https://doi.org/10.1103/PhysRevB.86.224112
https://doi.org/10.1103/PhysRevB.86.224112
https://doi.org/10.1103/PhysRevB.86.224112
https://doi.org/10.1103/PhysRevB.89.214117
https://doi.org/10.1103/PhysRevB.89.214117
https://doi.org/10.1103/PhysRevB.89.214117
https://doi.org/10.1103/PhysRevB.89.214117
https://doi.org/10.1103/PhysRevB.75.064107
https://doi.org/10.1103/PhysRevB.75.064107
https://doi.org/10.1103/PhysRevB.75.064107
https://doi.org/10.1103/PhysRevB.75.064107
https://doi.org/10.1103/PhysRevE.88.032407
https://doi.org/10.1103/PhysRevE.88.032407
https://doi.org/10.1103/PhysRevE.88.032407
https://doi.org/10.1103/PhysRevE.88.032407
https://doi.org/10.1103/PhysRevB.92.184109
https://doi.org/10.1103/PhysRevB.92.184109
https://doi.org/10.1103/PhysRevB.92.184109
https://doi.org/10.1103/PhysRevB.92.184109
https://doi.org/10.1103/PhysRevLett.105.045702
https://doi.org/10.1103/PhysRevLett.105.045702
https://doi.org/10.1103/PhysRevLett.105.045702
https://doi.org/10.1103/PhysRevLett.105.045702
https://doi.org/10.1103/PhysRevE.83.031601
https://doi.org/10.1103/PhysRevE.83.031601
https://doi.org/10.1103/PhysRevE.83.031601
https://doi.org/10.1103/PhysRevE.83.031601
https://doi.org/10.1103/PhysRevB.84.064104
https://doi.org/10.1103/PhysRevB.84.064104
https://doi.org/10.1103/PhysRevB.84.064104
https://doi.org/10.1103/PhysRevB.84.064104
https://doi.org/10.1140/epjb/e2018-80543-9
https://doi.org/10.1140/epjb/e2018-80543-9
https://doi.org/10.1140/epjb/e2018-80543-9
https://doi.org/10.1140/epjb/e2018-80543-9
https://doi.org/10.1103/PhysRevLett.111.035501
https://doi.org/10.1103/PhysRevLett.111.035501
https://doi.org/10.1103/PhysRevLett.111.035501
https://doi.org/10.1103/PhysRevLett.111.035501
https://doi.org/10.1103/PhysRevB.73.214402
https://doi.org/10.1103/PhysRevB.73.214402
https://doi.org/10.1103/PhysRevB.73.214402
https://doi.org/10.1103/PhysRevB.73.214402
https://doi.org/10.1103/PhysRevLett.80.2201
https://doi.org/10.1103/PhysRevLett.80.2201
https://doi.org/10.1103/PhysRevLett.80.2201
https://doi.org/10.1103/PhysRevLett.80.2201
https://doi.org/10.1063/1.340905
https://doi.org/10.1063/1.340905
https://doi.org/10.1063/1.340905
https://doi.org/10.1063/1.340905
https://doi.org/10.1143/JPSJ.81.054003
https://doi.org/10.1143/JPSJ.81.054003
https://doi.org/10.1143/JPSJ.81.054003
https://doi.org/10.1143/JPSJ.81.054003
https://doi.org/10.1038/s41563-018-0101-x
https://doi.org/10.1038/s41563-018-0101-x
https://doi.org/10.1038/s41563-018-0101-x
https://doi.org/10.1038/s41563-018-0101-x
https://doi.org/10.1038/nphys1891
https://doi.org/10.1038/nphys1891
https://doi.org/10.1038/nphys1891
https://doi.org/10.1038/nphys1891
https://doi.org/10.1016/j.ssc.2012.06.019
https://doi.org/10.1016/j.ssc.2012.06.019
https://doi.org/10.1016/j.ssc.2012.06.019
https://doi.org/10.1016/j.ssc.2012.06.019
https://doi.org/10.1103/PhysRev.136.A1068
https://doi.org/10.1103/PhysRev.136.A1068
https://doi.org/10.1103/PhysRev.136.A1068
https://doi.org/10.1103/PhysRev.136.A1068

