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Percolation of sites not removed by a random walker in d dimensions
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How does removal of sites by a random walk lead to blockage of percolation? To study this problem of
correlated site percolation, we consider a random walk (RW) of N = uLd steps on a d-dimensional hypercubic
lattice of size Ld (with periodic boundaries). We systematically explore dependence of the probability �d (L, u)
of percolation (existence of a spanning cluster) of sites not removed by the RW on L and u. The concentration
of unvisited sites decays exponentially with increasing u, while the visited sites are highly correlated—their
correlations decaying with the distance r as 1/rd−2 (in d > 2). On increasing L, the percolation probability
�d (L, u) approaches a step function, jumping from 1 to 0 when u crosses a percolation threshold uc that is close
to 3 for all 3 � d � 6. Within numerical accuracy, the correlation length associated with percolation diverges
with exponents consistent with ν = 2/(d − 2). There is no percolation threshold at the lower critical dimension
of d = 2, with the percolation probability approaching a smooth function �2(∞, u) > 0.
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I. INTRODUCTION

In the simplest (Bernoulli) site or bond percolation prob-
lem [1,2] sites or bonds of a regular d-dimensional lattice are
independently occupied with probability p. For an infinite sys-
tem, there is a sharp percolation transition point pc, such that
for p > pc there exists an infinite cluster spanning the system.
Close to pc, many geometrical and physical properties become
singular, as expressed by universal power-law dependencies
on |p − pc|. For example, the typical linear extension of finite
clusters of connected sites, indicated by the correlation length
ξ , diverges as ξ ∼ |p − pc|−ν . The universal critical exponent
ν depends only on space dimension d and is well known for
Bernoulli percolation in all d (see, e.g., Ref. [3]). A much-
studied problem in mathematical literature, percolation has
also been used to model a variety of physical systems for
the onset of connectivity and flow, e.g., for current passing
through a random resistor network.

An early application of percolation is to gels formed by
random crosslinking of polymers [4]. Gelation has acquired
new interest in the context of reversible accumulations of
nonspecific biological molecules into liquidlike droplets with
important functions as in transcription regulation [5]. The
reverse process of gel degradation is now also of relevance.
In principle, the removal of connections, rather than their
addition, does not qualitatively change the percolation picture.
For example, in the process of hydrogel degradation [6–9]
connections are severed mostly uniformly in space, and the
measured elastic and rheological properties [10,11] resemble
the gel formation process in reverse [12].

While in Bernoulli percolation, the elements are added or
removed randomly and independently, new behavior emerges
if subsequent events are correlated. An extreme case is that
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of explosive percolation when the events are specifically
chosen so as to delay the percolation transition [13]. A
different extreme consists of removing entire straight lines
from the system in each step [14], e.g., by drilling through
a solid sample [15], or by having very elongated obstacles
(fibers) influencing molecular diffusion between cells [16]
and also corresponds to a completely different universality
class [15,17–19]. A variant of the latter is removal of sites or
bonds performed by a meandering random walk (RW). This
models a simplified version of a degradation process in which
a single enzyme, or possibly a few enzymes, travel through a
gel, breaking the crosslinks they encounter [20,21]. In an early
numerical study of this problem, which they named “random
walk decay,” Banavar et al. [22] considered properties of
the clusters of vacant sites, unvisited by the RW, on square
and cubic lattices. In a later study, Abete et al. considered
percolation of the vacant bonds on a cubic lattice [23], finding
numerically the threshold and several critical indices of the
problem, which they called “pacman percolation.”

Independently, the mathematical community has also stud-
ied aspects of the above problem. While physicists focused
on geometry and critical properties of clusters, primarily in
d = 2 and d = 3 dimensions, mathematicians debated the
very existence of a percolation threshold. For a random walk
of length N to cover a finite fraction of the M = Ld sites of a
hypercubic lattice, the number of steps N must be proportional
to M. The question of whether percolation of vacant sites stops
for N/M = u larger than a critical uc was addressed in several
mathematical works, first for d � 7 [24] and later for d � 3
[25,26]. In the mathematical literature, this problem is referred
to as “percolation of vacant sites of interlacement.” Although,
the bounds on uc established in this literature were extremely
broad, and in d = 3 spanned many order of magnitude [27],
we shall see that uc is approximately 3 for 3 � d � 6.

More precisely, in this work we perform a detailed nu-
merical study of site percolation on d-dimensional hypercubic
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lattices of linear dimensions L (0 � {x1, x2, . . . , xd}� L − 1)
and volume V = ad M = Ld (with lattice constant a = 1). A
RW starts at an arbitrary initial position on the lattice and
performs N = uM = uLd steps, obeying periodic boundary
conditions in all directions, i.e., xi = L coincides with xi = 0
for i = 1, . . . , d . This scaling of N maintains a fixed fraction
of vacant sites in d � 3. (The case of d = 2 is discussed
separately in Sec. VI). We then define a configuration as
“spanning” (“percolating”) if a continuous path of vacant sites
exists between boundaries at xd = 0 and xd = L − 1. Note
that while checking for this percolation condition, boundaries
in directions 1, . . . , d − 1 are assumed to be periodic; this
is sometimes referred to as “helical boundary conditions”
[28]. By considering a large number of realizations for each
L and u, we determine the spanning probability �d (L, u).
The fraction of vacant sites p is a monotonically decreasing
function of u. In d � 3 there is a sharp percolation threshold
uc, such that in the L → ∞ limit the spanning probability
becomes a step function with �d = 1 for u < uc and �d = 0
for u > uc. (And in terms of p, this corresponds to a threshold
pc.) The relation between u and p for d � 3 is discussed in
detail in Sec. II.

Unlike Bernoulli percolation, the sites removed by a RW
are highly correlated. In Sec. III we demonstrate that the
correlations between vacant sites decay as a power law, pro-
portional to 1/rd−2 with their separation r. Such correlated
percolation has been argued to belong to a universality class
characterized by an exponent ν = 2/(d − 2) for divergence of
the correlation length [29,30]. We set up to test this behavior in
dimensions 3 � d � 6. Section IV details our numerical study
of percolation in d = 3, while Sec. V extends the exploration
to d = 4, 5, and 6. There is no percolation threshold in
d = 2, resulting in a smooth limiting function for spanning
probability as demonstrated in Sec. VI. The limits of this
function for very short and very long walks are discussed in
Sec. VII. We conclude in Sec. VIII with some topics for future
investigation.

II. STATISTICS OF SITES NOT VISITED
BY A RANDOM WALK

As a random walker performs N = uLd steps on a finite
hypercubic lattice of volume M = Ld (“box”) with periodic
boundary conditions, the fraction of unvisited or vacant sites
p decreases with increasing u. If instead of performing an
N-step RW, we randomly and independently select N of sites
on a lattice, the occupied sites would be random, uncorrelated,
with some of them multiply occupied. More precisely, the
fraction of vacant sites would be p = exp(−u), as indicated
by the bottom dash-dotted line in Fig. 1, with their positions
uncorrelated as in usual (Bernoulli) percolation. However, the
obvious correlations in the positions of the random walker
generate a different dependence p(u) as L → ∞, which also
remains nonzero for any finite u.

The fractal dimension of a RW is 2, leading to qualitatively
different behaviors in d = 2 that are separately discussed in
Sec. VI. The results described in this section, as well as in
Sec. III, thus pertain only to dimensions d � 3. While the RW
on an infinite hypercubic lattice does intersect itself, it can be
shown rigorously that the number of distinct visited sites of a

FIG. 1. Semilogarithmic plot of the probability (fraction) p of
vacant sites as a function of u at d = 3. The dash-dotted bottom curve
corresponds to p = e−u obtained by dropping uL3 independent sites
on a lattice of L3 sites. The topmost line represents the asymptotic
behavior p = exp(−A3u). The remainder of the curves represent
measured values of p as functions of u for L = 4, 8, . . . , 128 (bottom
to top). Data points are spaced �u = 0.05, and each point is an
average of 400 configurations.

long walk of N steps grows as [31–33]

Ndist = Ad N, (1)

with subleading corrections of O(N1/2) in d = 3 and O(ln N )
in d = 4. The corrections do not increase with N for d � 5, as
self-intersections of remote parts of RWs become negligible.
The coefficient Ad in Eq. (1) depends on lattice type and space
dimension. It is the inverse of the mean number Bd of visits
of a random walker to its initial position [34–36] (see also
chapter 3 in Ref. [37]). [Also, the mean number of RW steps
required to visit all sites of a finite box of size M is Bd M ln M
[36] (see also Ref. [38])]. A detailed procedure for calculation
of both Ad and subleading corrections for various lattices
was outlined by Montroll and Weiss [32], while an efficient
numerical method can be found in Ref. [39]. The values
of these coefficients for hypercubic lattices are A3 = 0.659
[32], A4 = 0.807, A5 = 0.865, and A6 = 0.895 [39]. (Here
and thereafter, the accuracy of numbers without error bars is a
single unit of the last digit or better).

Sites visited by a RW are strongly correlated. In an infinite
space, an n-step RW explores a volume of radius r ∼ n1/2 in
which, for d � 3, the density of visited sites will be n/rd ∼
1/rd−2. Thus, if a particular lattice site on a hypercubic lattice
is visited by a RW, then the probability of finding another
visited site at a large separation r will be Cd/rd−2, where
the lattice- and dimension-specific prefactor Cd is of order of
unity. Consider a random variable w(�x) which is 1, if a site
at position �x has been visited by a RW and is 0 otherwise.
Probabilities of RW visiting positions �x and �y are correlated,
such that 〈w(�x)w(�y)〉/〈w(�x)〉 ≈ Cd/|�x − �y|d−2, where 〈〉 de-
notes an average over realizations of RWs.

To examine the problem on a finite hypercube with periodic
boundary conditions, we first create a RW on an infinite
lattice, then tile the space with boxes (hypercubes) of size
M = Ld . The boxes are then cut out and superposed; a
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procedure that we refer to as “folding.” For d � 3, and for
finite u = O(1) and large L, the walk on an infinite lattice
will have typical size (end-to-end distance) ∼Ld/2 	 L. In an
infinite space most of the boxes will be empty, and the RW
will visit of order Ld−2 distinct boxes. In the ith visited cube
there will be ni distinct visited sites, and ni will be of order
L2. Thus, the fraction of unvisited (vacant) sites in a cube
is pi = 1 − ni/Ld 
 exp(−ni/Ld ), as ni/Ld ∼ 1/Ld−2 is very
small. The “folding” process from infinite space into a single
periodic box effectively removes correlations between far
away boxes, and we can treat the configurations arising from
superposition of distinct boxes as uncorrelated. Therefore, the
probability that a particular point in the periodic box has not
been visited is

p =
∏

i

pi = exp

(
−

∑
i

ni

Ld

)

= exp

(
−Ndist

Ld

)
= exp(−Ad u) . (2)

This asymptotic (very large L) result has been rigorously
proven in Ref. [36].

In numerical simulations with moderate values of L
(∼10–100), the finite-N corrections to Eq. (1) are noticeable,
especially in d = 3 where there is a non-negligible probability
for a RW that exited a box (on the infinite lattice) to return to
it. Yet correlations of occupied sites even in adjacent boxes
do not exceed Cd/Ld−2 and are much smaller for nonadjacent
boxes (which are the majority). Thus, in the “folding” pro-
cess we superimpose practically independent configurations.
Also, the fraction of visited sites ni/Ld ∼ 1/Ld−2 is still
significantly smaller than 1. The deviations from Eq. (2)
for moderate L can be corrected for by replacing Ad with
an effective Ad (L). We examined numerically the functions
p(u) in d = 3, 4, 5, and 6, and in all cases the results for
various L could be fitted extremely well by a pure exponential
p = exp[−Ad (L)u]. For d = 3 we checked such dependence
for L = 4, 8, . . . , 128. The results presented in Fig. 1 fit pure
exponentials at the accuracy level of χ2 ∼ 10−7. The slopes
on the semilogrithmic plots depend on L but converge very
fast to the known value of A3 indicated by the top line on
Fig. 1. Of course, both this and the following statements,
about “purely exponential behavior,” should not be taken in
a strict mathematical sense: We know, that for a finite periodic
box of size M, a walk of Bd M ln M steps will “completely
occupy” the box. So, in d = 3 and L = 128, this will occur
for u > B3 ln 1283 ≈ 22, far beyond the limits of applicability
of the above discussion.

In d � 4 the distant parts of RW rarely intersect and
therefore Ad (L) converges very fast to its asymptotic value
Ad . As an example, in Fig. 2 we show the d = 4 case, where
for lattices of sizes L = 4, 8, 16, and 32 we generate 104

configurations per data point to measure the relation between
u controlling the chain length and the fraction of unvisited
sites p. As before, all curves are straight on semilog scale,
i.e., p is an exponentially decaying function of u. The rate
of that decay quickly converges to a constant, leading to p =
exp(−A4u) for large L. We repeated these calculations also
for d = 5 and d = 6. There was practically no L dependence

FIG. 2. Semilogarithmic plot of the fraction p of unvisited sites
as a function of parameter u controlling the length of the random
walk in d = 4 for L = 4, 8, 16, and 32 (bottom to top). Data
points are spaced �u = 0.05, and each point is obtained from 104

configurations.

of Ad (L) and the coefficients reached their asymptotic values
already for small L.

III. CORRELATED PERCOLATION

To quantify the correlations between sites visited by the
RW following the “folding” from infinite space, let us exam-
ine the two-point correlation function 〈w(�x)w(�y)〉. We argued
previously that the RW segments from distinct boxes are
almost uncorrelated, after being “folded” into the single box
with periodic boundary conditions. A randomly selected site
�x in the periodic system has a probability 〈w(�x)〉 = 1 − p =
1 − exp(−Ad u) of being occupied. This point may have been
visited a few times either by the same RW segment or by RW
segments belonging to distinct boxes before “folding.” Either
way, the probability of finding a site at position �y that has
been visited by the segment of RW in the same box (before
“folding”) is given by Cd/|�x − �y|d−2 and it is modified by
the number of distinct boxes to which the segments belonged
before “folding.” Thus, the correlated part of 〈w(�x)w(�y)〉
will decay as 1/|�x − �y|d−2, as long as |�x − �y| is significantly
smaller than the box size L. Of course, the chances that
position �y also has been visited is dominated by segments of
RW that belong to other boxes before the “folding.” This con-
stant background part must be subtracted when measuring the
cumulant, leading to 〈w(�x)w(�y)〉c = F (u)/|�x − �y|d−2, where
F (u) is a smooth function of order unity for u = O(1). (In
d = 3, an equivalent argument can be found in Ref. [21]).

Since we are interested in the properties of vacant
sites, we define a related variable v(�x) = 1 − w(�x), with
〈v(�x)〉 ≡ p. Products of these variables at distinct posi-
tions have the property 〈v(�x)[v(�y) + w(�y)]〉 = 〈v(�x)〉 = p and
〈w(�x)[v(�y) + w(�y)]〉 = 〈w(�x)〉 = 1 − p. Since our system is
translationally invariant and symmetric under inversion, we
have 〈v(�x)w(�y)〉 = 〈w(�x)v(�y)〉. Thus, by subtracting the two
previous equalities from each other, we find 〈v(�x)v(�y)〉 =
〈w(�x)w(�y)〉 + 2p − 1. Consequently, the vacant sites exhibit
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the same decay of cumulants as visited sites, i.e.,

〈v(�x)v(�y)〉c ∼ 1/|�x − �y|d−2. (3)

The two-point correlation function captures only one as-
pect of the interesting information about the system. The
RW in a periodic box has the distinct property of being a
single cluster (noting periodic boundary conditions). While
vacant sites can form many clusters, they tend to aggregate
into one large cluster. The unusual properties of both small
and “infinite” clusters have been studied by several authors
[22,23,40–42].

In “usual” (Bernoulli) percolation there are no correlations
between occupied sites or bonds. This problem has a lower
critical dimension of d = 1, where pc = 1, and an upper
critical dimension of dc = 6 [43], above which mean-field
behavior is expected; e.g., with the correlation length diverg-
ing with exponent νB = 1/2. Weinrib analyzed stability of the
Bernoulli percolation universality class to correlations [30]
(following a similar treatment for critical phase transitions
[29]). By appealing to a generalized Harris criterion [44], he
demonstrated that short-range correlations, as well as power-
law correlations decaying as 1/ra with a > d , do not modify
the universality class of Bernoulli percolation. However, for
a < d , the relevance of the correlations is determined by
the extended Harris criterion [29]: If aνB − 2 < 0, then the
correlations are relevant. Equation (3) shows that vacant sites
have a power-law correlation with a = d − 2. The quantity
(d − 2)νB − 2 is −1.12, −0.62, −0.29, and 0 for d = 3, 4, 5,
and 6, respectively [3]. This expression becomes positive for
d � 7.

Percolation with long-range correlations is a well-
researched subject [45]. (For a more recent study see
Ref. [46]). In most physical contexts, correlations are gener-
ated by thermodynamic systems such a critical Ising model. It
has been shown [29,30] that, for power-law correlations, the
exponent characterizing divergence of the correlation length
equals ν = 2/a, which in our case is

ν = 2/(d − 2), for 3 � d � 6. (4)

Abete et al. [23] studied percolation of vacant bonds on
lattices of up to 603 and found ν = 1.8 ± 0.1, consistent with
ν = 2 expected from Eq. (4). In this work we consider site
percolation on large lattices and confirm Eq. (4) in d = 3, 4,
and 5. In d = dc = 6 power-law correlations ∼1/r4 repre-
sent a marginal perturbation, and both Eq. (4) and standard
Bernoulli percolation lead to ν = 1/2.

In a system of infinite size the spanning probability is
a step function, jumping between 1 and 0 as the percola-
tion threshold is crossed. However, for finite L it exhibits a
smooth crossover between these values. It has been shown
for Bernoulli percolation [47–50] that for large L the value
of spanning probability �d,B(L, p) at p = pc reaches a uni-
versal value independent of microscopic lattice details or the
consideration of bond or site percolation. Thus, the critical
spanning probability �c

d,B ≡ limL→∞ �d,B(L, pc) is a uni-
versal number characterizing a percolation universality class.
For example, �c

2,B = 1/2 in two-dimensional Bernoulli site
and bond percolation with free boundary conditions. How-
ever, the value of the spanning probability for finite L, and,
consequently, its universal limit of �c

d,B, does depend on

FIG. 3. Percolation (spanning) probability �3 of vacant sites on
a cubic lattice in d = 3 as a function of u for L = 4, 8, . . . , 512 (left
to right).

the macroscopic definition of spanning, such as requiring
spanning in several directions simultaneously or using peri-
odic versus free boundary conditions. Such dependence on
macroscopic definitions has been observed by several authors
[28,51–53]. The value of �c thus may serve as an extra
indicator of differences between universality classes. In the
problem of percolation of vacant sites of a RW, we can
similarly define �c

d ≡ limL→∞ �d (L, u = uc) characterizing
this type of percolation.

IV. PERCOLATION IN d = 3

In d = 3 we considered site percolation along the x3 direc-
tion for cubic lattice sizes L = 4, 8, 16, . . . , 512. For every
L and u we generated many realizations of RWs of N =
uL3 steps. Spanning probability �3(L, u) was calculated by
averaging 104 realizations for each u for L � 64, and 4000
configurations for each u for L � 128. The limiting factor in
the computations was the large lattice size, and correspond-
ingly long walks reaching N = 5 × 105, necessitating long
times required to process each configuration. (The previous
study by Abete et al. [23] reached lattice sizes L = 60 and
considered bond percolation.) Figure 3 depicts the spanning
probability as a function of u. As expected, the transition
becomes sharper with increasing L. The curves also exhibit
a very strong drift toward larger values of u with increasing L.

There are several methods to determine the critical value
uc for percolation. The low accuracy of the results prevents
us from using points u = u∗ of maximal slope of �d (L, u) as
estimates of uc. However, we can examine the L dependence
of values u∗ for which �d (L, u∗) = c. Independently of the
choice of c, we expect limL→∞ u∗ = uc. Moreover, for large
L, we expect

|u∗ − uc| ∼ L−1/ν . (5)

For d = 3, Fig. 4 depicts the dependence of successive esti-
mates of uc on L−1/2, as suggested by Eq. (5) with anticipated
ν ≈ 2. (Note that for small L, the estimates of uc do not
follow the asymptotic form of Eq. (5), and are sometimes even
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FIG. 4. Successive estimates u∗ of the percolation threshold uc,
as a function of 1/

√
L for L = 4, 8, . . . , 512 (full circles and solid

lines). Different curves provide the estimates obtained from numeri-
cal values of u∗ for which the percolation probability is �3(L, u∗) =
0.5, 0.1, 0.03, or 0.015 (bottom to top). An additional estimate of
uc (open circles and dotted line) is obtained from intersection of
the spanning curve for a particular L with the corresponding curve
for 2L; the resulting values are plotted as a function of 1/

√
Leff ≡

1/(21/4
√

L).

nonmonotonic functions of L.) All four lines extrapolate to
uc = 3.15 ± 0.01.

An additional set of estimates (open circles) is obtained
by looking at points of intersection u∗ of two sequential
curves of �d : For example, for L1 and L2 we may look
for �d (L1, u∗) = �d (L2, u∗) and study the resulting u∗ as
a function of (L1L2)−1/2ν . For d = 3, when L1 = L, then
L2 = 2L. This sequence of estimates leads to the same uc.
This uc corresponds to pc = 0.125 ± 0.001, which is rather
close to the threshold of pc = 0.139 ± 0.001 found for bond
percolation in Ref. [23]. The fact that the site percolation
threshold found in our work is smaller than the bond percola-
tion threshold of Ref. [23] is somewhat surprising.

By following the value of �3(L, u∗), at points u∗ where
curves �3(L, u) for successive L intersect, we estimate the
critical spanning probability �c

3 = 0.04 ± 0.01. This value is
slightly larger than �c

3 ≈ 0.032 found by Abete et al. [23]
in bond percolation; both are significantly smaller than the
analogous number 0.513 [28] in Bernoulli percolation.

Close to the percolation threshold, the correlation length
ξ diverges as |u − uc|−ν . For finite system size L, as long
as L > ξ the percolation probability resembles that of an
infinite system, i.e., �d (L, u) ≈ 1 or ≈0, for u < uc or u > uc,
respectively. For ξ � L the value of �d (L, u) decreases from
close to 1 to near 0 as u increases. Therefore, the transition
region approximately appears when b|u − uc|−ν > L, where
b is a numerical prefactor. Thus, the width of the transition
region scales as �u ≈ (L/b)−1/ν . Since �d changes between
1 and 0 in the transition region, we expect the absolute value
of the slope in that region to be ≈1/�u or

slope ≈ (L/b)1/ν . (6)

(Here and thereafter we disregard the negative sign of the
slope).

FIG. 5. Logarithmic plot of the inverse width of the percolation
transition (in terms of the variable u) as a function of L. 1/�u
is measured from the maximal slope of the curves in Fig. 3. In
theses coordinates, it occurs approximately where the percolation
probability is 1/2.

In d = 3 we measured the absolute value of the maximal
slope of the curves in Fig. 3 for each L, and the results are
presented in Fig. 5. According to Eq. (6), the slope of this
relation on a logarithmic plot should be 1/ν. We observe a
slow and noisy increase of the slope with increasing L. The
inverse of the extrapolated slope produces an estimate of ν =
2.04 ± 0.08 that is larger than ν = 1.8 ± 0.1 that was found
on significantly smaller systems in Ref. [23] and agrees well
with the value ν = 2 predicted by Eq. (4). Instead of using
the largest slopes for each L, we could have concentrated on
significantly smaller slopes of the curves at u = uc. Such an
approach may provide a useful estimate of possible systematic
errors. However, our data are too noisy and inaccurate in this
area to produce reliable results.

V. PERCOLATION IN d = 4, 5, AND 6

In higher dimensions d , we followed a similar strategy
to the one described in the previous section. For d = 4 and
5, we generated RWs of N = uLd steps starting from L = 4
and then doubling L until L = 64 for d = 4 or L = 32 for
d = 5. (With increased d , we had to limit the maximal size
L). For each L, from repeated tests of spanning along xd ,
we determined �d (L, u). Results of these measurements are
depicted in Fig. 6.

The “drift” of the curves to the right in d = 4, and espe-
cially in d = 5, is significantly smaller than in d = 3, allowing
a rather accurate determination of the percolation threshold.
In d = 4 we find uc = 2.99 ± 0.01, which corresponds to
occupation fraction pc = 0.0898 ± 0.0007 of unvisited sites.
This value is roughly half of the percolation threshold of 0.197
for regular (Bernoulli) site percolation on a hypercubic lattice
in d = 4 [54]. In d = 5 we estimate uc = 3.025 ± 0.008,
which corresponds to the critical fraction of vacant sites pc =
0.0730 ± 0.0006. This result is again about half of the perco-
lation threshold of 0.141 for Bernoulli site percolation on a
hypercubic lattice in d = 5 [3]. It is difficult to determine the
critical spanning probability �c

d with any accuracy. However,
by following the values of the intersections of �d (L, u) curves
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(a) (b)

FIG. 6. Spanning probabilities for (a) d = 4 and (b) d = 5. The transitions become steeper with increasing L. Each data point for large L
is an average over 4000 samples. For smaller L [� 8 in (a) and � 16 in (b)] 104 configurations were generated.

with sequential values of L, we estimate that �c
4 is between

0.1 and 0.2, while �c
5 is about 0.4.

We next estimate values for the critical exponent ν from
the dependence of slope on L near the transition point. In
d = 4, we were able to measure accurately both the maximal
slope and the slope at the estimated uc. Differences between
these two methods provide us with an estimate of the possible
systematic error. We find that ν = 1.0 ± 0.1, which agrees
with ν = 1 expected from Eq. (4), and is very different from
the Bernoulli value of νB = 0.685 [3]. In d = 5 the largest
slope practically coincides with the slope at uc (except for L =
4). We detect a slight dependence of the effective exponent νeff

on L, and the extrapolated value is ν = 0.65 ± 0.03, where
the error bars reflect the uncertainty in the extrapolation pro-
cedure. This agrees excellently with ν = 2/3 expected from
Eq. (4), and differs from the regular (Bernoulli) percolation
exponent of νB = 0.57 [3].

In d = 6, we generated random walks of length uL6

for L = 4, 6, 8, 11, and 16. This required dealing with lat-
tice sizes M ≈ 1.7 × 107 and RWs reaching 6 × 107 steps.
Figure 7 depicts the spanning probability �6(L, u) as a func-
tion of u for several values of L. The maximal rate of decrease
of all the curves is close to the point where � ∼ 1/2 or

FIG. 7. Spanning probability �6, for d = 6, as a function of u,
for L = 4, 6, 8, 11, and 16 (from gradual to steep decrease). For
L = 4 each data point corresponds to 104 configurations, while for
L � 6, 4,000 configurations were sampled.

slightly higher. There is almost no drift in the curves with
increasing L, and we estimate uc = 3.10 ± 0.05, which corre-
sponds to critical fraction of vacant sites pc = 0.062 ± 0.003.
The latter is significantly smaller than the threshold 0.109 for
Bernoulli site percolation [3]. The intersection points between
�6(L, u) for successive L drift strongly upward, leading to
a rather large estimate of �c

6 ∼ 0.9 for the critical spanning
probability. Since d = dc = 6 is the common upper critical di-
mension [43], both the regular percolation theory and Eq. (4)
posit ν = 1/2. Unfortunately, the maximal lattice size of L =
16 computationally available to us, is too small to determine
ν with any degree of accuracy. In addition to the obvious
limitations of small L, we note that at dc there are logarithmic
corrections in cluster size distributions [55,56] that further
complicate detection of the trends. A straightforward power-
law fit in the range 4 � L � 16 produces νeff ≈ 0.6. Due to
the above mentioned limitations, we believe that our numeri-
cal result does not contradict the expected value of ν = 1/2.

VI. SPANNING PROBABILITY IN d = 2

The behavior of a two-dimensional RW of N = uL2 steps
on the L × L square lattice is quite different from the higher
dimensions discussed previously. For u = O(1), the root
mean-squared end-to-end distance of a walk is of the order of
the linear size L, rendering the imagery of multiple “foldings”
of a much longer RW in Sec. II inapplicable. As in higher
dimensions, we will test for spanning along the x2 direction,
while assuming periodicity in the x1 direction. Clearly, for
u � 1 a typical walk is simply too short to block percolation
of vacant sites along x2, while for u 	 1 a single “circumnav-
igation” of the walk in x1 direction will almost certainly block
the percolation in x2 direction. In earlier work, Banavar et al.
[22] studied properties of clusters of vacant sites in a system
of this type. They were primarily interested in the fractal and
fracton dimensions in the regime where the RW covers a finite
fraction of a lattice, i.e., for u of order of unity.

Since the fractal dimension of a RW is 2, it is not surprising
that its behavior in d = 2 exhibits important differences from
higher dimensions. For example, the number of distinct sites
visited by an N-step walk in d = 2 on an infinite lattice is
modified from Eq. (1) to the leading order as [31,32,57,58]

Ndist = A2N, with A2 = π/ ln N. (7)
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FIG. 8. Semilogarithmic plot of the fraction of unvisited sites p
versus u, for 4, 8, . . . , 512 (bottom to top) at d = 2. All graphs can be
well fitted by p = exp[−A(L)u], where the prefactor A(L) (slope on
this semilogarithmic graph), which depends on L, does not saturate
to a finite value for L → ∞.

Correspondingly, the number of visits of a random walker to
its initial position increases logarithmically with N , namely
B2 = (ln N )/π , as opposed to a constant Bd for d > 2. Sim-
ilarly, the number of steps required to visit all sites on a
lattice of M sites is ∼M ln2 M, i.e., with an extra logarithm
compared to higher dimensions. Thus, when considering RWs
of N = uL2 steps on a square lattice of M = L2 sites, with
u = O(1), the density of occupied sites actually vanishes
in the limit L → ∞. This again justifies arguments used in
Sec. II to demonstrate that, even for moderate L, there is a
pure exponential dependence of the fraction of vacant sites p
on the parameter u.

The results of our numerical study of the dependence of
p on u are presented in Fig. 8. We performed simulations
for L = 4, 8, 16, . . . , 512. All curves are well approximated
by a pure exponential, and appear as straight lines on the
semilogarithmic plots in Fig. 8. Steps visible for L = 4 (and,
to lesser extent, on L = 8) are a consequence of N being an
integer, requiring downward truncation to integer of uL2 =
16u (or 64u). The apparent slope A(L) in Fig. 8 keeps de-
creasing with increasing L. In fact, even the product A(L) ln L
has some residual dependence on L but approaches π/2 for
large L. We verified this convergence to five-digit accuracy.
[The extra factor of 2 is due to the fact that to leading order
ln N = ln(uL2) ≈ 2 ln L.] Thus for large L,

p = exp
(
− πu

2 ln L

)
. (8)

In the asymptotic limit of large L, this result has been proven
in Ref. [59]. The choice of u over p as the control parameter is
inconsequential in higher dimensions where the two quantities
are related by a fixed function. In d = 2, the relation between
p and u in Eq. (8) depends on L, and using u creates a
somewhat different perspective.

Figure 9 depicts numerically calculated accurate values of
�2(L, u) obtained using large statistics (105 samples per data
point). We studied the spanning probability on a square lattice
for L = 4, 8, 16, . . . , 512; the limiting factor for the largest
L was the need to evaluate �2(L, u) with high accuracy. As

FIG. 9. Spanning probability �2(L, u) on an L × L lattice for
random walks of length N = uL2, for L = 4, 8, . . . , 512 (bottom-left
to top-right). Each point is an average of 105 configurations, and the
points are separated by �u = 0.05.

before, the steps seen on the graph for L = 4 are a result of
truncating uL2 = 16u to integer N . We immediately note that
there is no sign of �2(L, u) becoming a step function with
increasing L: The two-dimensional problem does not have a
nontrivial percolation threshold. On the other hand, we clearly
see that for large L, the spanning probability approaches a
smooth function: limL→∞ �2(L, u) = �2(∞, u).

It can be argued that the existence of a finite �2(∞, u)
is a consequence of the reduced role of lattice spacing in
d = 2. For d � 3 the discreteness of the lattice plays a crucial
role: For percolation in the xd direction, a RW that is a
one-dimensional path must completely block passage between
boundaries at xd = 0 and xd = L − 1. As this can only be
achieved by creating a (d − 1)-dimensional continuous sur-
face separating the space into disconnected parts, the RW path
must either be on a lattice or endowed with some thickness
a to block a finite volume. By contrast in d = 2, percolation,
say, in the vertical direction, can be blocked by a path crossing
the system horizontally, which can be accomplished by a
RW of zero thickness, as long as it acquires an extension
R ∼ aN1/2, comparable to the system dimension aL. The cor-
responding ratio (R/L)2 is proportional to u and independent
of a, would then determine the finite probability �2(∞, u)

Since the relation between p and u depends on L, as in
Eq. (8), reexpressing �2(∞, u) as a function of p leads to
a function that depends on L. As depicted in Fig. 10, with
increasing L the corresponding �2(L, p) shift toward p = 1.
Thus p = 1 serves as a trivial percolation threshold in d = 2.

VII. VERY SHORT AND LONG WALKS IN d = 2

A. Limit of small u

For u � 1, the typical linear size of a RW, such as its
end-to-end distance, is

√
uL. Since this is shorter than the

linear size, L, of the lattice, a typical RW cannot block
percolation in the vertical (x2) direction, and �2 ≈ 1. The
only reason for deviation of �2 from 1 is due to rare configu-
rations that, stretching far beyond the typical end-to-end dis-
tance, circumnavigate the periodic box in the horizontal (x1)
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FIG. 10. Semiquantitative representation of �2 as a function of
p for several large values of L (L = 512, 104, 106, and 109, left to
right). These simulated data were built from actual data for L = 512,
while the remainder was derived by using Eq. (8).

direction, with end segments intersecting the starting seg-
ments to completely block percolation in the vertical direc-
tion. For example, for L = 64 at u = 0.1 the probability of
absence of percolation is about one part per 105, and Fig. 11
depicts one such rare event. Since such an event requires
a RW of root-mean-square length

√
u/2L in the horizontal

direction to be stretched by at least L in that direction, a
lower bound for the probability of getting a nonpercolating
configuration can be obtained by integrating the Gaussian
probability distribution of the end-to-end distance from L to
infinity. The resulting integral can be expressed in terms of
the error function, as

�2 ≈ Erf(1/
√

u). (9)

This is just an estimate, since besides circumnavigating the
periodic cell horizontally, the RW must also self-intersect.
Since for u � 1 nonpercolating configurations are rare, we
sampled 106 configurations for each data point for small u

FIG. 11. An extremely rare event for which the vacant sites do
not percolate in the vertical direction in a 64 × 64 lattice for a 409-
step random walk (u = 0.1).

FIG. 12. Same data as in Fig. 9 on a semilogarithmic plot. The
dashed line corresponds to exp(−π 2u/4) (see text).

with L = 512. Below u = 0.1 we could not find nonpercolat-
ing configurations. However, in the range 0.1 � u � 0.3 we
got rather accurate values of �2(512, u) that fit quite well to
Erf(1/

√
u), as expected in Eq. (9).

B. Limit of large u

It is interesting to view the results of Fig. 9 on a semiloga-
rithmic scale, as depicted in Fig. 12. Since each data point was
obtained by averaging 105 random configurations, the statisti-
cal errors exceed 10% for �2 below 10−3 and exceed 30% for
�2 below 10−4 (comprising all fluctuations in the bottom right
corner of the figure). We note that for u > 3, the spanning
probability for �2 � 1 seems to decay exponentially (while
maintaining some residual dependence on L). To understand
this behavior of the spanning probability, we take a closer
look at the shapes of percolating configurations. Figure 13
depicts four such examples, for different values of u, with
the black squares indicating sites visited by the RW, while
the white area corresponds to vacant sites. By construction,
the black sites always form a single cluster, while the vacant
sites can be split into many clusters. We notice that most of the
vacant sites also form a single large cluster. For u = 1, vacant
sites percolate most of the time, and Fig. 13(a) represents a
“typical” configuration. For u = 4, 6, and 8, the percolating
configurations are exceptional (dropping to below 10−6 for
u = 8). As u increases, the rare percolating clusters start to
resemble narrow white bands connecting the top and bottom
boundaries, and the probability of such a rare configuration is
estimated next.

Consider a two-dimensional RW of length N = uL2 on a
square L × L lattice with periodic boundary conditions. The
probability distribution of the end point can be estimated from
the diffusion equation ∂P/∂N = D∇2P, with diffusion con-
stant D = a2/4, where a = 1 is the lattice spacing. Consider
an extreme configuration where the percolating cluster of
unvisited sites is a single straight line in the vertical direction.
The allowed configurations of RW in that case are those that
can fit between two vertical lines separated by distance L. The
total number of N-step RWs is 4N . The fraction of configura-
tions that fit within a strip of width L can be found by solving
the diffusion equation with absorbing boundary conditions.
The diffusion equation can be separated into two independent
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(a) u = 1 (b) u = 4

(c) u = 6 (d) u = 8

FIG. 13. Examples of configurations on 64 × 64 lattice, where
(white) sites unvisited by the random walk span the system in the
vertical direction.

parts: one for the vertical direction which imposes no limits
on the walker and one for the horizontal component with
absorbing boundary conditions. With the horizontal coordi-
nate denoted by x, the normalized eigenstates are 	n(x, t ) =√

2/L sin(πnx/L) exp(−Dn2π2N/L2). For large u, and hence
N = uL2, the solution is dominated by the term with n = 1,
leading to the probability

P(x0|x, t ) = 2

L
sin

(πx0

L

)
sin

(πx

L

)
exp(−Dπ2N/L2),

to find a random walker that started at x0 and arrived at
x. To obtain the total survival probability, we need to in-
tegrate over x and to average over the starting point x0.
(The vertical direction is completely free and does not affect
the probability.) The final result is the survival probability

of G ∝ exp(−Dπ2N/L2) ∝ exp(−π2u/4). (We omitted the
numerical prefactor of this expression.) Note that our answer
does not depend on L, and G ∼ exp(−π2u/4) provides a
lower bound for �2 at large u. This result clearly underesti-
mates �2(L, u), as the percolating channel does not have to be
a straight line; it can be undulating or inclined. We anticipate
that these factors will modify the prefactor for G but leave
unchanged the leading exponential part that is depicted by the
dashed line in Fig. 12. It clearly underestimates �2 by several
orders of magnitude, but its slope (on the semilogarithmic
plot) is close to the behavior of the numerical results for
large u.

VIII. DISCUSSION

In this work we studied percolation of sites unvisited by
RWs on a periodic lattice. We extended previous results by
looking at larger lattice sizes in d = 3 and by considering
all dimensions 2 � d � 6. Our primary goal was to find the
dimensionality dependence of such characteristics as the per-
colation threshold uc, the critical exponent ν, and the critical
spanning probability �c

d . While our results agree well with
the general theory of correlated percolation, much remains
unknown. We concentrated on a single critical exponent ν and
did not attempt to calculate additional critical exponents, e.g.,
describing cluster sizes and fractal dimensions, which may
provide an interesting direction for further study. The RW
creates rather unique constraints on cluster structure that may
lead to interesting results not only for d � 6 but also in higher
dimensions when the critical behavior is mean-field like.

The original impetus for the study of this type of perco-
lation came from degradation of a gel. Percolation in such a
gel is accompanied by dramatic changes in physical proper-
ties such as elasticity. However, theoretical studies (with the
exception of Ref. [22]) have so far concentrated on purely
geometrical quantities. Thus it would be interesting to extend
the theoretical investigation of such correlated percolation to
conductivity and diffusion.
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[58] P. Erdős and S. J. Taylor, Acta Math. Acad. Sci. Hung. 11, 137
(1960).

[59] M. J. A. M. Brummelhuis and H. J. Hilhorst, Physica A 185, 35
(1992).

022125-10

https://doi.org/10.1103/PhysRevLett.100.146001
https://doi.org/10.1103/PhysRevLett.100.146001
https://doi.org/10.1103/PhysRevLett.100.146001
https://doi.org/10.1103/PhysRevLett.100.146001
https://doi.org/10.1038/nphys3378
https://doi.org/10.1038/nphys3378
https://doi.org/10.1038/nphys3378
https://doi.org/10.1038/nphys3378
https://doi.org/10.1103/PhysRevB.33.3522
https://doi.org/10.1103/PhysRevB.33.3522
https://doi.org/10.1103/PhysRevB.33.3522
https://doi.org/10.1103/PhysRevB.33.3522
https://doi.org/10.1007/s00440-014-0600-x
https://doi.org/10.1007/s00440-014-0600-x
https://doi.org/10.1007/s00440-014-0600-x
https://doi.org/10.1007/s00440-014-0600-x
http://arxiv.org/abs/arXiv:1904.08340
https://doi.org/10.1103/PhysRevLett.116.055701
https://doi.org/10.1103/PhysRevLett.116.055701
https://doi.org/10.1103/PhysRevLett.116.055701
https://doi.org/10.1103/PhysRevLett.116.055701
https://doi.org/10.1103/PhysRevE.95.010103
https://doi.org/10.1103/PhysRevE.95.010103
https://doi.org/10.1103/PhysRevE.95.010103
https://doi.org/10.1103/PhysRevE.95.010103
https://doi.org/10.1007/s10955-017-1826-7
https://doi.org/10.1007/s10955-017-1826-7
https://doi.org/10.1007/s10955-017-1826-7
https://doi.org/10.1007/s10955-017-1826-7
https://doi.org/10.1016/S0304-4165(00)00144-6
https://doi.org/10.1016/S0304-4165(00)00144-6
https://doi.org/10.1016/S0304-4165(00)00144-6
https://doi.org/10.1016/S0304-4165(00)00144-6
https://doi.org/10.1016/S0006-3495(03)74704-3
https://doi.org/10.1016/S0006-3495(03)74704-3
https://doi.org/10.1016/S0006-3495(03)74704-3
https://doi.org/10.1016/S0006-3495(03)74704-3
https://doi.org/10.1088/0305-4470/18/1/017
https://doi.org/10.1088/0305-4470/18/1/017
https://doi.org/10.1088/0305-4470/18/1/017
https://doi.org/10.1088/0305-4470/18/1/017
https://doi.org/10.1103/PhysRevLett.93.228301
https://doi.org/10.1103/PhysRevLett.93.228301
https://doi.org/10.1103/PhysRevLett.93.228301
https://doi.org/10.1103/PhysRevLett.93.228301
https://doi.org/10.1214/009117907000000114
https://doi.org/10.1214/009117907000000114
https://doi.org/10.1214/009117907000000114
https://doi.org/10.1214/009117907000000114
https://doi.org/10.1002/cpa.20267
https://doi.org/10.1002/cpa.20267
https://doi.org/10.1002/cpa.20267
https://doi.org/10.1002/cpa.20267
https://doi.org/10.4007/annals.2010.171.2039
https://doi.org/10.4007/annals.2010.171.2039
https://doi.org/10.4007/annals.2010.171.2039
https://doi.org/10.4007/annals.2010.171.2039
https://doi.org/10.1142/S0129183198000534
https://doi.org/10.1142/S0129183198000534
https://doi.org/10.1142/S0129183198000534
https://doi.org/10.1142/S0129183198000534
https://doi.org/10.1103/PhysRevB.27.413
https://doi.org/10.1103/PhysRevB.27.413
https://doi.org/10.1103/PhysRevB.27.413
https://doi.org/10.1103/PhysRevB.27.413
https://doi.org/10.1103/PhysRevB.29.387
https://doi.org/10.1103/PhysRevB.29.387
https://doi.org/10.1103/PhysRevB.29.387
https://doi.org/10.1103/PhysRevB.29.387
https://doi.org/10.1063/1.1704049
https://doi.org/10.1063/1.1704049
https://doi.org/10.1063/1.1704049
https://doi.org/10.1063/1.1704049
https://doi.org/10.1063/1.1704269
https://doi.org/10.1063/1.1704269
https://doi.org/10.1063/1.1704269
https://doi.org/10.1063/1.1704269
https://doi.org/10.1063/1.525344
https://doi.org/10.1063/1.525344
https://doi.org/10.1063/1.525344
https://doi.org/10.1063/1.525344
https://doi.org/10.1007/BF00535260
https://doi.org/10.1007/BF00535260
https://doi.org/10.1007/BF00535260
https://doi.org/10.1007/BF00535260
https://doi.org/10.1103/PhysRevA.41.761
https://doi.org/10.1103/PhysRevA.41.761
https://doi.org/10.1103/PhysRevA.41.761
https://doi.org/10.1103/PhysRevA.41.761
https://doi.org/10.1016/0378-4371(91)90220-7
https://doi.org/10.1016/0378-4371(91)90220-7
https://doi.org/10.1016/0378-4371(91)90220-7
https://doi.org/10.1016/0378-4371(91)90220-7
https://doi.org/10.1007/BF01010532
https://doi.org/10.1007/BF01010532
https://doi.org/10.1007/BF01010532
https://doi.org/10.1007/BF01010532
https://doi.org/10.1214/08-AAP547
https://doi.org/10.1214/08-AAP547
https://doi.org/10.1214/08-AAP547
https://doi.org/10.1214/08-AAP547
https://doi.org/10.1007/s00440-010-0283-x
https://doi.org/10.1007/s00440-010-0283-x
https://doi.org/10.1007/s00440-010-0283-x
https://doi.org/10.1007/s00440-010-0283-x
https://doi.org/10.4171/JEMS/106
https://doi.org/10.4171/JEMS/106
https://doi.org/10.4171/JEMS/106
https://doi.org/10.4171/JEMS/106
https://doi.org/10.1007/BF02737507
https://doi.org/10.1007/BF02737507
https://doi.org/10.1007/BF02737507
https://doi.org/10.1007/BF02737507
https://doi.org/10.1088/0022-3719/7/9/009
https://doi.org/10.1088/0022-3719/7/9/009
https://doi.org/10.1088/0022-3719/7/9/009
https://doi.org/10.1088/0022-3719/7/9/009
https://doi.org/10.1103/PhysRevE.96.012108
https://doi.org/10.1103/PhysRevE.96.012108
https://doi.org/10.1103/PhysRevE.96.012108
https://doi.org/10.1103/PhysRevE.96.012108
https://doi.org/10.1007/BF01049720
https://doi.org/10.1007/BF01049720
https://doi.org/10.1007/BF01049720
https://doi.org/10.1007/BF01049720
https://doi.org/10.1088/0305-4470/25/4/009
https://doi.org/10.1088/0305-4470/25/4/009
https://doi.org/10.1088/0305-4470/25/4/009
https://doi.org/10.1088/0305-4470/25/4/009
https://doi.org/10.1090/S0273-0979-1994-00456-2
https://doi.org/10.1090/S0273-0979-1994-00456-2
https://doi.org/10.1090/S0273-0979-1994-00456-2
https://doi.org/10.1090/S0273-0979-1994-00456-2
https://doi.org/10.1088/0305-4470/29/14/002
https://doi.org/10.1088/0305-4470/29/14/002
https://doi.org/10.1088/0305-4470/29/14/002
https://doi.org/10.1088/0305-4470/29/14/002
https://doi.org/10.1088/0305-4470/27/13/003
https://doi.org/10.1088/0305-4470/27/13/003
https://doi.org/10.1088/0305-4470/27/13/003
https://doi.org/10.1088/0305-4470/27/13/003
https://doi.org/10.1103/PhysRevE.53.235
https://doi.org/10.1103/PhysRevE.53.235
https://doi.org/10.1103/PhysRevE.53.235
https://doi.org/10.1103/PhysRevE.53.235
https://doi.org/10.1088/0305-4470/31/5/004
https://doi.org/10.1088/0305-4470/31/5/004
https://doi.org/10.1088/0305-4470/31/5/004
https://doi.org/10.1088/0305-4470/31/5/004
https://doi.org/10.1103/PhysRevE.98.022120
https://doi.org/10.1103/PhysRevE.98.022120
https://doi.org/10.1103/PhysRevE.98.022120
https://doi.org/10.1103/PhysRevE.98.022120
https://doi.org/10.1088/0305-4470/11/10/016
https://doi.org/10.1088/0305-4470/11/10/016
https://doi.org/10.1088/0305-4470/11/10/016
https://doi.org/10.1088/0305-4470/11/10/016
https://doi.org/10.1103/PhysRevB.22.2466
https://doi.org/10.1103/PhysRevB.22.2466
https://doi.org/10.1103/PhysRevB.22.2466
https://doi.org/10.1103/PhysRevB.22.2466
https://doi.org/10.1007/BF02020631
https://doi.org/10.1007/BF02020631
https://doi.org/10.1007/BF02020631
https://doi.org/10.1007/BF02020631
https://doi.org/10.1016/0378-4371(92)90435-S
https://doi.org/10.1016/0378-4371(92)90435-S
https://doi.org/10.1016/0378-4371(92)90435-S
https://doi.org/10.1016/0378-4371(92)90435-S

