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We set up a framework for quantum stochastic thermodynamics based solely on experimentally controllable
but otherwise arbitrary interventions at discrete times. Using standard assumptions about the system-bath
dynamics and insights from the repeated interaction framework, we define internal energy, heat, work, and
entropy at the trajectory level. The validity of the first law (at the trajectory level) and the second law (on
average) is established. The theory naturally allows one to treat incomplete information and it is able to smoothly
interpolate between a trajectory-based and an ensemble level description. We use our theory to compute the
thermodynamic efficiency of recent experiments reporting on the stabilization of photon number states using
real-time quantum feedback control. Special attention is paid to limiting cases of our general theory, where we
recover or contrast it with previous results. We point out various interesting problems, which the theory is able
to address rigorously, such as the detection of quantum effects in thermodynamics.
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I. INTRODUCTION

The nonequilibrium thermodynamics of small Markovian
systems can be considered to have been well studied for
decades if we are interested only in ensemble-average quan-
tities of internal energy, heat, work, or entropy [1–6]. For
classical systems it has become clear during the past 25 years
that also fluctuations in thermodynamic quantities bear impor-
tant information and that those fluctuations are constrained
by fundamental symmetry relations that are valid arbitrarily
far from equilibrium. These symmetry relations are known
as fluctuation theorems [7,8]. For a given realization of a
stochastic process, an understanding of the fluctuation theo-
rem required the extension of the ensemble-average energetic
[9,10] and entropic [11] description to the level of single
stochastic trajectories. The resulting theoretical framework is
called stochastic thermodynamics [12,13].

Quantum stochastic thermodynamics tries to generalize
classical stochastic thermodynamics to systems whose quan-
tum nature cannot be neglected. Obviously, the very definition
of a trajectory-dependent quantity is nontrivial as any mea-
surement disturbs the system and the meaning of a trajectory
is a priori not clear. We note that incomplete and disturbing
measurements are also prevalent in classical systems [14], but
exploring their consequences for classical stochastic thermo-
dynamics has raised relatively little attention so far [15–21].

Soon after the discovery of classical fluctuation theorems,
much effort was devoted to derive fluctuation theorems for
quantum systems. A theoretically successful strategy is the
two-point measurement approach [22,23], which requires one
to measure the energy of the system and the bath at the
beginning and at the end of the thermodynamic process.
Obviously, for a bath with its prosaic 1023 degrees of freedom
such a scheme is not even for a classical system practically
feasible. In addition, the resulting statistics for internal energy

and work cannot fulfill the first law if the initial state is not
diagonal in the energy eigenbasis [24]. Nevertheless, within
this approach quantum fluctuation theorems can be derived
which are formally identical to their classical counterpart.
Thus, by measuring the whole universe (system plus bath),
the two-point measurement approach circumvents the need
to define thermodynamic quantities along a specific system
trajectory. Also alternative and complementary approaches
based on interferometric measurements [25–29], a single
projective measurement [30,31], or no measurement at all
[32,33] have been put forward and the semiclassical limit
was studied too [34–36]. To conclude, even though those ap-
proaches are theoretically powerful, they are experimentally
hard to confirm and an important feature of classical stochastic
thermodynamics is still missing, namely, the definition of
internal energy and entropy along a given quantum trajectory.

Exceptions are quantum systems which, when perfectly
observed in the energy eigenbasis, follow a Markovian rate
master equation. This is approximately the case in electronic
nanostructures (quantum dots) in the sequential tunneling
regime [37–40], where the framework of classical stochastic
thermodynamics was carried over one by one. Interestingly,
trying to adopt this picture to more general quantum dynam-
ics results in unconventional definitions for thermodynamic
quantities [41], not to mention the measurement problem.
This further demonstrates the need for a radically different
approach to quantum stochastic thermodynamics.

One such approach makes use of the framework of repeated
interactions [42–44]. Therein, the static bath is replaced by an
external stream of ancilla systems which are put in contact
with the system one by one and are designed to simulate a
thermal bath (arbitrary initial states of the bath were recently
treated in Ref. [45]). If the external systems are projectively
measured before and after the interaction, a trajectory-based
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formulation becomes possible similar to classical stochastic
thermodynamics. Although such a description yields theoreti-
cal insights, in experimental reality a system is usually also in
permanent contact with a bath.

An experimentally closer approach uses a technique which
was discovered in quantum optics in order to describe the
stochastic evolution of a quantum system based on monitoring
the environment of the system [46–48]. Given such a measure-
ment scheme, the system dynamics can be unraveled by de-
scribing it in terms of a stochastic Schrödinger or master equa-
tion. Combined with this dynamical description, researchers
recently applied the ideas of stochastic thermodynamics to
such quantum systems [49–55]; a completely general picture,
however, is still missing. For instance, a trajectory-dependent
system entropy was never introduced, making it hard to study
entropy production along a single trajectory or on average
(specific fluctuation theorems based on a particular choice
of the backward dynamics were studied in Refs. [51,53–55];
we will return to this in Sec. VII). Furthermore, the above
publications focused only on efficient measurements in which
the state of the system along a particular trajectory is always
pure (for some specific scenarios first steps were already
undertaken to overcome this limitation [50,53]). Finally, only
simple protocols excluding feedback control have been stud-
ied so far (Refs. [50,51] consider also very simple feedback
schemes for specific systems).

To conclude, apart from a few model specific studies, a
common feature of all previous approaches is the reliance
on a perfectly monitored system and environment such that
the system is always in a pure state along every trajectory. In
this sense, there is no essential departure from the two-point
measurement scheme in which perfect knowledge of every
involved degree of freedom is crucial.

A. Results and outline

We here put forward an approach which we call opera-
tional quantum stochastic thermodynamics because it places
the experimenter in the foreground. A stochastic trajectory,
as well as the corresponding thermodynamic quantities of
internal energy, heat, work, and entropy along such a trajec-
tory, is defined solely in terms of experimentally meaningful
interventions or control operations of the system dynam-
ics. Dynamically, our description rests on recent theoretical
progress in describing quantum causal models or quantum
stochastic processes [56–65]. Within this picture it is possible
to describe the effect of arbitrary control operations happening
at arbitrary discrete times applied to an arbitrary quantum
system in an experimentally measurable way. It is different
from conventional quantum trajectory approaches and we will
start the paper by discussing it in Sec. II.

In Sec. III we then connect this approach to the framework
of repeated interactions. Partially based on insights from
earlier work [66], we will see in Sec. IV that this allows us to
find an unambiguous first and second law of thermodynamics
for each single control operation.

The only standard assumption we are here using is that the
system in the absence of control operations can be modeled by
a quantum master equation with a transparent thermodynamic
interpretation describing a driven system coupled to a single

heat bath.1 Based on the repeated interaction picture, we will
then see in Sec. IV that the definitions of internal energy and
system entropy emerge naturally out of the framework if we
properly take into account all interacting subsystems. In fact,
following the credo “information is physical” [67], we will see
that it is necessary to include the full information generated
by the measurements in the entropic balance from the begin-
ning on. With this step we also depart from the approaches
reviewed above, which need to be modified in the presence of
feedback control (see Ref. [68] for an introduction). The first
law at the trajectory level and the second law on average are
finally verified.

This concludes the first part of the paper, which is about
the basic framework of operational quantum stochastic ther-
modynamics. Its characteristics include the following.

(i) It neither relies on the ability to have control about the
environment nor requires continuous measurements.

(ii) By allowing one to treat any kind of incomplete infor-
mation, it respects experimental reality where every measure-
ment is imprecise and imperfect.

(iii) It shows that any conceivable feedback scenario has a
consistent thermodynamic interpretation.2

(iv) The notion of stochastic entropy for a quantum system
is defined and the second law follows without the need to
introduce any backward dynamics.

(v) The framework reveals that quantum stochastic thermo-
dynamics is more than a mere extension of classical stochastic
thermodynamics. Any measurement strategy has in general a
nontrivial impact on the quantum system and hence there is a
plurality of first and second laws in quantum thermodynamics
depending on how we measure the system. Note that these
many laws of thermodynamics are conceptually different from
the many second laws of Ref. [69].

The rest of the paper is about illuminating applications and
special cases of the general theory.

(vi) To illustrate points (ii) and (iii), we analyze in Sec. V
the quantum stochastic thermodynamics of recent experi-
ments reporting on the preparation and stabilization of photon
number states [70,71]. We uncover that the efficiency to
prepare such states is remarkably high.

(vii) We consider the case of projective measurements in
detail and compare our definitions with the recently intro-
duced notion of quantum heat [51] in Sec. VI A.

(viii) In Sec. VI B we provide a resolution to the no-
go theorem derived by Perarnau-Llobet et al. [24], which
shows that the conventional definition of work used in the
two-point measurement scheme [22,23] needs careful reex-
amination. Indeed, we show that it is inconsistent with our
definition of stochastic work.

(ix) Sections VI C–VI E provide important consistency
checks. We show that the definitions of standard quantum

1An extension beyond this Markovian picture is however possible
in some cases (see Sec. VII B).

2This includes the case of real-time feedback control, where, in
contrast to deterministic feedback control where the times of mea-
surement and feedback are predetermined [68], the control strategy
is adapted during the run of the experiment. It also includes the case
of time-delayed feedback control.
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thermodynamics [3–6] and the repeated interaction frame-
work [66] are contained in our general approach. They arise,
however, not by averaging over many trajectories, but by
deciding not to do any measurements at all. In the limit of a
perfectly observed classical system we recover the definitions
of internal energy, heat, and work of standard stochastic
thermodynamics. Only our second laws differ because our
framework remains valid in the case of feedback control,
whereas the conventional framework [10,12,13] needs to be
modified then [68].

(x) In Secs.VI F and VI G we discuss particularly inter-
esting cases which allow us to reduce the complexity of our
general framework.

The paper ends with some remarks and an outlook. Sec-
tion VII A discusses the case of multiple heat baths, possible
second laws that follow from a time-reversed process, and
the necessity to use the repeated interaction framework and
to focus on incomplete information from the beginning on. In
Sec. VII B we point out interesting future applications such
as finding true quantum features in quantum heat engines,
relations to Leggett-Garg inequalities, and the detection of
non-Markovian effects in thermal machines.

B. Basic notation

The state of a system X at time t is described by a
density operator ρX (t ). The corresponding Hilbert space of
the system is denoted by HX and the Hamiltonian by HX

or HX (λt ) if it depends on an externally controlled time-
dependent parameter λt . The von Neumann entropy of an
arbitrary state ρX is defined as SvN(ρX ) ≡ −trX {ρX ln ρX }
and the Shannon entropy of an arbitrary probability distri-
bution p(x) is SSh[p(x)] ≡ −∑

x p(x) ln p(x). To characterize
the correlations of a bipartite system XY in state ρXY , we
use the always positive mutual information IX :Y ≡ SvN(ρX ) +
SvN(ρY ) − SvN(ρXY ). It is closely related to the always posi-
tive relative entropy D[ρ||σ ] ≡ tr{ρ(ln ρ − ln σ )} by noting
that IX :Y = D[ρXY ‖ρX ⊗ ρY ], where ρX/Y ≡ trY/X {ρXY } de-
notes the marginal state. Furthermore, we denote superoper-
ators, which map operators onto operators, by calligraphic
letters, e.g., U , V , P , etc.

Below we will see that a stochastic trajectory is specified
by a sequence of measurement results or outcomes rn, . . . , r1,
which were obtained at times tn > · · · > t1. The sequence of
outcomes will be denoted by rn ≡ (rn, . . . , r1). The state of
a system X at time t > tn conditioned on such a sequence
will be denoted by ρX (t, rn). The ensemble-average state is
given by ρX (t ) = ∑

rn
p(rn)ρX (t, rn), where p(rn) denotes the

probability of obtaining the sequence of outcomes rn. We will
also keep this notation for thermodynamic quantities such as
internal energy E , heat Q, work W , and entropy S (which pos-
sibly have additional subscripts and superscripts). This means,
for instance, that the stochastic internal energy depending on
the outcomes rn is denoted by E (t, rn) whereas the ensemble-
average internal energy is written E (t ) = ∑

rn
p(rn)E (t, rn).

II. PROCESS TENSOR

Classical stochastic thermodynamics is based on the theory
of classical stochastic processes. A corresponding quantum

thermodynamic framework needs to be based on the theory
of quantum stochastic processes. Recently, there has been a
great deal of progress on this topic and we will here use
the process tensor to represent a quantum stochastic process
[61–65]. It is the extension of quantum superchannels [72,73]
to multiple control operations and it is closely related to the
quantum comb framework studied in Refs. [56,57]. Similar
frameworks have been developed also within the emergent
field of quantum causal modeling [58–60] and even earlier
attempts in that direction can be found in Refs. [74,75]. The
basic insight behind this formulation is to treat the control
operations performed on the system as the elementary objects
and not the state of the system itself because the latter in
general cannot be fully controlled. Here the terminology
“control operation” is used in a wide sense and could describe
any action of an external agent such as measurements, unitary
kicks, state preparations, noise addition, feedback control
operations, etc. Mathematically, we only require that each
control operation is described by a completely positive (CP)
map. The following review about the basics of the process
tensor requires some knowledge about quantum operations
and quantum measurement theory; see Refs. [76–80] for
introductory texts.

As usual, we consider a system S coupled to a bath B
described by an arbitrary initial system-bath state ρSB(t0).
The composite system-bath state evolves unitarily up to time
t1 � t0 according to the Liouville–von Neumann equation
∂tρSB(t ) = −i[Htot(λt ), ρSB(t )] (h̄ ≡ 1) with global Hamilto-
nian

Htot(λt ) = HS (λt ) + HSB + HB. (1)

Here the system Hamiltonian HS might depend on some
arbitrary time-dependent control protocol λt , but not the in-
teraction Hamiltonian HSB and the bath Hamiltonian HB. The
resulting unitary evolution is described by the superoperator

U1,0ρSB(t0) ≡ U (t1, t0)ρSB(t0)U †(t1, t0), (2)

where U (t1, t0) ≡ T+ exp[−i
∫ t1

t0
dt Htot(λt )] with the time-

ordering operator T+.
Then, at time t1 > t0 we interrupt the evolution by a CP

operation A(r1), which only acts on the system and yields out-
come r1 (for instance, the result of a projective measurement).
Mathematically, we write the operation as

ρ̃SB(t+
1 , r1) = [A(r1) ⊗ IB]ρSB(t−

1 ). (3)

Here t±
1 = limε↘0(t1 ± ε) denotes a time shortly after or

before t1 and IB denotes the identity superoperator acting
on B. Note that we assume the control operation to happen
instantaneously. It ensures that the experimenter has complete
control over the operation: If the control operation takes
longer, it would also affect the bath and a clear separation
of the dynamics into a dynamics induced by the bath or the
external agent becomes problematic. The final state of knowl-
edge after the operation ρ̃SB(t+

1 , r1) can explicitly depend on
the outcome r1. Since A(r1) is CP, it admits an operator-sum
(Kraus) representation of the form

A(r1)ρS =
∑

α

Aα (r1)ρSA†
α (r1), (4)
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but we do not require it to be trace preserving. For this reason
we have used a tilde in Eq. (3) to emphasize that the state is not
normalized. The probability to observe outcome r1 at time t1
is p(r1) = trSB{ρ̃SB(t+

1 , r1)}. Then the normalized system state
after the control operation at time t1 becomes ρS (t+

1 , r1) =
A(r1)ρS (t−

1 )/p(r1). Notice that the map A(r1)/p(r1) is com-
pletely positive and trace preserving (CPTP), but nonlinear in
the state ρS (t−

1 ). It is the quantum analog of Bayes’ rule. The
average system state is accordingly

ρS (t+
1 ) =

∑
r1

p(r1)ρS (t+
1 , r1) =

∑
r1

A(r1)ρS (t−
1 ). (5)

This would also correspond to our state of knowledge if
we ignore the outcome r1. Notice that the average control
operation

∑
r1
A(r1) is now a CPTP map and can be written as∑

r1

A(r1)ρS =
∑
r1,α

Aα (r1)ρSA†
α (r1), (6)

with
∑

r1,α
A†

α (r1)Aα (r1) = 1S .
We then iterate the above procedure by letting the

joint system-bath state evolve unitarily up to time t2 > t1:
ρSB(t−

2 , r1) = U2,1(r1)ρSB(t+
1 , r1). Now, however, the unitary

operation is allowed to depend on r1 by changing the control
protocol of the system Hamiltonian HS[λt (r1)]. This actu-
ally corresponds to the simplest form of measurement-based
quantum feedback control. Then, at time t2 we subject the
system to another CP control operation A(r2|r1), which is
also allowed to depend on r1 and which gives outcome r2.
Thus, ρSB(t+

2 , r2) = [A(r2|r1) ⊗ IB]ρSB(t−
2 , r1), where r2 =

(r2, r1).
We can reiterate the above procedure by letting the external

agent interrupt the unitary system-bath evolution at times tn >

tn−1 > · · · > t1. Let us denote by t an arbitrary time after the
nth but before the (n + 1)th control operation, i.e., tn+1 > t >

tn. The unnormalized state of the system conditioned on the
sequence of outcomes rn at such a time t is then given by

ρ̃S (t, rn) = T[A(rn|rn−1), . . . ,A(r1)]

≡ trB{Ut,n(rn)A(rn|rn−1) · · ·U2,1(r1)

×A(r1)U1,0ρSB(t0)}. (7)

Here we have introduced the process tensor T. Its variable
inputs are the set of control operations {A(ri|ri−1)}n

i=1, but not
the initial state of the system, the bath, or the composite. The
trace of the process tensor gives the probability to observe the
sequence of outcomes rn,

p(rn) = trS{T[A(rn|rn−1), . . . ,A(r1)]}, (8)

such that the normalized state of the system can be written as

ρS (t, rn) = T[A(rn|rn−1), . . . ,A(r1)]

p(rn)
. (9)

The process tensor is an operationally well-defined object for
any open system dynamics (in particular for any environment)
for any possible, physically admissible form of interventions
in an experiment. It is different from typical quantum tra-
jectory methods or quantum jump expansions [46–48,78–80],
which rely on continuously monitoring the environment of the
system. This framework is included as a limiting case in the
process tensor, but it does not rely on it: any set of discrete

times is allowed and the (often uncontrollable) environment
does not need to be monitored. For further research on this
topic see Refs. [56–65].

III. PROCESS TENSOR FROM REPEATED
INTERACTIONS

In practice, the control operations A(rn|rn−1) do not hap-
pen spontaneously but require an active intervention from the
outside. They are typically implemented by letting the system
interact for a short time with an externally prepared apparatus
(e.g., a memory or detector). It is the interaction time and
the initial state of the apparatus which can be usually well
controlled experimentally. This insight will naturally lead us
to the framework of repeated interactions, in which we will
model at least parts of the external apparatus explicitly.

The main mathematical insight of this section rests on
Stinespring’s theorem [81], which states that any CPTP map
A can be seen as the reduced dynamics of some unitary
evolution in an extended space. More precisely, we can always
write

AρS = trU {V ρS ⊗ ρUV †}, (10)

where we labeled the additional subsystem by U for unit in
view of the thermodynamic framework considered later on
and in unison with Ref. [66]. The unit is in an initial state
ρU and V denotes the unitary operator which acts jointly
on SU . Furthermore, any non-trace-preserving CP map A(r)
with outcome r can be modeled as [78]

A(r)ρS = trU {PU (r)V ρS ⊗ ρUV †PU (r)}, (11)

where each positive operator PU (r) acts only on HU and
fulfills

∑
r P2

U (r) = 1U . Notice that Eq. (10) can be recovered
from Eq. (11) either by choosing PU (r) = 1U or by summing
over r. In accordance with our previous superoperator no-
tation, we introduce PU (r)ρU ≡ PU (r)ρU PU (r) and VρSU ≡
V ρSUV † such that we can write Eq. (11) in the shorter form
A(r)ρS = trU {PU (r)VρS ⊗ ρU }.

It is worth remarking that the above representation of the
control operation is not unique. What we are aiming at here
is a minimal consistent thermodynamic description for any
given set of control operations. If additional physical insights
are available, they have to be taken into account (see Sec. V
for a clear experimental example). The only important point,
however, is that the general operator-sum representation (4)
can be decomposed into more primitive operations (a unitary
and a measurement of the unit).

The whole process tensor T[A(rn|rn−1), . . . ,A(r1)] can
then be seen as describing the reduced dynamics of a system
coupled to a stream of units, which interact sequentially
at times tn > · · · > t1 with the system (see Fig. 1). This
constitutes the framework of repeated interactions. Then the
unnormalized joint state of the system and all units, which
have interacted with the system up to time t (tn+1 > t > tn)
with outcome rn, can be written as

ρ̃SU (n)(t, rn) = trB{Ut,tn (rn)PU (n)(rn|rn−1)VSU (n)(rn−1) · · ·
×U2,1(r1)PU (1)(r1)VSU (1)

×U1,0[ρSB(t0) ⊗ ρU (n)(rn−1) ⊗ · · · ⊗ ρU (1)]}.
(12)
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FIG. 1. Sketch of the setup. A system S (gray circle) is in contact
with a bath B (red box, later taken to be at inverse temperature β)
undergoing in general dissipative dynamics. The evolution of the
open quantum system is interrupted at times tn by control operations
A(rn|rn−1), which are triggered by the interaction with an external
ancilla system called the unit U (n) (blue circles). Each control
operation has an outcome rn, which is recorded in a memory (e.g.,
a tape of bits), and future control operations are allowed to depend
on previous outcomes. The memory for future outcomes is set in a
standard state 0.

Except for the unitary system-bath evolution superoperator U
(where the subscripts denote time intervals), subscripts are
used to denote the Hilbert space on which the respective
(super)operator is acting. In this respect, the joint space of all
n units is denoted by U (n). Note that VSU (n)(rn−1) depends
on all previous outcomes rn−1, but due to causality it cannot
depend on the nth outcome rn. The same holds true for the
initial state ρU (n)(rn−1) of the nth unit and also the chosen pro-
jection operator PU (n)(rn|rn−1) can depend on rn−1. Therefore,
the external agent has all the freedom one needs to engineer a
desired control operation A(rn|rn−1). By construction, after
tracing out the units, we obtain the process tensor for the
system T[A(rn|rn−1), . . . ,A(r1)] = trU (n){ρ̃SU (n)(t, rn)}. As
it is in most situations obvious from the context which super-
operator acts on which object living in which space, we will
usually drop the subscripts S,U (n), . . . on superoperators.

IV. OPERATIONAL QUANTUM STOCHASTIC
THERMODYNAMICS

A. Preliminary considerations

The process tensor is a formal object which does not make
any assumptions about the system-bath dynamics. On the
contrary, the standard ensemble-average (or, better, unmea-
sured) framework of quantum thermodynamics relies on a
weakly coupled, memoryless, and macroscopic bath [3–6]. In
this section we remain within this weak-coupling paradigm
because possible extensions beyond the weak-coupling and
Markovian assumption have only recently drawn attention
(see also Sec. VII B). Furthermore, we consider in this section

only the case of a single heat bath at inverse temperature
β = 1/T (kB ≡ 1). The extension to multiple heat baths is
subtle (see Sec. VII A).

Let us focus on the interval (tn−1, tn) (excluding the control
operations at the boundaries) and let ρS (t ) be the system state
at time t ∈ (tn−1, tn) (which later on is allowed to depend on
rn−1). The state function internal energy and system entropy
for an arbitrary system state ρS (t ) are defined as

ES (t ) ≡ trS{HS (λt )ρS (t )}, (13)

SS (t ) ≡ SvN[ρS (t )]. (14)

According to the first law, the change in system energy
	E (n)

S ≡ ES (t−
n ) − ES (t+

n−1) can be split into heat and work
	E (n)

S = W (n)
S + Q(n)

S by defining

W (n)
S ≡

∫ t−
n

t+
n−1

dt trS

{
∂HS (λt )

∂t
ρS (t )

}
, (15)

Q(n)
S ≡

∫ t−
n

t+
n−1

dt trS

{
HS (λt )

∂ρS (t )

∂t

}
. (16)

Furthermore, the validity of the second law can also be derived
and states that the entropy production is always positive,


(n) ≡ 	S(n)
S − βQ(n)

S � 0, (17)

where 	S(n)
S ≡ SS (t−

n ) − SS (t+
n−1).

Our goal in the rest of this section is to find definitions
of internal energy, work, heat, and system entropy along a
single trajectory, where a trajectory is defined by the observed
sequence of outcomes rn. The sought-after definitions are
required to be intuitively meaningful and to fulfill the first law
at the trajectory level and the second law on average. Further
appeal to our definitions will be added in Secs. V–VII.

Note that, after tomographic reconstruction of the process
tensor (see Sec. II), we know the conditional system states
ρS (t±

n , rn) only right before or right after the nth control
operation, but not in between for tn−1 < t < tn. To compute
the work (15) or heat (16) in between two control operations,
additional theoretical input is required, e.g., by solving the
master equation for the system or by other forms of inference.
This ensures that we recover the standard weak-coupling
framework of quantum thermodynamics in the absence of
any control operations (see Sec. VI C). Nevertheless, as it
increases the computational effort, we present in Sec. VI G
possible ways to avoid any additional theory input.

For definiteness, we aim at a stochastic thermodynamic
description in the time interval (tn−1, tn] starting shortly after
the (n − 1)th control operation and ending shortly after the
nth control operation. The change in any state function X over
the complete interval is denoted by 	X (n], whereas 	X (n)

denotes the change in (tn−1, tn) (excluding the nth control
operation) and 	X ctrl the change due to the control operation
only. Changes in the respective time intervals of any quantity
which is not a state function are denoted without a 	 (X (n],
X (n), or X ctrl).
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B. Stochastic energy and first law

To formulate the first law at the trajectory level correctly,
we need to take into account the internal energy of the system
and all units. Thus, we define the trajectory-dependent internal
energy

ESU (n)(t, rn) ≡ trSU (n){HSU (n)(λt , rn)ρSU (n)(t, rn)}, (18)

where HSU (n)(λt , rn) = HS (λt , rn) + ∑n
i=1 HU (i) denotes the

sum of the system and all unit Hamiltonians. Since the Hamil-
tonian is additive, the internal energy splits into its marginal
contributions in an obvious way,

ESU (n)(t, rn) = ES (t, rn) +
n∑

i=1

EU (i)(t, rn). (19)

Notice that it is always simple to get rid of the units in the en-
ergetic description by assuming that HU (i) ∼ 1U (i). However,
the energetic changes of the units can bear some interesting
nontrivial features. For instance, it is not sufficient to consider
only the actual nth unit in the energetic balance: In our
general theory the energy of previous units can change even
though they are physically decoupled from the system. This
phenomenon does not necessarily require quantum entangle-
ment and simply occurs because our state of knowledge about
past units U (i < n) can change depending on the outcome rn

(discussed below).
In the absence of any control operations, the first law

simply follows from the preceding section and reads

	E (n)
S (rn−1) = W (n)

S (rn−1) + Q(n)
S (rn−1), (20)

because the marginal state of the units does not change and
hence 	EU (i) = 0 for all i. Note that the work W (n)

S (rn−1) and
heat Q(n)

S (rn−1) depend on previous outcomes rn−1 for two
reasons: First, the initial system state ρS (t+

n−1, rn−1) depends
on it, and second, the Hamiltonian H (λt , rn−1) can be a
function of it in case we apply feedback control.

The first law during the control operation at time tn is more
interesting as the internal energy of both the system and units
can change. In total, the energetic cost E ctrl of the control
operation is defined by

E ctrl(tn, rn) ≡ 	E ctrl
S (tn, rn) +

n∑
i=1

	E ctrl
U (i)(tn, rn). (21)

It is not a state function and can be split into a worklike and
heatlike contribution,

E ctrl(tn, rn) = W ctrl(tn, rn−1) + Qctrl(tn, rn). (22)

This splitting stems from the convention we used to imple-
ment the control operation A(rn|rn−1) in the repeated interac-
tion framework: We first applied the unitary operation V (rn−1)
to the joint system-unit state and afterward measured the unit
via P (rn). In general, we therefore use the definitions

W ctrl(tn, rn−1)

= trSU (n){HSU (n)(λn, rn−1)[V (rn−1)ρSU (n)(t
−
n , rn−1)

− ρSU (n)(t
−
n , rn−1)]}, (23)

Qctrl(tn, rn) = trSU (n){HSU (n)(λn, rn−1)[ρSU (n)(t
+
n , rn)

−V (rn−1)ρSU (n)(t
−
n , rn−1)]}, (24)

with λn ≡ λtn . Notice that the worklike contribution does
not depend on the actual measurement outcome rn and cor-
responds to the energetic changes caused by a reversible
(unitary) operation. The meaning of the heat injected during
the control operation Qctrl(tn, rn) will be discussed further
below, but we remark that a very similar construction was
called quantum heat in Ref. [51]. A difference, which turns
out to be crucial, is the fact that Elouard et al. applied this
definition for the system only without including the unit in
the description [51], which causes different interpretations.
Furthermore, we are more cautious and do not call it quantum
heat. For further discussion on this topic see Sec. VI A.

For now, let us note that both quantities have some ad-
ditional important properties. First of all, both can be split
additively into changes affecting the system or the units,

W ctrl(rn−1) = W ctrl
S (rn−1) +

n∑
i=1

W ctrl
U (i)(rn−1), (25)

Qctrl(rn) = Qctrl
S (rn) +

n∑
i=1

Qctrl
U (i)(rn). (26)

In particular, the part affecting the system can be expressed
solely in terms of the control operation A(rn|rn−1) and its
average An ≡ ∑

rn
A(rn|rn−1) and is thus independent of the

details of the unit U (n) (see also Ref. [82]). Specifically,

W ctrl
S (rn−1) = trS{HS (λn, rn−1)(An − I )ρS (t−

n , rn−1)}, (27)

Qctrl
S (rn) = trS{HS (λn, rn−1)[A(rn|rn−1) − An]ρS (t−

n , rn−1)}.
(28)

Furthermore, if we use that the marginal state of the previous
n − 1 units does not change during the unitary operation
V (rn−1), we can deduce that the work actually depends only
on the energetic changes of the system and the nth unit,

W ctrl(rn−1) = W ctrl
S (rn−1) + W ctrl

U (n)(rn−1). (29)

The previous properties allow us to deduce two separate first
laws for the control operation

	E ctrl
S (rn) = W ctrl

S (rn−1) + Qctrl
S (rn), (30)

	E ctrl
U (n)(rn) = W ctrl

U (n)(rn−1) + Qctrl
U (n)(rn). (31)

Finally, we can deduce that the average heat injected into
the system or the previous units U (i) (i < n) is always zero.
Specifically,

Qctrl
S,U (i<n)(tn, rn−1) ≡

∑
rn

p(rn|rn−1)Qctrl
S,U (i<n)(tn, rn) = 0, (32)

where p(rn|rn−1) ≡ p(rn)/p(rn−1). Note that Eq. (32) im-
plies Qctrl

S,U (i<n)(tn) = ∑
rn

p(rn)Qctrl
S (rn) = 0. In contrast, for

the actual unit we have Qctrl
U (n)(tn) = 0 if and only if

[HU (n), P(rn|rn−1)] = 0. We remark that it also appears rea-
sonable to call Qctrl heat because the emergence of a projector
P (rn) requires one, in a microscopic picture, to couple the
unit to some macroscopic and classical device, which allows
the unit to lose information irreversibly due to dissipation
and decoherence [83]. This last phenomenological step in
quantum measurement theory is sometimes referred to as the
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Heisenberg cut [79]. It necessarily entails a certain level of
arbitrariness because we do not explicitly model the micro-
scopic interaction between the unit and the final classical
environment. It therefore remains unclear how far any notion
of temperature is associated with the heat Qctrl and we will
investigate this further in the next section.

To conclude, after adding the first laws with and without a
control operation together, we obtain, for the changes over a
complete interval,

	E (n]
S (rn) + 	E (n]

U (n)(rn) = W (n](rn−1) + Q(n](rn), (33)

where we can split the work and heat into W (n](rn−1) =
W ctrl(rn−1) + W (n)

S (rn−1) and Q(n](rn) = Qctrl(rn) + Q(n)
S

(rn−1). If we assume trivial Hamiltonians for the units
(HU (i) ∼ 1U ), we get the simplified first law

	E (n]
S (rn) = W (n]

S (rn−1) + Q(n]
S (rn). (34)

For the entropic balance, in general, it will not be that simple.

C. Stochastic entropy and second law

To account for all entropic changes, we need to consider
not only the system and all units, but also the entropy of the
outcomes rn stored in a classical memory (see Fig. 1). This is
a crucial point, which distinguishes our theory from standard
stochastic thermodynamics where the entropic contribution of
the measurement results is neglected (this will play an impor-
tant role in Sec. VI E). In general, the process tensor depends
explicitly on the knowledge of rn, which cannot be neglected.
Furthermore, it is important to also keep the past information
of all previous units U (i < n) and outcomes rn−1 because we
explicitly allow the current unit and Hamiltonian to depend
on all earlier outcomes (this is, for instance, essential if we
apply time-delayed feedback control). Thus, we define the
stochastic entropy of the process as

SSU (n)(t, rn) ≡ − ln p(rn) + SvN[ρSU (n)(t, rn)]. (35)

Note that the probability p(rn) of a particular trajectory can be
straightforwardly computed from knowing the unnormalized
state of the system [see Eq. (8)]. If this state is not known,
evaluation of Eq. (35) requires knowledge of many experi-
mentally sampled trajectories first. Notice that the same is
true for the definition of the trajectory-dependent entropy in
classical stochastic thermodynamics [11–13].

Next we define the entropy production along a single tra-
jectory over a time interval (tn−1, tn] by adding to the change
in stochastic entropy the heat flow into the system,


(n](rn) ≡ 	S(n]
SU (n)(rn) − βQ(n]

S (rn). (36)

As in classical stochastic thermodynamics, this expression can
have either sign, but on average it is always positive, as we
will show below. Crucially, we have taken into account only
the heat associated with system changes whereas we did not
include Qctrl

U (n) in the entropic balance. This will give us the
correct result in all limiting cases and, if we use the commonly
made assumption that HU (i) ∼ 1U (i), we anyway have Qctrl

U (n) =
0 always. Furthermore, as we do not microscopically model
the final projective measurement step of the units, it is also
unclear which temperature we should associate with heat
changes in the units and hence including Qctrl

U (n) in the second

law would necessarily imply some ambiguity. While these are
all good a posteriori arguments, the question whether there
exist good a priori arguments remains.

To show the positivity of the average entropy production,
it is useful to split it into two contributions similar to the first
law


(n](rn) ≡ 
ctrl(rn) + 
(n)(rn−1), (37)

with


ctrl(rn) = 	Sctrl
SU (n)(rn) − βQctrl

S (rn), (38)


(n)(rn−1) = 	S(n)
SU (n)(rn−1) − βQ(n)

S (rn−1). (39)

We will now show that the second contribution 
(n) is positive
even along a single trajectory, whereas the first contribution

ctrl is positive only on average.

To show 
(n)(rn−1) � 0 we will use Eq. (17), which holds
for an arbitrary initial state ρS (t+

n−1, rn−1), together with the
fact that the system evolution in between two control oper-
ations can be described by a CPTP map independent of the
initial state. This is true within the weak-coupling paradigm
of quantum thermodynamics [3–6] where the time evolution
is governed by a (possible time-dependent) master equation in
Lindblad-Gorini-Kossakowski-Sudarshan form. Let us define
the CPTP map as En = En(rn−1) such that

ρS (t−
n , rn−1) = EnρS (t+

n−1, rn−1). (40)

The inequality 
(n)(rn−1) � 0 can then be derived along the
following lines.

First, by using the mutual information IS:U (n) between the
system and the stream of units, we can split the change in joint
entropy as

	S(n)
SU (n)(rn) = SvN[ρS (t−

n , rn−1)] + SvN[ρU (n)(t
−
n , rn−1)]

− IS:U (n)(t
−
n ) − SvN[ρS (t+

n−1, rn−1)]

− SvN[ρU (n)(t
+
n−1, rn−1)] + IS:U (n)(t

+
n−1). (41)

Since the marginal state of the units does not change under the
action of the CPTP map En, their entropic contribution cancels
out and we can write in short 	S(n)

SU (n)(rn−1) = 	S(n)
S (rn−1) −

	I (n)
S:U (n)(rn−1). Let us now add the entropy flow −βQ(n)

S (rn−1)
into the bath to the entropy balance. From the second law (17)
we can then infer that

	S(n)
SU (n)(rn−1) − βQ(n)

S (rn−1) � −	I (n)
S:U (n)(rn−1). (42)

The positivity of the right-hand side is then guaranteed by
contractivity of relative entropy under CPTP maps [84,85].
More specifically, the chain of (in)equalities

IS:U (n)(t
+
n−1, rn−1)

= D[ρSU (n)(t
+
n−1, rn−1)‖(ρS ⊗ ρU (n) )(t

+
n−1, rn−1)]

� D[EnρSU (n)(t
+
n−1, rn−1)‖En(ρS ⊗ ρU (n) )(t

+
n−1, rn−1)]

= IS:U (n)(t
−
n , rn−1) (43)
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applies, where it is essential that En acts only on S and not on
U (n). This concludes the proof of positivity of 
(n)(rn−1).

Next we will show that 
ctrl(rn) is positive on average.
More specifically, we will show that


ctrl(rn−1) ≡
∑

rn

p(rn|rn−1)
ctrl(rn) � 0. (44)

If this holds, then it also follows that 
ctrl(tn) =∑
rn

p(rn)
ctrl(rn) � 0. After taking the average and using
Eq. (32), we are left with three terms


ctrl(tn, rn−1) = SSh[p(rn|rn−1)]

+
∑

rn

p(rn|rn−1)SvN[ρSU (n)(t
+
n , rn)]

− SvN[ρSU (n)(t
−
n , rn−1)], (45)

where SSh[p(rn|rn−1)] is the Shannon entropy of the condi-
tional probability p(rn|rn−1).3 The positivity of 
ctrl(tn, rn−1)
then follows from combining two theorems in quantum mea-
surement theory.

Lemma. Let ρ be an arbitrary state, {Pn}n a set of positive
operators fulfilling

∑
n P2

n = 1, pn = tr{PnρPn} the probabil-
ity to obtain outcome n, and ρ (n) = PnρPn/pn the postmea-
surement state conditioned on outcome n. Then

SvN(ρ) � SSh(pn) +
∑

n

pnSvN(ρ (n) ). (46)

Proof. We first use that for any such set {Pn}n (see Theorem
11 in Ref. [80], or Ref. [86]),

SvN(ρ) � SvN

(∑
n

pnρ
(n)

)
, (47)

i.e., the average uncertainty after the measurement can only
increase. Next we use (see Theorem 11.10 in Ref. [77], or
Refs. [87,88])

SvN

(∑
n

pnρ
(n)

)
� SSh(pn) +

∑
n

pnSvN(ρ (n) ). (48)

This concludes the proof. �
We now apply the Lemma to Eq. (45). If we identify {Pn}

with {P(rn|rn−1)} acting in the joint system-unit space, the
probability pn with the conditional probability p(rn|rn−1), and
the postmeasurement state ρ (n) with ρSU (n)(t+

n , rn), we can
deduce that

SSh[p(rn|rn−1)] +
∑

rn

p(rn|rn−1)SvN[ρSU (n)(t
+
n , rn)]

� SvN[VρSU (n)(t
−
n , rn−1)]. (49)

Using that the von Neumann entropy is invariant under unitary
transformations, we deduce our desired result. Finally, we
remark that the inequality (48) was used before in quantum

3This is to be distinguished from the conventional conditional
entropy given by

∑
rn−1

p(rn−1)SSh[p(rn|rn−1)].

FIG. 2. Sketch of the experimental setup (compare with Fig. 1
from Ref. [71]). We wish to control the central microwave cavity C

by a beam of atoms prepared in B. The atoms can be manipulated by
the Ramsey cavities R1 and R2 and read out by the detector D. The
measurement results are sent to a controller K, which decides in real
time whether to send a sensor atom to measure the state of the cavity
(pink circles) or an emitter or absorber atom to manipulate the state
of the cavity (blue circle). In the latter case the atoms are brought
into exact resonance with the cavity by applying a voltage V.

thermodynamics to show the positivity of the second law for
a Maxwell demon employing quantum measurements [89].

V. REAL-TIME PREPARATION AND STABILIZATION OF
PHOTON NUMBER STATES VIA QUANTUM FEEDBACK

The ability to control individual quantum systems and to
protect them against decoherence have become key challenges
in modern quantum science. Recently, experiments in quan-
tum optics reported on the preparation and stabilization of
photon number states by using quantum feedback control
[70,71]; see also Ref. [90] for previous theoretical work. We
will here analyze Ref. [71] (which is very similar to Ref. [70])
within the operational framework of quantum stochastic ther-
modynamics. We will give insights into the energetic and
entropic balances of these experiments by using the timescales
and energy scales as reported in Ref. [71]. Moreover, we
will see that the efficiency to prepare a pure photon number
state is surprisingly high in the experiment (the efficiency to
stabilize the pure photon state is zero). However, in order
not to overburden the paper, we will leave some experimental
imperfections aside. These additional imperfections are listed
at the end of this section, but we emphasize here that all
of them can be included in the operational framework of
quantum stochastic thermodynamics. We will further assume
some familiarity of the reader with concepts from quantum
optics; for a basic introduction see Ref. [91] and references
therein. The notation is chosen close to the original references
[70,71].

A. Setup and dynamics

A sketch of the experimental setup is shown in Fig. 2. The
system we want to control is a superconducting Fabry-Pérot
cavity C with Hamiltonian h̄ωca†a, where a† and a denote
photon creation and annihilation operators, respectively, and
ωc/2π = 51.1 GHz is the experimentally measured frequency
of the cavity (in this section we do not set h̄ ≡ 1). The cavity is
coupled to an outside environment at temperature T = 0.8 K,
which implies a Bose-Einstein distribution of Nth = (eβ h̄ωc −
1)−1 ≈ 0.05 (we also do not set kB ≡ 1). The dynamics of

022127-8



OPERATIONAL APPROACH TO QUANTUM STOCHASTIC … PHYSICAL REVIEW E 100, 022127 (2019)

the cavity are described by the master equation (in a rotating
frame)

∂tρS (t ) = L0ρS (t )

≡ 1 + Nth

2Tc
D[a]ρS (t ) + Nth

2Tc
D[a†]ρS (t ). (50)

Here the dissipator is defined as D[a]ρ ≡ aρa† − {a†a, ρ}/2
and the experimental cavity lifetime is Tc = 65 ms.

Due to the interaction with the environment, the cavity
tends to thermalize to a Gibbs state, which, for the present
parameters, means with probability 0.95 the vacuum state |0〉
with zero photons. The goal of the feedback loop is to reverse
the effect of the dissipation and to stabilize a photon number
state |n〉 = |nt 〉, where nt > 0 denotes the target number of
photons in the following (we will choose nt = 2 in the nu-
merics). To achieve this goal, a beam of atoms created in B
via velocity selection and laser excitation is used. The atoms
are repeatedly prepared at regular intervals of duration Ta =
82 μs and they leave B with a velocity of v = 250 m/s. The
interaction time of each atom with the cavity can be estimated
as tint = √

π/2(ω0/v), where ω0 = 6 mm is the waist of the
Gaussian cavity mode. This results in an interaction time of
roughly tint ≈ 30 μs such that Tc ≈ 2000tint. Thus, within a
very good approximation we can treat the interactions with
the atoms as happening instantaneously as we have assumed
in the formal development of our theory. Furthermore, the
cavity lifetime is much larger than Ta (Tc ≈ 800Ta) such that
we will approximate the dissipative time evolution in between
two interactions by

E = eL0Ta ≈ 1 + L0Ta. (51)

To counteract the dissipation by quantum feedback control,
we first of all need to measure the state of the cavity. Impor-
tantly, this is done in a nondestructive way without absorbing
or emitting a photon using a modified Ramsey interferometry
scheme. A brief theoretical description works as follows. First
of all, the atoms are well described as two-level systems
with an energy gap h̄ωa ≈ h̄ωc close to the single-photon
energy in the cavity. We will denote the two levels by |g〉 and
|e〉 for ground and excited states, respectively, although both
states correspond to highly excited states of the atom, where
the orbit of the outer electron is far away from the nucleus
creating in turn a large dipole moment [91]. The atoms leave
B in the ground state |g〉 and are afterward subjected to a π/2
pulse in cavity R1, which prepares them in the superposition
(|g〉 + |e〉)/

√
2. Due to an atom-cavity detuning of ωa − ωc ≈

1.5 MHz, the atom then interacts dispersively with the cavity
field, which changes its state to (|g〉 + eiφ(n)|e〉)/

√
2. Here

the n-dependent phase shift φ(n) = �0n + ϕr is determined
by the phase shift �0 per photon and the phase ϕr , which
is adjustable in the Ramsey interferometer. Importantly, no
energy is exchanged between the cavity and the atom during
the interaction. Then the atom is subjected to another π/2
pulse in cavity R2 and finally it is projectively measured in
the detector D revealing it to be in either the ground or the
excited state. The crux of the setup is that the probability to
find the atom in the ground or excited state depends on the
number n of photons in the cavity C. If we denote by r = 0
the result corresponding to an atom found in the ground state

FIG. 3. Plot of the conditional probabilities as a discrete function
of n: πs(0|n) (blue circles) and πs(1|n) (closed pink squares). The
solid lines serve only as a guide for the eye.

and by r = 1 for an atom in an excited state, the conditional
probability to obtain outcome r given that there are n photons
in the cavity is4

πs(r|n) = 1

2

{
1 + cos

[π

4
(n − nt ) + π

2
(2r − 1)

]}
. (52)

For nt = 2 this is exemplarily plotted in Fig. 3, showing that
it is clearly possible to distinguish between n > nt , n = nt ,
or n < nt photons in the cavity, but also demonstrating that
we are far away from an ideal projective measurement of the
cavity.

If we want to change the number of photons in the cavity,
we can send an emitter or absorber atom into the cavity C,
which is prepared in either the excited or the ground state,
respectively. For this purpose, the energy gap of the atoms
is brought into exact resonance with the cavity by applying
an external voltage V (Stark shift) such that the atom-cavity
dynamics is well described by a Jaynes-Cummings Hamil-
tonian of the form (interaction picture) h(a|e〉〈g| + a†|g〉〈e|).
We will then ideally choose an effective interaction time
te = π/2h

√
nt or ta = π/2h

√
nt + 1 depending on whether

we send an emitter or absorber atom, respectively (this is
slightly different from the experimental values). In the emitter
case, the conditional probability to obtain outcome r ∈ {0, 1}
and to observe a transition n′ → n in the state of the cavity
reads (compare with, e.g., Sec. 6.2. in Ref. [92])

πe(r, n|n′) = sin2

(
π

2

√
n + r√

nt
+ π

2
r

)
δn−1+r,n′ , (53)

where δn,n′ denotes the Kronecker delta. For the absorber case
we get

πa(r, n|n′) = cos2

(
π

2

√
n + r√
nt + 1

+ π

2
r

)
δn+r,n′ . (54)

4To deduce Eq. (52), we neglect experimental imperfections in the
preparation and readout of the atoms and use in the notation of
Ref. [71] πs( j|n) = [1 + cos(�0n + ϕr − jπ )]/2, where (opposite
to our notation) j = 0 ( j = 1) denotes an atom in the excited
(ground) state. After taking this into account, setting the phase shift
per atom to �0 ≈ π/4 [71] and adjusting the variable phase ϕr of the
Ramsey interferometer to the optimal value ϕr + �0nt = π/2 [71],
we obtain Eq. (52).
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FIG. 4. Stochastic dynamics and thermodynamics of a single realization of the (numerical) experiment over 1000 time steps. (a) Con-
ditional mean value 〈n〉(t, ri ), which fluctuates around the target number of nt = 2 photons (thick blue line on the top), and conditional
variance 〈n2〉(t, ri ) − 〈n〉2(t, ri ), which is most of the time below 0.1 (thin pink line on the bottom). (b) Dimensionless work invested into the
control loop showing spikes exactly at the time when an emitter or absorber atom is sent into the cavity. (c) Dimensionless stochastic entropy
production split according to Eq. (37) into the part during the control operation, which can become temporarily negative (thick blue line), and
the part in between the control operations, which has been upscaled by a factor of 100 for better visibility (thin pink line mostly on top).

Note that, depending on the number n of photons in the cavity,
an absorber (emitter) atom will not always absorb (emit) a
photon.

Finally, it is important to realize that the atoms are detected
at a time delay, as indicated also in Fig. 2. This means
that, before the ith atom is registered with outcome ri at the
detector D, there have been already d = 5 atoms which have
interacted or are about to interact with the cavity such that
we cannot influence their initial state anymore. This point is
important for the design of the feedback control law. In order
to decide at time ti ≡ iTa what kind of atom to send into
the cavity, we can only use the state estimate ρS (t+

i−d , ri−d )
at time ti−d = (i − d )Ta. Then, finally, the feedback control
law is simply to sent an absorber atom as soon as we
estimate

∑
n>nt

pn(ti−d , ri−d ) > pnt (ti−d , ri−d ) and an emit-
ter atom if we estimate

∑
n<nt

pn(ti−d , ri−d ) > pnt (ti−d , ri−d ),
where pn(t, rn) denotes the probability to have n photons in
the cavity at time t given a measurement record rn. Otherwise
we keep measuring the system. After each feedback operation
we also wait d time steps before we apply the feedback control
law again. This simple feedback control law is slightly differ-
ent from the experiment, but as we will see now, it works well.

B. Quantum stochastic thermodynamics

In the preceding section we stated all necessary ingredients
to apply our framework. The state of the cavity is conveniently
described by the probability pn(t, ri ) because coherences
between different photon number states never play a role.
The control operations A(ri|ri−1) are either measurements
or feedback operations (which can be emissive or absorba-
tive). Its effect on the cavity field can be described by the
conditional probabilities (52)–(54). Due to the time delay,
we can set A(ri|ri−1) = A(ri|ri−d−1). Furthermore, the atoms
always leave B in the ground state |g〉 and they are always
projected at the end of the interaction such that the sequence
of outcomes ri is simply a sequence of zeros and ones.
Finally, the evolution in between two interactions is modeled
by Eq. (51). Also, numerically, all parameters have been fixed
in the preceding section.

Figure 4 shows various quantities for a single realiza-
tion of the process over 1000 time intervals. Figure 4(a)

shows the evolution of the conditional mean photon number
〈n〉(t, ri ) ≡ ∑

n npn(t, ri ) (blue thick line) and the conditional
variance 〈n2〉(t, ri ) − 〈n〉2(t, ri ) (pink thin line). For perfect
stabilization around nt = 2 one would expect 〈n〉(t, ri ) = nt

and zero variance. As the plot shows, we are not far from
that limit. The variance stays most of the time below 0.1 and
only significantly deviates from it when our knowledge about
the mean changes. This can be caused by the emission or
absorbtion of a photon into or from the environment or by
erroneous detection events as it is not perfectly possible to
distinguish between one, two, or three photons (recall Fig. 3).
Whenever our estimate about the mean changes significantly,
the external agent performs a feedback control operation,
which changes the energy of the cavity in a deterministic way
and entails a work cost W ctrl

C (ri−1) as depicted in Fig. 4(b).
Note that the work cost associated with the measurement of
the cavity is zero, W ctrl

C (ri−1) = 0, although there is always a
work cost W ctrl

A (ri−1) associated with the preparation of the
atoms except for the case of absorbative feedback (discussed
below; keep in mind that we use the subscripts C and A here
instead of S and U as in Sec. IV). As the plot demonstrates,
the experiment is not very costly in terms of the work invested
in the cavity, which is roughly a few kBT . Note that we also
sometimes gain work as indicated by negative values and that
also the work costs fluctuate due to the fact that the state of
the system can be different at different times. What is more
costly is the generation of the information needed to estimate
the state of the cavity. This is shown in Fig. 4(c), where
the entropy production 
ctrl(t, ri ) (thick blue line) is roughly
0.7kB at each time step with some rare exceptions and strong
fluctuations at the times where we perform feedback control
operations. As a closer inspection reveals (not shown here),
the main cause of this is the generation of information in the
memory quantified by −kB ln p(ri|ri−1). In comparison, the
entropy produced in between two control operation 
(n)(t, ri )
(thin pink line), upscaled by a factor of 100, is much smaller
than 
ctrl(t, ri ) due to the fact that in the short time interval
Ta not much is happening. Also note that 
(n)(t, ri ) is always
positive, as predicted by our theory.

The previous observations are also confirmed by the av-
erage description. Figure 5 shows the (thermo)dynamics for
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FIG. 5. Averaged dynamics and thermodynamics of 2000 repetitions of the (numerical) experiment over 30 time steps. (a) Dynamics of
the cavity population displaying the probability to find zero photons (pink dotted line), one photon (blue dashed line), two photons (black solid
line), and three photons (green dash-dotted line). (b) Dimensionless entropy production again split according to Eq. (37). On average, the part
associated with the control operations is now positive (thick blue line). The part in between the control operations is again upscaled by a factor
100 for better visibility (thin pink line). (c) Time-dependent efficiency (57) of the experiment.

30 time steps averaged over 2000 numerical realizations.
Figure 5(a) depicts the time evolution of the probabilities
p0(t ) = ∑

ri
p0(t, ri )p(ri ) (dotted pink line), p1(t ) (dashed

blue line), p2(t ) (solid black line), and p3(t ) (dash-dotted
green line) to have zero, one, two, or three photons in the
cavity. The effect of the time delay d = 5 can be clearly
recognized as well as the success of the feedback loop to reach
a pure photon state with probability pnt =2(t ) ≈ 0.96. Note
that the shown time interval of 30Ta ≈ 0.04Tc is too small to
have a significant probability for a quantum jump induced
by the environment, but to better see the impact of the time
delay we have decided to show here only a short time window.
Furthermore, Fig. 5(b) shows the entropy production 
ctrl

(thick blue line) and 
(n) (thin pink line, scaled by a factor
100). In accordance with the previous plot, we can conclude
that the maintenance of the measurement and feedback loop
is the thermodynamically most costly part with the most
dominant contribution stemming from the recording of the
outcomes ri in a classical memory (not shown). In addition,
the plot also demonstrates that 
ctrl is positive on average, as
predicted by our theory.

Finally, Fig. 5(c) shows the efficiency of the experiment in
terms of generating a nonequilibrium state of the cavity with
respect to the resources invested in the feedback loop. If we
sum up the entropy production (37) in each time step and use
the first laws (20) and (30), we can confirm that the average
integrated entropy production after N time steps becomes

N∑
i=1


(i] = W tot
C − 	FC

T
+ kBSSh[p(rN )] � 0. (55)

Here W tot
C is the average integrated work invested in the cavity

during the feedback loop [also see Fig. 4(b)] and 	FC =
FC (NTa) + kBT ln ZC is the change in nonequilibrium free en-
ergy starting from a cavity state in equilibrium with partition
function ZC = trC{e−β h̄ωca†a}. The average free energy after
N time steps is computed by averaging over the energy and
entropy of the cavity state, i.e.,

FC (NTa) =
∑
rN

p(rN ){EC (rN ) − kBT SvN[ρC (rN )]}. (56)

Finally, the last term in Eq. (55) denotes the entire average
information content SSh[p(rN )] associated with the outcomes
of the experiment. It follows from the second law (55) that the
following efficiency is bounded by one:

η ≡ 	FC

W tot
C + kBT SSh[p(rN )]

� 1. (57)

As Fig. 5(c) demonstrates, we can achieve remarkably high
efficiencies peaked around values of 0.8 and 0.65 before they
decay in the long run to zero. This decay is due to the fact that
stabilizing the photon number state does not change its free
energy anymore while the measurement and feedback loop
still consume resources. Thus, the preparation of the photon
number state is very efficient, but the stabilization of it has
by definition an efficiency of zero. While we focused on the
average efficiency here, we remark that our framework is also
ideally suited to study efficiency fluctuations [93].

One might wonder why only the work invested in the cavity
enters the definition of the efficiency (57), but not the work
W ctrl

A invested to prepare the state of the atoms. The latter is
non-negligible: Since the atoms leave B in the ground state
and the outgoing stream of atoms is roughly an equal mixture
of atoms in the excited and ground states (which follows from
Fig. 3 once we have stabilized the state around nt photons), the
work invested per atom is W ctrl

A ≈ h̄ωa/2. This has its origin in
the initial creation of the superposition in cavity R1.5 However,
what we are interested in here is how efficiently can we use
a given amount of nonequilibrium resources (i.e., atoms in a
pure state) to perform some task (creation of Fock states). That
efficiency should be the same independent of, for instance, the
question of whether the atoms leaving B are in the ground or
excited state (in the latter case we would additionally extract

5This simple argument neglects the atoms used for the feedback
control, which, however, constitute only a small fraction of the atoms
used in the experiment. Furthermore, the proportion of outgoing
atoms in the excited state is not exactly 0.5, but depends on the
question whether the target photon number nt is above or below
the thermal equilibrium value, which determines whether a state
with nt photons tends to absorb or emit a photon into or from the
environment.
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work W ctrl
A ≈ −h̄ωa/2 from the atoms). The second law of

thermodynamics is concerned only with changes in entropy,
which are zero for the incoming and outgoing stream of atoms.
In fact, the outgoing stream of atoms can be used again, e.g.,
for the next experiment. To make sense of this argument, it is
important to note that the state of the atoms is not in a mixture
of ground and excited states because in each experimental
run we know exactly the state of the atoms by looking at
the measurement record rN . There is thus zero uncertainty
associated with their state.

The thermodynamic description would not be complete if
we did not mention that the experimental implementation also
involves other costs, e.g., the cooling of the environment down
to less than 1 K, the laser preparation of the atoms in B, or
the electronics associated with the controller K. What we have
provided here is a minimal thermodynamic description of
the system, which involves all essential contributions. Similar
to other idealizations in thermodynamics, it is possible to
imagine that the hidden thermodynamic costs of running the
laboratory equipment can be made arbitrarily small in an ideal
world.

C. Further experimental imperfections

Finally, we mention that the experiment is a little more
complicated than described here. For instance, the number of
atoms interacting with the cavity at a given time is not fixed to
one, but rather Poisson distributed (with an average number of
0.6 atoms) such that there could be zero, one, or two atoms per
interaction. Furthermore, it can also happen that the detector
D fails to detect an atom. Those and other small imperfections
are the reason why the experimentally observed probability
pt (nt ) is around 0.8 [71].

VI. SPECIAL CASES

A. Projective measurement

We start this section by considering the case of a single pro-
jective measurement. Not only is this an illustrative example,
but we will also need it in Secs. VI B and VI E.

We denote the outcome of the projective measurement
by r and the associated projector by |r〉〈r|S . We assume no
degeneracies in the measured observable here. Within our
repeated interaction framework, we use a unit with Hilbert
space of dimension dim HU = dim HS , the initial state is
taken to be the pure state |1〉〈1|U , and we assume a trivial
unit Hamiltonian HU ∼ 1U . The dynamical aspects of the
Stinespring dilation are then fixed by the unitary V ,

V =
∑
r,u

|r, u + r − 1〉〈r, u|SU (58)

(where the sum in the ket has to be interpreted modulo
dim HU ), which is followed by a projective measurement of
the unit in the basis {|r〉U }. It is interesting to look at the states
at the different steps of the process given an arbitrary initial
system state ρS (t−) = ∑

s λs|s〉〈s|S . After the unitary V the
marginal states of ρ∗

SU ≡ V ρS (t−)ρUV † are

ρ∗
S =

∑
r

p(r)|r〉〈r|S, ρ∗
U =

∑
r

p(r)|r〉〈r|U . (59)

Here we have introduced the probability p(r) = ∑
s |〈r|s〉|2λs

to obtain result r. After the projective measurement, the
unnormalized state reads

ρ̃SU (r, t+) = p(r)|r, r〉〈r, r|SU , (60)

from which it is easy to read the marginal states and the
average state after the control operation.

Let us now look at the thermodynamic interpretation of a
projective measurement within our framework. The work (23)
and heat (24) of the control operation become

W ctrl
S =

∑
r

p(r)〈r|HS|r〉 −
∑

s

λs〈s|HS|s〉, (61)

Qctrl
S (r) = 〈r|HS|r〉 −

∑
r′

p(r′)〈r′|HS|r′〉. (62)

We easily confirm
∑

r p(r)Qctrl
S (r) = 0. Moreover, the work

vanishes whenever the measured basis coincides with the
eigenbasis of the initial system state ρS (t−), albeit the fluc-
tuating heat does not. Finally, we can also confirm Eq. (46),
which in this case is essentially SSh[p(r)] � SSh(λs).

It is instructive to compare these results with the frame-
work of Ref. [51]. There the quantum stochastic thermody-
namics of projective measurements was also considered and
the authors called the sum W ctrl

S + Qctrl
S (r) quantum heat and

justified it by the fact that a quantum measurement is intrinsi-
cally stochastic unless the measured basis coincides with the
basis of ρS (t−) (we add that only pure states were considered
in Ref. [51], thus leaving any classical uncertainty aside).
Remarkably, we reach exactly the opposite conclusion on
average: Since

∑
r p(r)Qctrl

S (r) = 0, we infer that the average
energetic change is purely work W ctrl

S instead of heat.
This discrepancy can be traced back to the fact that we

model the projective measurement in a larger space using
Stinespring’s theorem, which was not done in Ref. [51].
Remarkably, in this larger space we also called the energetic
changes caused by the final measurement PU (r) heat (although
not quantum heat because as soon as classical uncertainty is
considered too, it also plays a role, e.g., in classical stochastic
thermodynamics; see Sec. VI E). Thus, we applied a philos-
ophy somewhat similar to that of Elouard et al. [51], but
reached the opposite conclusion. This shows that the thermo-
dynamic interpretation of a quantum measurement depends
on where we put the Heisenberg cut. To defend the present
approach, we want to highlight a number of key differences.

First, by using Stinespring’s theorem we respect the fact
that a quantum measurement does not happen spontaneously
but requires an active intervention by the experimentalist, who
brings two systems (the system to be measured and the de-
tector) into contact. However, bringing two different physical
systems into contact in general requires work (compare also
with the switching work in Ref. [66]).

Second, our second law differs from the one derived in
Ref. [51] as soon as multiple projective measurements are
considered. In our case, the entropy production is on average
given by the Shannon entropy of the entire sequence of
measurement results SSh[p(rn)] = ∑

� SSh[p(r�|r�−1)] [with
p(r1|r0) ≡ p(r1)]. In Ref. [51] the entropy production is
instead quantified by the Shannon entropy of the last
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measurement result only, SSh[p(rn)], and also the quantum
heat does not enter their second law.

Finally, we mention that the thermodynamic cost of quan-
tum measurements was also explicitly studied elsewhere
[94–98]. In particular, Refs. [94–96,98] reached similar con-
clusions by noting that performing a quantum measurement
allows the external agent to extract work. Hence, the average
energetic cost of the measurement should be counted as work.
Also, in a recent proposal of a Maxwell demon based only on
projective measurements it was noted that the fields, which are
controlled to implement the measurement, provide the energy
for the demon [99].

B. Two-point measurement approach

The two-point measurement approach, which is closely
related to the theory of full counting statistics, has become
the primarily used approach to derive quantum fluctuation
relations in various open quantum systems [22,23,40]. While
theoretically powerful, we already discussed the practical
weakness of this approach in the Introduction: Experimen-
tal confirmations so far have only been achieved for work
fluctuation relations in isolated systems [27,31,100] or in
electronic nanocircuits when the electrons behave according
to a classical rate master equation [37–39].

We here critically reexamine the two-point measurement
approach from a foundational perspective. We also view it
in the context of Ref. [24], which proves that there exists
no measurement strategy of work whose statistics fulfill (i)
a quantum work fluctuation theorem and (ii) reproduce, when
averaged, the unmeasured first law for arbitrary initial states.
This important no-go theorem proves that quantum stochastic
thermodynamics is distinct from its classical counterpart: It is
in general impossible to make the averaged picture coincide
with the unmeasured picture in quantum thermodynamics.
Nevertheless, within our framework we will find that the
no-go theorem does not apply in the sense that the work
defined in the two-point measurement approach is not even
work according to our framework.

We consider the following standard scenario, where the
unitary evolution of an isolated system is interrupted by
two projective measurements. We assume that the projective
measurements are described as in Sec. VI A with energetically
neutral units. Since the system is isolated, we will also drop
the subscript S on all quantities.

First, the system is prepared in a Gibbs state such that

ρ(t−
0 ) = e−βH (λ0 )

Z (λ0)
= 1

Z (λ0)

∑
ε0

e−βε0 |ε0〉〈ε0|, (63)

where Z (λ0) = tr{e−βH (λ0 )} denotes the partition function. Its
internal energy is denoted by E (t−

0 ) = tr{H (λ0)ρ(t−
0 )}. Then,

at time t0 we projectively measure the energy and obtain
outcome r0, which is uniquely associated with one energy
eigenvalue ε0(r0). Since the measurement basis coincides with
the eigenbasis, the work during this measurement is zero.
However, the internal energy clearly changes along a single
trajectory and this is due to heat:

ε0(r0) − E (t−
0 ) = Qcrtl(r0). (64)

In the next step we let the isolated system evolve according
to an arbitrary time-dependent Hamiltonian H (λt ). The state
at time t1 > t0 is given by |ψ (t, r0)〉 = U (t )|ε0(r0)〉, where
U (t ) denotes the unitary time evolution operator generated by
H (λt ). As the system is completely isolated, the change in
internal energy is purely given by work

〈ψ (t1, r0)|H (λ1)|ψ (t1, r0)〉 − ε0(r0) = W (1)(r0). (65)

Finally, there is another projective measurement in the eigen-
basis of H (λ1) with outcome r1, uniquely associated with
some eigenenergy ε1(r1). The change in internal energy now
has in general a work and a heat contribution:

ε1(r1) − 〈ψ (t1, r0)|H (λ1)|ψ (t1, r0)〉
= W ctrl(r0) + Qctrl(r1, r0). (66)

To derive an explicit form for it, we expand the prior state
with respect to the final measurement basis: |ψ (t1, r0)〉 =∑

ε1
cε1 |ε1〉. Then we obtain

W ctrl(r0) =
∑
ε1

∣∣cε1

∣∣2
ε1 − 〈ψ (t1, r0)|H (λ1)|ψ (t1, r0)〉, (67)

Qctrl(r1, r0) = ε1(r1) −
∑
ε1

∣∣cε1

∣∣2
ε1. (68)

Both contributions differ from zero unless in the classical case
where |ψ (t1, r0)〉 = |ε1(r1)〉. Thus, in that scenario it would be
justified to call Qctrl(r1, r0) “quantum” heat.

Now consider the probability for the sequence of outcomes

p(r1, r0) = |〈ε1(r1)|U (t )|ε0(r0)〉|2 e−βε0(r0 )

Z (λ0)
. (69)

It is a straightforward exercise to show that this probability
distribution implies the so-called quantum work theorem or
quantum Jarzynski equality, first derived in Refs. [101–103]:

〈e−β[ε1(r1 )−ε0(r0 )]〉 ≡
∑
ε1,ε0

p(r1, r0)e−β[ε1(r1 )−ε0(r0 )]

= Z (λ1)

Z (λ0)
. (70)

Now, in analogy to the classical Jarzynski equality, the fluc-
tuating quantity ε1(r1) − ε0(r0) in the exponent is called work
in the two-point measurement approach [22,23]. However, our
framework reveals that

ε1(r1) − ε0(r0) = W (1)(r0) + W ctrl(r0) + Qctrl(r1, r0). (71)

That is to say, the fluctuating quantity in the exponent is not
work alone. Hence, one better calls the quantum work theorem
a quantum internal energy theorem.

We end this section by pointing out that we are not the
first to criticize the notion of work within the two-point mea-
surement approach. For instance, Deffner et al. also criticize
this approach for not being “thermodynamically consistent
as it does not account for the thermodynamic cost of these
measurements” [97]. Remarkably, they were able to derive a
modified quantum Jarzynski equality for the work (65) done
in between the two projective measurements [97].
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C. Standard framework of quantum thermodynamics

If we perform no control operations at all, our framework
obviously reproduces the standard framework of quantum
thermodynamics mentioned at the beginning of Sec. IV A.
This fact might seem so obvious that it is not worth stressing.
However, it is important to realize that the standard framework
of quantum thermodynamics cannot be recovered by perform-
ing an ensemble average over p(rn), but only by deciding
not to apply any control operation at all (apart from maybe
preparing a certain initial state and reading out the final state).
That is to say, in order to recover standard quantum thermo-
dynamics, it is important to have a framework which can cope
with incomplete information and allows us to do “nothing” to
the system. All previous frameworks of quantum stochastic
thermodynamics, which rely on a perfectly measured system
in a pure state, fail to reproduce the picture without control
operations because any measurement disturbs the process in
general. In fact, in almost all previous works the notion of a
stochastic entropy along a single trajectory was not even de-
fined. The only exceptions are Refs. [42,43] where, however,
the definition of stochastic entropy depends on the initial state
chosen and therefore needs to be adapted in each experiment.
The reason why classical stochastic thermodynamics repro-
duces the average picture (see Sec. VI E) is the fact that there
is always one fixed basis and no coherences are possible. The
current framework therefore fills an important conceptual gap
between quantum and classical stochastic thermodynamics.

D. Conventional repeated interaction framework

The framework of repeated interactions gives rise to a gen-
eralized thermodynamic theory by realizing that the stream
of external units can act in the most general scenario as a
resource of nonequilibrium free energy, which encompasses
many previously considered theories [66] (see also Ref. [104]
for important earlier work). However, the repeated interaction
framework considered previously differs from our framework
by avoiding any measurement on the units. In order to recover
this thermodynamic framework, it is important to realize
(as in Sec. VI C) that a simple ensemble average of the
process tensor over the outcomes rn will not do the job.
The only correct way to recover previous results from our
framework is to not perform any measurement, i.e., in the
language of Sec. III to choose the projector P(rn|rn−1) = 1U

throughout. In this case, the process tensor can be written as
T[An, . . . ,A1], where Ai is a CPTP map acting at time ti.
The control operations, and hence the process tensor, do not
depend on any outcome rn anymore (alternatively, one could
say that each control operation at time ti has only one possible
outcome). Furthermore, every incoming unit is decorrelated
from the previous units as in Ref. [66].

Our thermodynamic framework of the process tensor is
therefore much more general and flexible than the previous
framework apart from one important difference. In Ref. [66]
the units were allowed to interact with the system for a
finite duration whereas here we consider only instantaneous
interactions (or more precisely interaction times where the
effect of the bath can be neglected to leading order). From a
thermodynamic point of view, this is not necessary. However,
to be able to clearly distinguish between control operations

on the system and system-bath dynamics, this assumption is
necessary (compare with the discussion in Sec. II).

We now show that our thermodynamic framework is not
in contradiction to the one of Ref. [66], if we avoid any
measurements of the units. Since no quantity depends on rn

anymore, the internal energy is simply

ESU (n)(t ) = ES (t ) +
n∑

i=1

EU (i)(t ). (72)

However, the internal energy of all previous units U (i < n)
never enters the first law and thus can be neglected. In fact,
in the absence of any control operation this is evident from
Eq. (20). During the control operations, because there is no
final measurement, Qctrl(tn) = 0 and only W ctrl(tn) can differ
from zero. However, the work only depends on the state of
the nth unit and not on previous units [cf. Eq. (29)]. Hence,
the first law during the control operation becomes W ctrl(tn) =
	ES (tn) + 	EU (n)(tn) because the marginal state of all other
units does not change. We therefore obtain the same first law
over one interaction period (tn−1, tn]:

	E (n]
S + 	E (n]

U (n) = W ctrl(tn) + W (n) + Q(n). (73)

Finally, note that W ctrl(tn) would be identified in the context
of Ref. [66] with the switching work Wswitch required to turn
on and off the system-unit interaction.

We now turn to the second law. Without any out-
comes rn we obtain from Eq. (35) the entropy SSU (n)(t ) =
SvN[ρSU (n)(t )]. Again, this differs from Ref. [66] by explicitly
taking into account the joint entropy of all units and the
system. To recover Ref. [66], we start again with the situa-
tion without control operation. From Eq. (17) we know that
	S(n)

S − βQ(n)
S � 0 and, since the marginal unit states do not

change, we can extend this to

	S(n)
S + 	S(n)

U (n) − βQ(n)
S � 0. (74)

Next, our second law during the control operation becomes


ctrl(tn) = SvN[ρSU (n)(t
+
n )] − SvN[ρSU (n)(t

−
n )] = 0, (75)

because the von Neumann entropy is invariant under unitary
transformation. If we use the two facts that the unitary V
acts only locally on the system and the nth unit and that the
initial state of the unit is decorrelated from the system, we
immediately confirm that Eq. (75) can be rewritten as


ctrl(tn) = 	Sctrl
vN (ρS ) + 	Sctrl

vN (ρU ) − IS:U (n)(t
+
n ) = 0. (76)

Taking the mutual information to the other side of the equation
and combining it with Eq. (74), we can confirm for an entire
interaction interval that

	S(n]
S + 	S(n]

U (n) − βQ(n) � IS:U (n)(t
+
n ) � 0. (77)

This reproduces the generalized second law from Ref. [66].
The reason why the final mutual information between the sys-
tem and the previous units was discarded in Ref. [66] becomes
clear by recalling that every unit which has already interacted
with the system does not have the chance to interact with the
system again. All final mutual information will therefore be
lost. This is in contrast to the general framework developed
here where we allowed for all kinds of feedback control. Un-
der these more general circumstances, the remaining mutual
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information after the interaction represents a valuable thermo-
dynamic resource, which cannot be neglected.

E. Standard classical stochastic thermodynamics

A tacitly made assumption in classical stochastic thermo-
dynamics is the ability to measure perfectly (i.e., without
error and without disturbance) the state of the system [12,13].
These assumptions can be completely overcome by using
the operational approach to stochastic thermodynamics, but
attention has to be paid to the fact that the classical version
of Stinespring’s theorem does not follow from the quantum
version stated in Sec. III [82].

Here we restrict ourselves to study the standard case of
stochastic thermodynamics assuming perfect continuous mea-
surements and no feedback control. We focus only on a clas-
sical discrete system, which makes random jumps between a
finite set of states s ∈ {1, . . . , d}. Its dynamics are described
by a rate master equation

d

dt
ps(t ) =

∑
s′

Rs,s′ (λt )ps′ (t ). (78)

Here ps(t ) is the probability to find the system in state s at time
t , whose energy we denote by H (s, λt ) (dropping the subscript
S on H). The rate matrix Rs,s′ (λt ) can depend on an external
control parameter λt . It is required to fulfill the local detailed
balance condition

Rs,s′ (λt )

Rs′,s(λt )
= e−β[H (s,λt )−H (s′,λt )], (79)

which allows us to link energetic changes in the system to
entropic changes in the bath. Due to the assumptions of
standard stochastic thermodynamics, one knows at each time
t the state s of the system without any uncertainty (denoted st

in the following). The stochastic energy and entropy at time t
are then defined by

EST(st ) ≡ H (st , λt ), SST(st ) ≡ − ln pst (t ), (80)

where we used a subscript ST to denote definitions used in
standard stochastic thermodynamics. Note that the stochastic
entropy SST(st ) is determined by evaluating the solution of the
rate master equation along a particular stochastic trajectory
[11]. Work and heat for a sufficiently small time step dt are
defined as6

WST(st ) ≡ H (st−dt , λt ) − H (st−dt , λt−dt ), (81)

QST(st ) ≡ H (st , λt ) − H (st−dt , λt ) (82)

such that EST(st ) − EST(st−dt ) = WST(st ) + QST(st ). Further-
more, using rather complicated algebraic manipulations, one
can compute the change of stochastic entropy along a par-
ticular trajectory [11–13] (we will see below that evaluating
the quantities in discrete time steps simplifies the algebra
significantly). In the resulting expression it is then possible

6In stochastic thermodynamics, one usually writes δW or đW to
denote the infinitesimal character of the quantity. Often, one also
represents quantities defined for single trajectories with a small letter,
e.g., w. We here decided to stick closer to our notation from Sec. IV,
keeping in mind that we are interested only in small time steps dt .

to single out a term related to the entropy production, which
on average yields the always positive expression


ST(t ) ≡ 	SST(t ) − βQST(t ) � 0, (83)

where 	SST(t ) ≡ SSh[ps(t )] − SSh[ps(t − dt )] turns out to
be the (infinitesimal) change in Shannon entropy of the
solution ps(t ) of the rate master equation and QST(t ) =∑

s H (s, λt )[ps(t ) − ps(t − dt )] is the average heat entering
the system per time step dt .

Our goal is now to show the following: (i) how a perfect
nondisturbing measurement arises in our context; (ii) that we
obtain identical expressions for the stochastic heat, work, and
internal energy in this limit; (iii) that we obtain a different
expression for stochastic entropy, which yields a different but
meaningful second law; and (iv) how the entropy production
of standard stochastic thermodynamic arises in our context
when we change the definition of stochastic entropy.

(i) To obtain a perfect measurement, we can basically use
the same steps as in Sec. VI A. We start with a classical prob-
ability pU = δu,1 and view the unitary (58) as a permutation
matrix. Then the result is that the state of the system gets
copied onto the state of the unit. Next we consider the limit
where we measure the system continuously, i.e., in small time
steps dt = tn − tn−1 such that the probability for a jump in
each interval is very small: Rs,s′ (λt )dt � 1. Furthermore, we
assume that all units are identical and uncorrelated initially.
In this limit, the sequence of measurement outcomes rn is
identical to the state of the units, which is identical to the
trajectory taken by the system. This is the essence of a perfect
classical and continuous measurement. As a consequence, the
state of the system at time t � t+

n only depends on the last
measurement outcome rn, but not on any of the previous
outcomes rn−1. Furthermore, the state of the system during
the interval (tn−1, tn] changes from p(t+

n−1, rn−1) = |rn−1〉 at
the beginning to p(t−

n , rn−1) = |rn−1〉 + dt
∑

s Rs,rn−1 (λt )|s〉
shortly before the control operation and to p(t+

n , rn) = |rn〉 at
the end after the nth control operation. Below we will identify
tn = t and tn−1 = t − dt .

(ii) We now turn to the energetic description. As in stan-
dard stochastic thermodynamics, we neglect the energetics
associated with the memory, that is, we set HU ∼ 1U for all
units. This implies that we can replace our stochastic energy
ESU (n)(t, rn) by ES (t, rn). Then the stochastic energy at the
beginning of the interval is simply H (rn−1, λt−dt ) and at the
end it reads H (rn, λt ), which is identical to the definition used
in classical stochastic thermodynamics. Furthermore, in the
absence of control, we obtain from Eq. (15)

W (n)(rn−1) =
∑

s

[H (s, λt ) − H (s, λt−dt )]ps(t
+
n−1, rn−1)

= H (rn−1, λt ) − H (rn−1, λt−dt ), (84)

which is identical to Eq. (81).7 Furthermore, the work during
the control step [Eq. (23)] is zero because the marginal state

7We remark that there is a certain degree of freedom involved in
the evaluation of the integral in Eq. (15). However, this degree of
freedom is also there in the identification (81) and (82) and it is only
important to stick consistently to one choice.
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of the system does not change (see also Sec. VI A). Thus,
we conclude that the definition of the total work W (n](rn−1)
during one full interval is identical to the definition used in
classical stochastic thermodynamics. It remains to look at the
change of heat during one full interval Q(n]

S (rn, rn−1). First
of all, from Eq. (16) the heat exchanged during the interval
without control becomes

Q(n)
S (rn−1) =

∑
s

H (s, λt )ps(t
−
n , rn−1) − H (rn−1, λt ), (85)

which is different from the definition (82). However, it is now
also important to take into account the heat exchanged during
the control step [Eq. (24)], in which we update our knowledge
about possible system changes. It is simple to see that this
quantity reduces to

Qctrl
S (rn, rn−1) = HS (rn, λt ) −

∑
s

H (s, λt )ps(t
−
n , rn−1) (86)

such that Q(n]
S (rn, rn−1) = Qctrl

S (rn, rn−1) + Q(n)
S (rn−1) is iden-

tical to the standard definition in classical stochastic thermo-
dynamics. To conclude, our definitions for stochastic internal
energy, work, and heat are identical to the ones used in
classical stochastic thermodynamics.

(iii) We now take a look at the entropic balance. The change
in stochastic entropy (35) over a full interval becomes

	S(n]
SU (n)(rn, rn−1) = − ln p(rn|rn−1), (87)

where we used that the system and units are, after each
measurement, in a pure state and their entropy vanishes. Fur-
thermore, we used that the system dynamics are Markovian
and hence p(rn|rn−1) = p(rn|rn−1). The stochastic entropy
production (36) over one interval then becomes


(n](rn, rn−1) = − ln p(rn|rn−1) − βQ(n]
S (rn, rn−1), (88)

which can have either sign. As deduced in Sec. IV, it is
positive after averaging over p(rn|rn−1):


(n](rn−1) =
∑

rn

p(rn|rn−1)
(n](rn, rn−1)

= SSh[p(rn|rn−1)] − βQ(n]
S (rn−1) � 0. (89)

Note that this second law is identical to the conventional
one of stochastic thermodynamics if we apply Eq. (83)
to an initially pure state ps(t − dt ) = δs,rn−1 , which implies
	SST(t ) = SSh[p(rn|rn−1)] and QST(t ) = Q(n]

S (rn−1). Unfortu-
nately, although SSh[p(rn|rn−1)] is infinitesimal small, it is of
O(dtν ) with ν < 1. Therefore, the rate of entropy production
diverges:

lim
dt→0


(n](rn−1)

dt
= ∞. (90)

Although seldomly stated [105], this is related to the fact that
the Shannon entropy SSh[ps(t )] is not differentiable when the
kernel of ps(t ) changes. Furthermore, by averaging Eq. (89)
also over p(rn−1), we obtain


(n] = SSh(rn|rn−1) − βQ(n]
S � 0. (91)

Here SSh(rn|rn−1) = ∑
rn−1

p(rn−1)SSh[p(rn|rn−1)] defines the
conditional Shannon entropy. This second law is different
from the conventional one (83). Instead of containing the

change in Shannon entropy of the system state, it contains
the conditional Shannon entropy, which is nothing but the
entropy rate of the stochastic process [106]. Of course, if
we divide Eq. (91) by dt , it still diverges. Furthermore, the
difference in the two entropy productions is precisely given by

(n] − 
ST(t ) = SSh(rn−1|rn). Here the backward conditional
entropy SSh(rn−1|rn) = ∑

rn
p(rn)SSh[p(rn−1|rn)] can be com-

puted via Bayes’ rule: p(rn−1|rn) = p(rn|rn−1)p(rn−1)/p(rn).
We emphasize that our second law (91) has a transparent

physical interpretation. It consists of the entropic change in
the bath quantified by the Clausius-like term −βQ(n]

S plus
the change in entropy in our memory for the measurement
outcomes. As we measure perfectly and continuously, the
rate of information generation in the memory is infinite (in
reality, every sampling rate is finite and no divergence arises).
Therefore, even in equilibrium where Q(n]

S = 0, we will have
a positive entropy production 
(n] > 0 due to the fact that we
measure the system and continuously generate information.
In stochastic thermodynamics, one instead finds 
ST = 0 at
equilibrium. The discrepancy of the two second laws is rooted
in the fact that standard stochastic thermodynamics keeps the
observer out of the construction. This works well if one only
perfectly monitors a classical system, but if one starts to apply
feedback control one needs to modify the theory [68]. By
following the credo that information is physical [67] and by
treating the measurement and the system on an equal footing,
no modification is necessary in our framework. We remark
that our second law (91) was very recently experimentally
confirmed [107] (see also the discussion in Ref. [82]).

(iv) In addition, we can recover the conventional second
law of stochastic thermodynamics if we redefine entropy.
Namely, if we replace our definition of entropy by the conven-
tional one (80), the stochastic entropy production becomes, in
our notation,

− ln p(rn) + ln p(rn−1) − β[H (rn, λt ) − H (rn−1, λt )]. (92)

If we average over p(rn) and use that the measured probabili-
ties are identical to the probabilities of the system p(rn = s) =
ps(t ) and p(rn−1 = s) = ps(t − dt ), we obtain

SSh[ps(t )] − SSh[ps(t − dt )]

−β
∑

s

H (s, λt )[ps(t ) − ps(t − dt )]. (93)

This is identical to Eq. (83).

F. Getting rid of units in the thermodynamic description

We used the external stream of units to guide our thermo-
dynamic analysis along the framework of repeated interac-
tions. In many important realistic situations it is also clear how
to model the units physically. This is, for instance, the case for
the micromaser, the experimental setup studied in Sec. V, or
for certain mesoscopic devices where tunneling electrons and
Cooper pairs could be identified as units [108,109]. Therefore,
the framework of repeated interactions allows us to treat a
larger class of physically relevant scenarios.

Nevertheless, there are also scenarios where the exact
microscopic nature of the units is not known or hard to
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model. Furthermore, as also the process tensor relies only on
specifying CP maps A(rn|rn−1) acting on the system, it is
worth asking whether we can get rid of the sometimes rather
artificial units in the thermodynamic description. Energeti-
cally, we have already seen that simply setting HU (n) ∼ 1U for
all n cancels out all unit contributions from the first law. To get
rid of the units from the entropic considerations, we will need
to restrict ourselves to efficient control operations [79,80].
Efficient control operations are defined by the requirement
that they can be written as

ρ̃S (r) = A(r)ρS = A(r)ρSA(r)† (94)

as opposed to the more general form (4). They have the
specific property that any initially pure state ρS gets mapped
to a pure state again. Mathematically, every efficient control
operation can be modeled by an initially pure unit state ρU =
|ψ〉〈ψ |U , which interacts unitarily via V with the system
and is finally projectively measured using P(r) = |r〉〈r|. This
implies that

ρ̃S (r) = A(r)ρS = 〈r|V[ρS ⊗ |ψ〉〈ψ |U ]|r〉U . (95)

This construction extends to multiple operations conditioned
on previous results rn−1 in the obvious way.

To see that the units also do not enter the entropic balance
in this case, notice that the unit state is pure and decorrelated
from the system after every operation. This follows from
the fact that we perform a rank-1 projective measurement
on the units after each control operation. The joint state
of the system and all units after obtaining the sequence of
outcomes rn is simply ρSU (n)(t, rn) = ρS (t, rn) ⊗ |rn〉〈rn|U (n),
with |rn〉〈rn|U (n) ≡ |rn〉〈rn|U (n) ⊗ · · · ⊗ |r1〉〈r1|U (1). The
joint entropy for this state becomes SvN[ρSU (n)(t, rn)] =
SvN[ρS (t, rn)]. Also, before the interaction at time tn, we have

SvN[ρSU (n)(t
−
n , rn)] = SvN[ρS (t−

n , rn)], (96)

where we used that the initial unit state is pure and hence
always decorrelated from the system. We note that the
ensemble-average system unit state

∑
rn

p(rn)ρSU (n)(t, rn) is
in general classically correlated.

To summarize, in the case of energetically neutral units and
efficient control operations, the stochastic internal energy and
entropy can be reduced to

ES (t, rn) = trS{HS (λt , rn)ρS (t, rn)}, (97)

SS (t, rn) = − ln p(rn) + SvN[ρS (t, rn)]. (98)

Note, however, that we are still using the external units to
model the control operations dynamically. In fact, we will
discuss in Sec. VII A how far it is possible to get completely
rid of the units.

G. Quantum stochastic thermodynamics without theory input

To set up our framework of quantum stochastic thermo-
dynamics, we needed to be able to know the work (15) and
heat (16) exchanged with the bath in between two control
operations. Those are path-dependent quantities [i.e., they are
not determined alone by the state at the boundary ρS (t±

n , rn)]
and estimating them requires additional theoretical input.
Although this is necessary to recover the average picture in

general (see Sec. VI C), it is instructive to discuss cases which
do not require any additional theoretical modeling.

Without changing any of our general conclusions, one way
would be to consider only a specific subset of control proto-
cols λt . These control protocols consist of a sudden switch of
the Hamiltonian after each control operation, i.e., the protocol
changes instantaneously from λn−1 to λn at time t+

n and after
the switch we keep the protocol constant until the next control
operation. Note that the protocol is still allowed to depend
on rn, which we have suppressed for notational convenience.
Thus, in short, we can write that λt (rn−1) = λn−1(rn−1) if
t ∈ (tn−1, tn]. Those sets of control protocols are characterized
by the fact that the work (15) and heat (16) can be computed
without any knowledge about the system state in between two
control operations:

W (n)
S (rn−1) = trS{[HS (λn−1, rn−1)

− HS (λn−2, rn−2)]ρS (t+
n−1, rn−1)}, (99)

Q(n)
S (rn−1) = trS{HS (λn−1, rn−1)

×[ρS (t−
n , rn−1) − ρS (t+

n−1, rn−1)]}. (100)

Another way to approach this problem is to try to set
up an effective thermodynamic description based solely on
knowledge of the dynamical map En defined in Eq. (40). Note
that the dynamical map can be inferred from knowledge of
the process tensor. The very problem of this approach comes
from the fact that different physical situations (with different
thermodynamic values for W (n)

S and Q(n)
S ) can give rise to

the same dynamical map En. Thus, if we try to pursue the
second way, we will not be able to recover the results from
Secs. VI C and VI D in general. Nevertheless, it could be
worthwhile to pursue this direction because the thermody-
namic description of dynamical maps was already investigated
before [110–113]. In particular, for dynamical maps which
have additional properties, such as being Gibbs state preserv-
ing, the present framework could be fruitfully combined with
the resource theory approach to quantum thermodynamics
[114,115].

VII. CONCLUSION

A. Final remarks

We have presented a theoretical framework which is able
to cope with arbitrary quantum operations and arbitrary un-
ravelings of them. It uses very natural definitions of internal
energy (18) and entropy (35), but in its most general form
it can appear quite heavy. In particular, the framework of
repeated interactions added another layer of complexity and
it is worthwhile to ask whether we can get rid of it com-
pletely. For efficient control operations we have seen already
in Sec. VI F that the units do not enter the laws of thermody-
namics anymore, although they still played a role dynamically.
This was important in order to arrive at an unambiguous
interpretation of heat and work during the control step. To
exemplify this, let us look at an arbitrary efficient operation
ρ̃S (r) = A(r)ρSA(r)† again. It is tempting to use the polar
decomposition theorem A(r) = U (r)P(r), where U (r) is a
unitary matrix and P(r) a positive matrix, to define work and
heat exchanges. One idea could be to associate changes in the
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energy caused by P(r) [U (r)] as heat (work). Unfortunately,
one then arrives at the conclusion that a projective measure-
ment is on average a heat and not a work source and we
have debated this problem already in Sec. VI A. Moreover,
there is also a reverse polar decomposition theorem A(r) =
P′(r)U (r), where P′(r) �= P(r) in general. This would then
give rise to a different splitting into heat and work for the same
control operation. This is even true in the case P′(r) = P(r)
because in the reverse decomposition the positive matrix acts
after the unitary. By using Stinespring’s dilation theorem we
have circumvented this difficulty in the repeated interaction
framework. In this picture the unitary V must always act first
to correlate the system and the unit before it is followed by a
measurement of the unit. This fixes the ambiguity of assigning
heat and work, which can be conveniently computed by using
the control operations only, see Eqs. (27) and (28). Thus, for
efficient control operations with energetically neutral units the
explicit modeling of the units is no longer necessary.

Another subtle point concerns the definition of an entropy
production via a time-reversed process. We have here decided
to find meaningful definitions of heat and entropy at the
first place and then checked that the entropy production 
 =
	SS − βQ as known from phenomenological nonequilibrium
thermodynamics is positive on average. Remarkably, within
the framework of classical stochastic thermodynamics there is
an equivalent alternative approach by defining the stochastic
entropy production as


̃(rn) ≡ ln
p(rn)

p†(r†
n )

. (101)

Here p†(r†
n ) is the probability to observe the time-revered tra-

jectory in a suitably chosen time-reversed experiment [12,13].
This stochastic entropy production fulfills a fluctuation the-
orem and a second law and it is linked to the (breaking
of) time-reversal symmetry of the underlying microscopic
Hamiltonian dynamics [7,8,22,23]. It is tempting to apply
a similar strategy also within our framework by defining a
suitable time-reversed process to construct the entropy pro-
duction (101). Unfortunately, for a general quantum operation
it is not clear what the corresponding time-reversed process
should be. Various proposals have been put forward and used
in the literature [42–45,51,52,54,55,112,116,117], resulting in
multiple possible second laws for the same physical situation.
It is an advantage of the present framework that we are able
to derive a second law without taking the detour of defining
a time-reversed process, which, at least at the moment, seems
to entail an unwanted amount of ambiguity.

As a final remark we comment on the possibility to extend
the present framework beyond the case of a single heat bath.
In fact, this is even an open problem in classical stochastic
thermodynamics from an experimental point of view: As soon
as multiple heat baths induce transitions between the same
system states, a local measurement of the system only will
not reveal which bath has triggered the transition. Classically,
a way out of this dilemma is to experimentally ensure that
the transition between each pair of states is caused by only
a single bath, for instance, by geometrically separating the
system into subsystems, where each subsystem interacts with
only one bath. This is indeed what happens in transport exper-

iments through quantum dots [37,38]. Quantum mechanically,
this separation is more difficult to achieve. At least within the
standard approach based on a Born-Markov secular approxi-
mation [3–6], the system jumps between energy eigenstates
of the composite system which are in general entangled.
On the other hand, it was also recently argued that a local
approach to the dynamics (where each dissipator in a quantum
system acts only on a specific subsystem) is feasible from
a thermodynamic point of view [104,118,119]. If that is the
case, it should be possible in principle to apply our framework
to a situation with multiple baths in some limit. As the proper
extension of quantum thermodynamics to the presence of
multiple heat baths can already bear surprising difficulties at
the average level [120], these investigations are left for the
future.

B. Outlook

In this section we outline three promising future applica-
tions that allow us to answer in a general and rigorous way
open problems in quantum thermodynamics.

1. Quantum coherence and Leggett-Garg inequalities

One primary task of quantum thermodynamics is to unravel
how quantum features (such as coherence or entanglement)
influence the performance of quantum heat engines and other
devices. An introduction to this topic was recently provided in
Ref. [121]. While several interesting results have been found
(showing that quantum effects can be both beneficial and
detrimental), one always has to be cautious when comparing
them with classical systems. In fact, it is far from obvious to
what extent quantum and classical models can be compared
and what are genuine quantum features. For instance, the
mere presence of coherences (i.e., off-diagonal elements of
the density matrix in the energy eigenbasis) is not sufficient to
conclude that the heat engine operates in the quantum regime
[122]. As we will show now, our framework allows us to
rigorously answer whether a given heat engine uses quantum
coherence. Moreover, this is closely related to the violations
of Leggett-Garg inequalities [123].

Our analysis is based on recent progress in understanding
genuine quantum effects in Markovian systems interrupted by
projective measurements at a set of discrete times [124–126].
Concisely, the authors of Ref. [124] have proven that the
results rn obtained from the projective measurements in an
arbitrary nondegenerate basis {|rn〉} cannot be generated by
a classical stochastic process if and only if the Markovian
dynamics are “coherence generating and detecting” for an
initially diagonal state in the measurement basis. The notion
of coherence generating and detecting is defined by using
the dephasing operator D = ∑

rn
P (rn), where P (rn) denotes

the projection superoperator with respect to |rn〉〈rn|, and by
demanding that there exist times t, τ � 0 such that

D ◦ E (t ) ◦ D ◦ E (τ ) ◦ D �= D ◦ E (t + τ ) ◦ D, (102)

where E (t ) denotes the dynamical map of the system in
between the control operations (here assumed to be time ho-
mogeneous for simplicity) and ◦ the composition of two maps.
An extension to inhomogeneous maps and more general (i.e.,
non-Markovian) dynamics can be found in Refs. [125,126].
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This framework fits perfectly into our language as we
can deal with projective measurements at discrete times as
well as dephasing operations. To give a simple and intuitive
example how this framework could be used to detect quantum
signatures in thermodynamics, we consider the quantum Otto
cycle, which was recently also realized experimentally [127].
The Otto cycle is a four-step process A → B → C → D (see,
e.g., Fig. 2 in Ref. [121]). In A → B the system undergoes
isolated (unitary) Hamiltonian evolution, where the system
Hamiltonian changes from HS (1) to HS (2). In B → C the
system is coupled to a cold bath at temperature TC and
undergoes pure relaxation dynamics, which we here assume
to be modeled by a Lindblad master equation as is often done.
In C → D the system is again isolated and its Hamiltonian is
changed from HS (2) back to HS (1) again. Finally, in D → A
the system is coupled to a hot bath at temperature TH and
undergoes again pure relaxation assumed to be described by a
Lindblad master equation. After the unitary strokes at points
B and D the density matrix of the system contains coherences
in general. If the cycle is performed in finite time such that
the heat baths do not fully erase the coherences, then it is
possible that coherences are still present at points A and C
and it becomes an interesting question whether they change
the thermodynamic performance.

To unambiguously answer this question, one could perform
a dephasing operation D in the energy eigenbasis at any
of the four points. If this changes the work output or the
thermodynamic efficiency,8 then the machine shows quantum
effects. The dephasing operation D is easily implemented,
for instance, by performing a projective measurement of
the energy without recording its outcome (see Sec. VI A).
Importantly, the energetic cost of this control operation is
zero (provided the unit is energetically neutral) and there-
fore it does not inject or extract any work into the engine.
Hence, while the dephasing operation has an entropic cost,
this does not play any role in computing the work and heat
flows in the Otto cycle, which are essential to compute its
performance.

Conversely, by the theorem derived in Ref. [124–126], we
know that coherences can only influence the dynamics if the
statistics associated with projective energy measurements at
any subset of the four points in the Otto cycle show nonclas-
sical signatures by not obeying the Kolmogorov consistency
condition. For instance, if the dephasing operation at point B
has an influence on the thermodynamic performance, then also∑

rB

p(rA, rB, rC ) �= p(rA, rC ). (103)

Here we have denoted the outcome of the projective mea-
surement at point A by rA (and analogously for the other
points) in the spirit of our previous notation. Thus, instead

8Note that we have not specified here how to actually infer the work
output or efficiency. This could be done purely theoretically or purely
experimentally, for instance, by doing quantum state tomography at
the four points A, B, C, and D after waiting long enough such that
the system operates at steady state (actually, state tomography at two
points suffices if we are able to accurately compute the effect of the
unitary strokes).

of looking at the effect of the dephasing operation, we could
also alternatively use the process tensor formalism to infer the
statistics of the projective measurements directly.

Remarkably, Eq. (103) is a necessary prerequisite to vi-
olate the Leggett-Garg inequality [123]. Thus, by probing
the multitime correlations of a quantum stochastic process,
we can also learn something about its thermodynamic be-
havior and unravel the regime where it has no analogous
classical stochastic thermodynamic process. First results in
this direction have been already obtained in Refs. [128,129].
In addition, there are also entropic Leggett-Garg inequalities
[123,130,131], which relate Eq. (103) to the entropy of the
measurement result H (rC, rB, rA). As this quantity plays a
crucial role in our second law, it would be interesting to
investigate whether a Maxwell demon can extract more or less
work from a system and measurement process able to violate
the entropic Leggett-Garg inequalities.

2. Entanglement

Closely related to the previous analysis is the question
of how far entanglement can boost the performance of a
heat engine. There has been much theoretical progress on
understanding the role of entanglement for work extraction
(see, e.g., Refs. [132–137]), mostly, however, for extracting
work in idealized protocols. A realizable and continuously
working heat engine using quantum entanglement has not yet
been presented. In contrast, classical correlations are known
to be indispensable for autonomous multipartite heat engines
such as thermoelectric devices [138–142].

To test whether a thermodynamic process is influenced
by entanglement, consider a bipartite system AB existing
in the Hilbert space HA ⊗ HB as the working fluid. One
could then follow a similar strategy as above, but this time,
instead of applying a dephasing operation, one would apply
an entanglement-breaking operation B, which keeps classical
correlations. If the reduced state of system A is given by
ρA = ∑

i λi|i〉〈i|A, then the control operation

BρAB =
∑

i

|i〉〈i|AρAB|i〉〈i|A (104)

would destroy any entanglement but keep all classical corre-
lations. Monitoring the response of a multipartite system to
such a control operations then allows the experimenter to infer
how far quantum correlations play a role thermodynamically.
As above, this procedure exemplifies how useful generalized
control operation are, not only to control a thermodynamic
process but also to unravel specific properties of it.

3. Non-Markovian signatures in heat engines

The last part of this outlook probably requires the largest
research effort, but it seems to be necessary in order to obtain a
complete framework of stochastic thermodynamics for small
quantum systems. Indeed, for sufficiently low temperatures
and sufficiently small timescales (i.e., where the standard
Born-Markov secular master equation fails) it is expected that
generic open quantum systems exhibit non-Markovian behav-
ior. Furthermore, even at room temperature there is evidence
that non-Markovianity can drastically effect biochemical
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processes such as photosynthesis [143,144] and there is ev-
idence that non-Markovian effects can also boost the perfor-
mance of heat engines [145–147]. Despite the fact that there
are several ways to rigorously quantify non-Markovianity
in open quantum systems [148,149], establishing a rigorous
connection between thermodynamics and non-Markovianity
has proven to be challenging so far [150].

Notice that the present framework crucially hinges on
the assumptions of a Markovian system evolution. However,
it is likely that it is possible to overcome the assumptions
from Sec. IV A. One route could be to enlarge the system
space by incorporating explicitly the most dominant degrees
of freedom of the environment in the dynamics, a strategy
which was directly or indirectly proposed in Refs. [146,147,
151–157]. Preliminary results also show that this is not even
necessary if we do not consider real-time feedback control
[158].

To outline how it would be possible to rigorously detect
non-Markovian effects in quantum thermodynamics, we make
use of the notion of a causal break. This notion was recently
introduced in Ref. [61] to give a general and rigorous defini-
tion of non-Markovianity based on the process tensor, which
generalizes previous attempts [148,149]. The basic idea is to
apply a control operation to the system, which reprepares it
in a state independent of all past events. Any dependence
of future events on past events then reveals non-Markovian
effects.

To have a particular application in quantum thermodynam-
ics in mind, imagine a steadily working heat engine. The
details of the machine, i.e., whether it uses multiple heat baths
or feedback control as a resource and whether it acts as a
refrigerator or thermoelectric device, do not matter for the
present consideration. Furthermore, let us denote the steady
state of the machine by ρ̄S . Now, as a causal break we apply a
control operation which replaces the current state of the sys-
tem by the steady state ρ̄S . This is always possible: We could,
for instance, projectively measure the state of the system and

then prepare the state ρ̄S . Since ρ̄S will be in general mixed,
this preparation procedure will be probabilistic (i.e., described
by multiple Kraus operators and not a single one). The crux
is now to apply this control operation when the machine
has already reached steady state, i.e., we effectively replace
ρ̄S by ρ̄S on average. When the system behaves Markovian,
the future statistics of all measurements will not depend on
this repreparation procedure, but if the system exhibits non-
Markovian behavior, there will be observable consequences
as our control operation has destroyed all time correlations
of the system with the past. To see whether such a causal
break has an influence on the thermodynamics (which does
not need to be the case even when the overall dynamics is
non-Markovian), one could measure, e.g., the work output of
the device or its efficiency. Since the system was assumed to
operate at steady state, any change in its thermodynamic be-
havior after the causal break described above unambiguously
reveals non-Markovian effects.

Thus, to summarize, we are only beginning to explore
quantum effects in thermodynamics. To access those quantum
effects in a laboratory, it is important to be able to apply
various control operations to the system. The present paper
provides the toolbox to describe these control operations
thermodynamically even along a single stochastic trajectory.
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