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We study two generalizations of the basin of attraction of a stable state, to the case of stochastic dynamics,
arbitrary regions, and finite-time horizons. This is done by introducing generalized committor functions and
studying soujourn times. We show that the volume of the generalized basin, the basin stability, can be efficiently
estimated using Monte Carlo–like techniques, making this concept amenable to the study of high-dimension
stochastic systems. Finally, we illustrate in a set of examples that stochastic basins efficiently capture the realm
of attraction of metastable sets, which parts of phase space go into long transients in deterministic systems, that
they allow us to deal with numerical noise, and can detect the collapse of metastability in high-dimensional
systems. We discuss two far-reaching generalizations of the basin of attraction of an attractor. The basin of
attraction of an attractor are those states that eventually will get to the attractor. In a generic stochastic system,
all regions will be left again; no attraction is permanent. To obtain the equivalent of the basin of attraction of a
region we need to generalize the notion to cover finite-time horizons and finite regions. We do so by considering
soujourn times, the fraction of time that a trajectory spends in a set, and by generalizing committor functions
which arise in the study of hitting probabilities. In a simplified setting we show that these two notions reduce
to the normal notions of the basin of attraction in the appropriate limits. We also show that the volume of these
stochastic basins can be efficiently estimated for high-dimensional systems at computational cost comparable
to that for deterministic systems. To fully illustrate the properties captured by the stochastic basins, we show a
set of examples ranging from simple conceptual models to high-dimensional inhomogeneous oscillator chains.
These show that stochastic basins efficiently capture metastable attraction, the presence of long transients, that
they allow us to deal with numerical and approximation noise, and can detect the collapse of metastability with
increasing noise in high-dimensional systems.
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I. INTRODUCTION

A key question in the study of dynamical systems is
the question of their long-time behavior. For deterministic
systems this is captured in the notion of the attractors of the
system and their basin of attraction. Informally, an attractor
in a dynamical system is a minimal forward-invariant set
A which admits a larger set V , such that all states in V
converge to A. Its basin of attraction BA is the set of all such
convergent states. An important quantity when concerned
with multistable systems is the probability that a trajectory
converges to a specific attractor after an initial, possibly large
perturbation. Thus, the basin stability [1,2] of A is defined as
the volume of its basin of attraction under a given perturbation
measure. An attractor A with nonzero basin stability is called
Milnor attractor [3]. So far basin stability has been studied
almost exclusively in the context of deterministic dynamics,
since if the system is stochastic, then the topological notions
of attractor and basin of attraction are no longer immediately
meaningful.

The study of the long-term behavior of stochastic systems
instead focuses on the question of its invariant measure, which
replace the role of invariant sets. Ergodic theory [4,5] asks

under which conditions and in which sense initial conditions
converge to an invariant measure, if this measure is unique,
and what its characteristic properties are. In other words,
ergodic theory is concerned with the asymptotic behavior of
measure-preserving dynamical systems. However, in many
stochastic systems of interest, there is only one invariant
measure. For such systems phenomena of multistability are
not visible in the infinite-time behavior limit.

On finite timescales metastable states [6] and almost-
invariant sets [7–10] correspond in many ways to attractors
and invariant sets, that is they generalize an attractor’s tran-
sient properties, the influence it exerts on trajectories in its
neighborhood. When a system is a weak perturbation of a
multistable deterministic system, the basins of attraction get
perturbed into metastable sets in backward time. One can also
consider sets which are metastable in both time directions,
or the more general notion of sets that stay coherent under
nonautnomous dynamics [11,12].

This paper explores two quantities that directly generalize
the notion of the basin of attraction of an attractor, by defining
the basin of attraction of a generic set at finite-time horizon.
Rather than starting from invariant sets we will consider the
notion of attraction to specified regions. Importantly, these
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generalized basins remain amenable to Monte Carlo study
in high-dimensional systems. Just as with basin stability for
deterministic systems, there exists a probabilistic formulation
of the volume of these basins that enable the formulation of
straightforward efficient estimators. In particular this means
that the basin stability of an attractive set can be evaluated
without explicitly determining the set itself. The cost of eval-
uating it to a fixed accuracy scales with the cost of sampling a
trajectory of the system. We will see this in an application to
a 32-dimensional SDE.

Concretely, our generalized stochastic basins are based on
mean sojourn times [13] and on hitting probabilities [14],
which are also known as committor functions [15], and
are immediately applicable to stochastic systems. Committor
functions have previously been used as a tool to study deter-
ministic basins and to optimize basin stability in [16–19].

For the case of finite state spaces and discrete time we
will show that both quantities we explore recover the usual
notions of the basin of attraction in the limit of the time
horizon going to infinity. Thus, they serve as genuine finite-
time horizon generalization of the basin of attraction in
this case. We expect this to hold in rather more general
contexts as well. We show in a set of examples that they
capture the expected properties of metstable sets but also
that they can be used to study transient phenomena not typ-
ically captured otherwise. One important observation is that
the notion of attraction now contains two aspects, bringing
states to the set and preventing them from leaving. Finally,
we demonstrate an example of treating a high-dimensional
systems by sampling the trajectory space in an efficient
manner.

Recently, Serdukova et al. [20] also proposed the notion
of stochastic basins of attraction for deterministic systems
with noise. Their definition is based on studying the escape
probability from the basin of attraction of the underlying
deterministic system. In contrast, our definitions work without
assuming an underlying deterministic system or knowledge of
its basin structure. This allows the construction of efficient es-
timators for the associated basin stability in high-dimensional
systems. We will further discuss the relationship to this work
in the conclusion.

II. MARKOV CHAINS

We will introduce the stochastic basins of attraction using
stochastic, discrete time, discrete space dynamical systems,
that is finite-dimensional Markov chains Xk . While most of the
discussion will focus on this setting (mostly for mathematical
convenience), the probabilistic nature of our fundamental
definitions makes it straightforward to transport the notions
to other systems. This will be done in Sec. V where we
will discuss how properties of the stochastic basins defined
here can be studied in high-dimensional continuous time,
continuous space systems. Further, a Markov chain can ap-
proximate a smooth deterministic system, too, for example,
through Ulam’s method. This is most easily seen in the
Transfer operator approach to dynamical systems. For the
reader unfamiliar with this approach, Appendix A contains a
detailed discussion.

We will briefly review two notions on Markov chains,
mean sojourn times and committor functions, that are funda-
mental to our approach.

A Markov chain [14] (Xk )k∈N is a stochastic process on a
discrete state space X , such that Xk is a random variable with
values in X for all k ∈ N and such that the Markov property
is satisfied, i.e., for all k ∈ N:

P [Xk+1 = i | Xk = ik, . . . , X0 = i0]

= P [Xk+1 = i | Xk = ik], (1)

where i, i0, . . . , ik are arbitrary elements of X . That is, the
probability for the next state only depends on the current
state, rather than on the history. A Markov chain is called
homogeneous or stationary if

P [Xk+1 = i | Xk = j] = P [X1 = i | X0 = j] ∀k ∈ N. (2)

There is a one-to-one correspondence between homoge-
neous Markov chains on a finite-state space X = {1, . . . , n}
and stochastic matrices M ∈ Rn×n by setting

P [X1 = j | X0 = i] = Mi j . (3)

A probability distribution vector ρ ∈ Rn is a nonnegative
vector, such that

∑n
i=1 ρi = 1. If ρ := ρ(0) specifies the initial

distribution of the Markov chain, i.e., P [X0 = i] = ρi, then
the kth step distribution ρ(k)i = P [Xk = i | X0 ∼ ρ] can be
computed as

ρ(k) = ρT Mk . (4)

From now on we assume that (Xk )k∈N is homogeneous.

A. Sojourn times

Let A ⊆ {1, . . . , n} be a subset of the state space. The mean
sojourn time in A is the relative amount of time that the process
spends in A. Let 1A(x) = 1 if x ∈ A, else 1A(x) = 0, denote
the indicator function on A, then the mean sojourn time τs(A)
along a trajectory is the random variable

τs(A) := lim
N→∞

1

N

N−1∑
k=0

1A(Xk ). (5)

The expected mean sojourn time or EMS time in A is

s(A) := E[τs(A)] = lim
N→∞

1

N

N−1∑
k=0

ρT Mk 1A, (6)

where ρ is the initial distribution of the Markov chain.
Equation (6) holds since

E[1A(Xk )] = P [Xk ∈ A] =
∑
i∈A

ρ(k)i = ρT Mk 1A . (7)

The mean soujourn time is an infinite-time limit that only
depends on the asymptotic distribution of the Markov chain.
To study the transient behavior, we will consider the finite-
horizon EMS time, that is, the fraction of a finite-time horizon
N that the system spends in A:

sN (A) := 1

N

N−1∑
k=0

E[1A(Xk )] = 1

N

N−1∑
k=0

ρT Mk 1A . (8)
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The finite-horizon EMS time is the expectation value of the
operator

SN (M ) = 1

N

N−1∑
k=0

Mk . (9)

B. Committor functions

Committor functions give the probability that a system
hits a region A ⊆ X . This absorption probability q can be
obtained as the minimal nonnegative solution of the system
of equations [14]

Mq = q on X \ A,

q = 1 on A. (10)

Similarly, for two disjoint sets A and B, the probability of
not entering a set B before having visited A is given by the
minimal nonnegative solution of

Mq = q on X \ (A ∪ B),

q = 1 on A,

q = 0 on B. (11)

The solution q is called committor function. An equivalent
way of looking at the problem is to modify the process by
adding two exit states ZA, ZB to the state space, such that the
transition probability from any state in A to the exit state ZA is
1 and equally for B and ZB.

III. NEW CONCEPTS FOR COMMITTOR FUNCTIONS

In some sense the committor of a set A is the most straight-
forward generalization of the notion of a basin of attraction.
However, for generic stochastic systems, and generic regions
A, the probability to eventually enter A is 1. This is why the
relative committor of hitting A before B is usually studied. To
capture the ability of a region A to attract and retain trajecto-
ries we thus introduce generalized notions of committors.

In this section we introduce two new generalizations of
committor functions, fuzzy committors and ε-committors, and
study some of their basic properties. In the next section we
will see that the latter, as well as finite-horizon EMS times, are
natural generalizations of the notion of the basin of attraction.

A. Fuzzy committors

When we introduce exit states we are free to choose
arbitrary transition probabilities to the exit states. Assume we
have two transition probability distributions p1, p2 into exit
states Z1, Z2. Additionally, we require that 0 � p1

i + p2
i � 1

and p1
i , p2

i � 0 for all i ∈ X . To obtain the probability of being
absorbed into Z1 we introduce the transition matrix of the
augmented process X̂ ,

Q̂ =
⎛
⎝ M̂ p1 p2

0 1 0
0 0 1

⎞
⎠, (12)

where M̂i j := Mi j · (1 − p1
i − p2

i ) and obtain the minimal,
nonnegative solution q̂ = (q, 1, 0) to the system

Q̂q̂ = q̂ on X ,

q̂ = 1 on Z1,

q̂ = 0 on Z2. (13)

This can be rephrased as

M̂q + p1 = q,

⇔ (I − M̂ )q = p1, (14)

where we denote the absorption probability into exit state Z1

by q. Note, however, that M̂ := M̂(p1, p2) := M̂ · diag(1 −
p1 − p2) depends on p1, p2. If we set p1 = 1A, p2 = 0, then
we obtain Eq. (10), and if we set p1 = 1A, p2 = 1B, then we
obtain Eq. (11).

The probability distribution q will be referred to as fuzzy
committor with respect to p1 and p2. The term fuzzy refers
to the notion of fuzzy sets described by affiliation functions
like p1 and p2, generalizing the idea of “crisp” sets commonly
described by binary indicator functions.

B. ε-committors

We now come to the key concept introduced in this paper
to address stability questions at finite timescales.

Consider a Markov chain that has probability ε of being
absorbed into a unique exit state at every time step and
uniformly on its state space. Define a random variable Tε as
the time step when a trajectory is absorbed into the exit state.
Thus, Tε − 1 is the time the system spends in the original
state space. Clearly, P [Tε = 0] = 0 and the probability that
a trajectory hits the exit state at time step k > 0 is

P [Tε = k] = ε(1 − ε)k−1 ∀k � 1. (15)

The expected value of Tε is

E[Tε] =
∞∑

k=0

k P [Tε = k] = ε

∞∑
k=1

k(1 − ε)k−1 = · · · = 1

ε
,

(16)

and hence the inverse of the exit probability ε is the expected
time horizon probed by such a modified process.

We want to know the probability that a given trajectory
starting in state i moves toward a set A and stays there with
respect to a finite timescale. Choose an exit probability ε ∈
(0, 1] as the inverse of the timescale of interest and define
p1 = ε1A, p2 = ε(1−1A) as exit probabilities for the fuzzy
committors. Then Eq. (14) becomes

(I − (1 − ε)M )qε(A) = ε1A. (17)

The solution qε(A) =: qε will be referred to as ε-committor of
A, where we drop the argument A if it is clear from context.
Existence and uniqueness of qε for ε > 0 follow by applying
the Neumann inversion formula

qε(A) = ε

[ ∞∑
k=0

(1 − ε)kMk

]
1A. (18)
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The ε-committor again is defined in terms of an operator

Cε(M ) = ε

∞∑
k=0

(1 − ε)kMk . (19)

Interpreted in terms of exit states, the ε-committor gives
the probability to exit the system through region A. Intuitively
it is clear that it will be large if the system spends a lot of time
in A, that is, if it moves there quickly and stays there long
relative to our chosen time horizon.

Note that we can replace the target set A characterized by
an indicator function 1A with a generalized state described by
any vector v ∈ Rn, such that maxi |vi| = 1. The corresponding
ε-committor is denoted as qε(v). We will not pursue this
possibility further in this paper though.

IV. ε-COMMITTORS AND EMS TIMES
AS GENERALIZED BASINS

Both the finite-horizon EMS time and the ε-committors
are generalizations of the basin of attraction of a system.
To demonstrate this we make use of the following ergodic
theorem:

Theorem IV.1. Let M ∈ Rn×n be a stochastic matrix and let
Q ∈ Rn×n be invertible, such that J = Q−1MQ is the Jordan
normal form of M, then

lim
N→∞

SN [M] = lim
ε→0

Cε[M] = Pfix(M ), (20)

where Pfix(M ) is the projection onto fix(M ) = {v ∈ Rn |
vT M = vT } given by

Pfix(M ) = Q−1Pfix(J )Q, (21)

and Pfix(J ) is an orthogonal projection.
The proof is given in Appendix B. The right eigenvectors

corresponding to the vT exist and are given by the correspond-
ing columns of Q−1. Thus, Pfix(M ) = ∑

i wiv
T
i .

If M describes an underlying deterministic system, then
the attractors A are exactly sets that satisfy 1T

A M = 1T
A , and

these form a basis of the space of eigenvectors with eigenvalue
1. The corresponding right eigenvectors 1BA are the basin
structure (see Appendix A).

Thus, we can write the projector as a sum over attractors:

S∞[M] = C0[M] = Pfix(M ) =
∑

A

1BA1
T
A , (22)

that is, a density that is in a particular basin get’s projected
onto the attractor. The asymptotic committor q0(A′) for an
attractor A′ is simply given by 1BA′ , and the EMS s∞(A′) for
an initial distribution ρ is given by

s∞(A′) = ρ · q0(A′) = ρ · 1BA′ . (23)

This demonstrates that both the finite horizon EMS and the
ε-committor are genuine generalizations of the notion of the
basin of attraction for this type of systems. For systems that
can be approximated by Markov chains, for example, by
means of Ulam’s method, we expect similar results to hold.

The existence of a simple linear Eq. (17) for qε means the
finite-time ε committor can be evaluated efficiently; however,
the dimensionality of the Markov chain grows exponentially
in the number of dimensions of the system approximated. In

Sec. V we will therefore look at evaluating quantities like
ρq0(A′) directly through its probability interpretation, rather
than by approximating it with a finite-dimensional Markov
chain. This Monte Carlo–based approach generalizes to high-
dimensional systems.

We now turn to proving some more properties of the ε-
committors themselves that elcuidate what exact properties of
the system they capture.

The ε-committor is closely related to the expected time a
trajectory spends in a given set A. To see this, define a random
variable τε = τε(A) as the total time the augmented process X̂
including exit states spends in the set A, that is

τε =
∞∑

k=0

1A(X̂k ). (24)

Then the expected value of τε is

E[τε] = E

[ ∞∑
k=0

1A(X̂k )

]
=

∞∑
k=0

E[1A(X̂k )] =
∞∑

k=0

P [X̂k ∈ A]

=
∞∑

k=0

P [Xk ∈ A](1 − ε)k . (25)

If we condition on an initial state Y0 = X0 = i, then Eq. (25)
becomes

E[τε | X0 = i] =
∞∑

k=0

Pi[Xk ∈ A] · (1 − ε)k

=
∞∑

k=0

eT
i Mk 1A(1 − ε)k = 1

ε
qε,i, (26)

which relates the ε-committor to the expected time that the
process spends in A before absorption. This could be small
because the process does not reach A, and thus A is not
attractive on this timescale, or because it quickly leaves A
again, that is, A is not stable.

If the limit ε → 0 of 1
ε
qε,i exists, then it equals the expected

time the original process Xk spends in A. The probability
distribution function of τε(A) for general absorbing Markov
chains is derived in Csenki [21], Corollary 2.8.

Given the similarity in interpretation of the mean soujourn
time and the ε-committor, as well as the fact that they have
the same asymptotic limit, it is natural to ask if they generally
give the same results. In Appendix C we obtain difference es-
timates between both quantities for specific metastable states.
The difference vanishes for both small and for large times, and
thus also for a sufficiently pronounced spectral gap. We will
further explore the properties of the EMS and ε-committors
with respect to metastable states in the examples.

V. GENERALIZED BASIN STABILITY

Crucially the mean soujourn time and the ε-committor are
generalizations that allow for a notion of basin stability that
can be evaluated efficiently by sampling. In the preceding
sections we defined the concepts for discrete systems, and
it is technically involved to generalize the discussion rigor-
ously to continuous time and state space. In contrast, the
sampling procedure we consider here immediately generalizes
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to continuous time and state space. It also points toward a
wider variety of “ε-committor-like functions” that might be
of interest for further study.

Basin stability is the probability that a deterministic system
returns to a desirable attractor after a perturbation. Typically
the perturbations are described by a probability density on
phase space ρpert(x). The basin stability b is then simply given
by the integral of the characteristic function of the basin B
with respect to ρpert(x):

b =
∫

1B(x)ρpert(x)dx. (27)

This integral can be evaluated using Monte Carlo inte-
gration. Alternatively, we can interpret the sampling directly
as a Bernoulli experiment, drawing initial conditions and
observing whether or not the system returns to the attractor.
Crucially, we do not need to know the shape of the basin to
estimate b. The relative accuracy of the unbiased estimator
b̂(Nb) obtained by sampling Nb trajectories is asymptotically
small and independent of system details. Specifically the
standard error of the estimator is given by

σb̂(Nb) =
√

b̂(Nb)(1 − b̂(Nb))
Nb

+ O
(
N−1

b

)
. (28)

In the case of general, not necessarily deterministic dynam-
ics, the generalized basin stability of a set A can be defined as

bgen =
∫

qgen(x)ρpert(x)dx, (29)

where qgen is the generalized membership function of the
basin of A. In particular, we can choose qgen to be the epsilon
committor qε(x) or the expected mean soujourn time sT (x).

A Monte Carlo estimation of this integral would be more
expensive, as, for a stochastic system, qε(x) or sT (x) can not
be evaluated using only a single experiment. However, we can
again design a Bernoulli experiment with expected probability
bgen. The experiment is as follows: Draw an initial condition
from ρpert, run the system for a randomly chosen time t , and
then check if it is in A at that time.

To see this, note that the generalized membership functions
themselves have the interpretation as the probability of a
Bernoulli experiment. They correspond to the probability to
run to A in time t when starting from some initial condition x
if we draw t from an appropriate choice distribution ρrun. For
qε(x) we take the exit time distribution εe−εt as the run-time
distribution ρrun. This amounts simply to reinterpreting the
exit from the system as run duration. For sT (x) we take the
distribution of run times to be the equidistribution on the time
interval [0, T ], so that the expectation value is equivalent to
averaging in the time interval.

These definitions in terms of probabilities naturally extend
to continuous times:

qε(x) =
∫

dt p(x(t ) ∈ A|x(0) = x) p(texit = t )

=
∫

dt p(x(t ) ∈ A|x(0) = x) εe−εt ,

sT (x) =
∫

dt p(x(t ) ∈ A|x(0) = x)
1

T
1[0,T ](t ). (30)

Now the integral in Eq. (29) is simply given by drawing the
initial condition from ρpert:

bgen =
∫

dt
∫

dx p(x(t ) ∈ A|x(0) = x) ρrun(t ) ρpert(x)

= p(x(T ) ∈ A|p(x(0)) = ρpert, p(T ) = ρrun). (31)

This is the probability of a Bernoulli experiment and thus
can be studied by sampling again. We see immediately that
this is true for a large class of such measures, namely, for all
distributions of the evaluation time that are efficient to sample.
Among these the two concepts developed in this paper are
distinguished by taking the run time to be either given by a
constant stopping rate or by a constant function.

This experiment will have the same variance of the estima-
tor as the deterministic basin stability Eq. (28). Note further
that after obtaining a sample of trajectories it is possible to
evaluate the generalized basin stabilities for different sets on
this sample, with each individual error given by Eq. (28).
However, the errors will be correlated, making it hard to do
statistics on the various measures thus obtained.

VI. EXAMPLES

We will illustrate the properties of the ε-committors using
examples ranging from a low-dimensional Markov chain,
through a high-dimensional Markov chain approximating a
low-dimensional dynamical system, all the way to a high-
dimensional stochastic differential equation.

A. Conceptual box models

The following simple systems are paradigmatic for the
cases of metastability and long transients. They show that the
notions introduced above accurately capture the basin of states
that get attracted by metastable sets or into long transients.

Figure 1 shows the state-transition diagrams of two very
simple Markov chains. One of them consists of two almost-
invariant states M1 and M2 and provides a conceptual model
of metastability in ergodic systems. The other one contains
an attractor A and two transient states M1 and M2, where
trajectories spend a long time before converging to A. The
second model illustrates the concept of long transient states in
dissipative systems. The transition matrices are

(
1 − δ2 δ2

δ 1 − δ

)
and

⎛
⎝1 − δ2 0 δ2

0 1 − δ δ

0 0 1

⎞
⎠. (32)

FIG. 1. Conceptual models of metastability and long transients.
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FIG. 2. ε-absorption stability for the model with almost-invariant states (a) and long transient states (b). The initially identical values
converge asymptotically to the invariant distribution with decreasing ε. For the metastability model the invariant distribution on M1 is close to
1 but strictly smaller. In the long transient model bε (M1) stays almost constant over a large interval of ε, since the leak rate δ2 is very small.
The horizontal lines indicate the value of δ, respectively δ2.

We compute ε-absorption stability for these systems ac-
cording to Eq. (17) by solving

bε(i) = 1T ε

n
(I − (1 − ε)M )−1ei, (33)

where M is the transition matrix and ei is the standard basis
vector corresponding to state i = M1, M2, A and n = 2, 3. The
parameter δ controls the timescales and is chosen to be 0.01
in the metastability model and 0.0001 in the long transients
model. Figure 2 shows ε-absorption stability of the different
states for varied ε.

The limits of ε[I − (1 − ε)M]−1 for ε to 0 are

1

δ2 + δ

(
δ δ2

δ δ2

)
and

⎛
⎝0 0 1

0 0 1
0 0 1

⎞
⎠, (34)

and it follows that the 0-absorption stability b0 is

b0 = lim
ε→0

bε = 1

δ2 + δ

(
δ

δ2

)
and

⎛
⎝0

0
1

⎞
⎠, (35)

which are just the invariant distributions. This shows that for
the long transient model we recover the usual basin stability
value in the ε to 0 limit. For the metastability model basin
stability is not well-defined since trajectories never converge
to an attractor. In this case ε-absorption stability converges to
the invariant distribution.

Figure 2(b) shows that for finite ε the attraction of a region
on that timescale is accurately captured. With ε between δ and
δ2, which are indicated by the vertical lines, the committor
sees that region A is attracting M2, but not M1. Conversely, on
these timescales, M1 is stable.

B. Damped driven pendulum

In the study of dynamical systems using Markov chain
approximations, we introduce discretization noise. This turns

stable states into metastable states. This example shows that
we can use our notions of stochastic basins to extract informa-
tion on the basin structure of the underlying discrete system.

The following system of equations describes the dynamics
of a damped driven pendulum [2] and is used in classical
power grid models to model a single generator [1]:

φ̇ = ω,

ω̇ = −αω + P − K sin φ, (36)

The parameter values are α = 0.1, K = 1, and P = 0.5.
The system has a stable fixed point at (φ,ω) = (sin−1 P

K , 0)
and a stable limit cycle at approximately (φ,ω) ≈ (φ, 5);
compare Fig. 3 for a plot of the phase space.

To compute ε-absorption stability, first we have to trans-
form the ordinary differential equation (ODE) into a discrete
dynamical system. For a fixed time step τ the flowmap
ϕ(x0) = ϕ(τ, x0) = x(τ ) gives the value x(τ ) at time τ of
a solution x(t ) of the ODE with initial condition x0. Then
ϕ : X → X defines a discrete dynamical system and we can

FIG. 3. Basins of attraction with corresponding fixed point (red)
and limit cycle (blue) of the damped driven pendulum at parameter
values α = 0.1, K = 1 and T = 0.5.
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FIG. 4. ε-committors of the metastable set around the fixed point. The absorption rates are ε = 0.1 and ε = 0.001 with corresponding
ε-absorption stability values of bε = 0.017 and bε = 0.123. For ε = 0.01 the whole basin of the fixed point is detected and bε is close to the
basin stability value of the original system. If ε is decreased further, then the basin stays qualitatively unchanged, while the basin stability value
is even better approximated.

construct the Perron-Frobenius operator and its Ulam approx-
imation according to Appendix A 5.

For Ulam’s method we use 256×256 regular square boxes
on the state space [−20, 20]×[−π, π ], such that the resulting
transition matrix has dimension 65 536×65 536. In every box
1000 initial conditions are initiated uniformly on random and
numerically integrated for the time step τ = 1 to obtain the
transition probabilities between boxes.

The discretization by Ulam’s method introduces discretiza-
tion diffusion in the system and thereby destroys the stability
of the attractors, in particular of the stable fixed point, since
trajectories in its basin spiral only slowly toward it, and
therefore it is possible that they enter a box centered outside

the fixed points’ basin. However, a metastable set remains in
the vicinity of the fixed point. By analyzing this set we can
determine the basin of attraction of the original fixed point.
If we choose less boxes for our discretization method, then
the resulting discretization noise increases and metastability
of the set around the fixed point decreases until its relation to
the deterministic behavior is lost.

Figure 4 shows the committor functions of the metastable
set around the fixed point. As expected the basin of ε-
absorption converges to the basin of attraction shown in
Fig. 3 when the expected time horizon is increased. The
ε-absorption stability value of bε ≈ 0.1262 for ε = 10−8 is in
very good accordance with the classical basin stability value

FIG. 5. Stochastic basin stability based on the mean-soujourn time (a) and the ε-committor (b) as a function of time horizon T = 2
ε

and
noise strength σ . Region A is the part of phase space satisfying |ωi| < 0.5Hz, close to the synchronous state. Bottom right corner converges to
deterministic basin stability.
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FIG. 6. (a) Classical committor function q with respect to the dead zone D and the asymptotic fixed point, cf. Eq. (11). The fraction of
initial states that eventually hit the dead zone is 0.295. The other plots show the expected time the process spends in D before absorption,
as described by the normalized ε-committors 1

ε
qε for different absorption rates. In (b) ε = 0.25 and the ε-absorption stability bε = 0.182,

(c) ε = 0.05 and bε = 0.142, (d) ε = 0.0001 and bε = 0.006. We observe that while bε tends to zero for ε to zero the maximum value of 1
ε
qε

converges to 36.9.

obtained by Monte Carlo integration as 0.1267 ± 0.0002.
Note that the required number of function evaluations to
compute basin stability up to this precision by the Monte
Carlo approach is considerably higher than the number of
function evalutions required to construct the transition matrix.
When ε is further decreased the values of the ε-committor
are expected to slowly decrease due to discretization diffu-
sion. At a resolution of 256×256 boxes this effect is not
observed since it is below numerical precision, however at
a resolution of 128×128 boxes it is clearly visible and for
resolutions below 64×64 boxes discretization diffusion gets
too strong to draw any reliable conclusions on the systems
dynamics.

Obviously the number of boxes is the main factor for
determining the computational cost of Ulam’s method and
hence it is desirable to use as few boxes as possible. For some
systems adaptive partitions may greatly reduce computational
effort by using fewer partition elements [22,23].

C. A chain of oscillators

To illustrate the sampling approach for high-dimensional
systems we study a chain of 16 coupled damped driven pen-
dula, where each oscillator is subject to independent additive
noise, and perturb them around the synchronous state. The
equations are given by

φ̇i = ωi,

ω̇1 = −αω1 + P1 − K sin(φ1 − φ2) + σẆ ,

ω̇i = −αωi + Pi − K sin(φi − φi+1)

− K sin(φi − φi−1) + σẆ ,

ω̇16 = −αω16 + P16 − K sin(φ16 − φ15) + σẆ .

Perturbations are from the range ±5 Hz and ±π . We study
the system with randomly drawn Pi = ±1 and K = 8 for
various levels of additive noise acting on the frequencies. This
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is a surprisingly complicated model with a large number of
complicated asymptotic states besides synchrony. The results
for various choices of time horizon/absorption probability
T = 2

ε
and noise strength σ are shown in Fig. 5. The region

whose basin of attraction is studied is that of all frequencies
smaller than 0.5 Hz. This is qualitatively the type of constraint
on the behavior of a system that one is concerned about in the
context of power grid modeling.

Note that, as can be seen from the single damped driven
pendulum, the region around the attractor is only metastable
if noise is added to the system. Therefore, this is an example
of generalized basin stability for a metastable state.

Looking at low noise, the probability to end in the region
studied first increases with T . This shows the timescale on
which the perturbations studied return to the metastable re-
gion. As the fixed point is the only attractor in the region,
the no-noise stochastic basin stability converges to the basin
stability of the attractor as T increases. With some noise added
the stochastic basin stability remains close to the deterministic
one, until we see the noise reach a strength where the metasta-
bility of the region studied collapses. This illustrates that our
stochastic basin stabilities are a natural generalization of basin
stability.

D. Anderies’ model of global carbon dynamics

Anderies et al. [24] introduce a nonlinear conceptual model
of global carbon dynamics that exhibits long transient trajec-
tories when started in a particular region of phase space. The
model equations for marine cm, terrestrial ct , and atmospheric
ca carbon are

ċm = αm(ca − βcm),

ċt = NEP(ca, ct ) − αct ,

ca = 1 − cm − ct ,

where αm = 0.05, α = 0.1, and β = 1 and NEP denotes a
complex, nonlinear relation between ca and ct , which is
explained in detail in Anderies et al. [24]. Due to the third
equation the total amount of carbon stays constant and we
can consider the system on the restricted phase space X =
{(cm, ct ) ∈ [0, 1]2 | cm + ct � 1}. For the chosen parameters
the system has a single, globally attractive fixed point and
hence basin stability equals 1 by definition. Trajectories start-
ing with low marine and terrestrial carbon stocks, i.e., cm +
ct � 0.4 pass through a set where ct ≈ 0 before converging to
the stable state.

The so-called dead zone is defined as D := {(cm, ct ) ∈
X | ct < 0.1} and corresponds to a state of low terrestrial
carbon stocks, i.e., when pratically all land-based vegetation
and thus the basis for human life has vanished. It contains
a long transient region where some trajectories spend a large
amount of time before they converge to the attractor. Since the
probability that the process is in D decreases monotonically
for large time-horizons, we can obtain lower bounds for the
expected time the process spends in D during the first ε−1

steps by computing the normalized ε-committor 1
ε
qε. Assum-

ing a society is able to survive a state of low-terrestrial carbon
given that vegetation recovers fast enough, the ε-committors
may be used to assess which trajectories are “survivable,” thus

complementing the notion of “survivability” for dynamical
systems recently introduced by Hellmann et al. [25].

To compute the ε-committors we discretize the square
[0, 1]2 into 128×128 uniform square boxes, discard all boxes
that have empty intersection with X , and compute the transi-
tion matrix according to Appendix A 5. The resulting partition
has 8256 elements, where the boxes on the diagonal are
triangles with half the weight of a square box.

Figure 6 shows the classical committor function of the dead
zone that we introduced in Sec. II B along 1

ε
qε for different

values of ε. We chose to show 1
ε
qε over qε since for transient

sets the latter simply tends to zero, while the former stabilizes
at the expected time the process with absorption spends in
the set D, cf. Sec. IV. Given that ε−1 is large enough, this
provides a lower bound for the expected time the original
process (without absorption) spends in D, and even more, by
the reasoning that we applied in Appendix C, it converges to
the same value for ε to 0.

VII. CONCLUSIONS

We developed the concept of ε-committors and studied
their general properties as well as asymptotic behavior. We
saw that the ε-committors, as well as soujourn times, gen-
eralize basins of attraction for systems with long transients
or metastable states. They can be applied to stochastic and
deterministic systems likewise. The ε-committors proved es-
pecially useful in applications with an undesirable region
in phase space, since they allow to compute the time the
process is expected to spend in this region. Importantly we
showed that the basin stability for these stochastic basins of
attraction can be estimated at comparable cost to deterministic
systems.

Compared to the work of Serdukova et al. [20], our con-
cept of stochastic basins is entirely intrinsic and does not
presuppose knowing the basin of attraction of an underlying
deterministic system. This allows for a straightforward esti-
mator for the generalized basin stability, whereas it is not
known whether such an estimator exists for the definition
of Serdukova et al. [20] (see Schultz et al. [26] though
for an estimator for a related quantity). We define stochas-
tic basins more generally for measurable sets in arbitrary
stochastic systems given that their evolution is described
by a Markov operator. The tradeoff is that our stochastic
basin requires a choice of region and will in general depend
on this choice. We leave working out the precise relation-
ship between these two notions of stochastic basin to future
work.

While the probabilistic formulation of the ε-committors
generalize immediately to systems on continuous state spaces
and for continuous-time dynamical systems, it would be in-
teresting to also develop the appropriate PDE formulations
for them, as well as for the fuzzy committors. Another in-
teresting question is if ε-committors can be used to define
metastable sets via a minimization problem. Intuitively, if a
set is metastable a system that starts in a distribution in the
set should be absorbed in the set again as long as ε is below
the metastability timescale. This suggests that the minima of
xT Cε[M]x should contain information on the metastable sets
of the system. We leave this question for future work.
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VIII. SOFTWARE

The simulations were performed using Julia and Python,
using the SciPy package [27]. The high-dimensional example
was implemented using the DifferentialEquations.jl library
[28,29] using the algorithms of Rößler [30].
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APPENDIX A: THEORETICAL FOUNDATIONS

The following sections contain a brief introduction to dy-
namical systems and their operator-theoretic formulation. We
will only touch upon some of the most important aspects of
the theory and give references to literature. We will sometimes
drop mathematical rigor for intuitive understanding and refer
the interested reader to the literature and the Appendix. The
purpose of this Appendix is to introduce Markov chains, and
in particular mean sojourn times and committor functions, as
powerful tools for studying complicated dynamical behavior.

1. Discrete time dynamical systems

Let (X, d ) be a compact, metric space and let ϕ : X → X
be a continuous map. The pair (X, ϕ) is called discrete time
dynamical system. For any fixed x ∈ X its trajectory under
ϕ is the set {ϕk (x) | k ∈ N}, and its omega limit set ω(x) is
defined as

ω(x) =
⋂

K∈N
{ϕk (x) | k � K}, (A1)

where A is the closure of a set A. ω(x) is the set of all
accumulation points of the trajectory of x.

A ⊆ X is called backward-invariant with respect to ϕ,
if ϕ−1(A) := {x ∈ X | ϕ(x) ∈ A} = A, forward-invariant if
ϕ(A) = A and absorbing if ϕ(A) ⊆ A. It can be shown that
ω(x) is closed, forward-invariant, and nonempty for every
x ∈ X .

For a set A ⊆ X define its basin of attraction BA as

BA = {x ∈ X | ω(x) ⊆ A}. (A2)

Milnor [3] calls the set BA realm of attraction to avoid con-
fusion with other common definitions of basin of attraction.
We state without proof that for any set A its basin BA is
backward-invariant under ϕ, and if A is closed then BA is
Borel-measurable.

2. Stability

As we have seen above the omega limit set ω(x) is the
collection of asymptotic states of a trajectory starting at x.
An important question for many applications as well as for
numerical modeling is whether and in what sense limit sets,
or, more broadly, invariant sets, are stable. Roughly speaking
a set A is locally stable if all states in a neighborhood converge
to it. In other words small perturbations around A do not
change the asymptotic behavior of the system. If one con-
siders nonsmall perturbations that span the entire state space,
then a global notion of stability is required.

More formally, a set A ⊆ X is Lyapunov stable if for all
neihbourhoods B′ of A there exists another neihbourhood B
of A from which trajectories end up in B′ eventually. That is,
for every x ∈ B, there is a time T after with which we have
ϕT ′

(x) ∈ B′ for all T ′ > T .
A is attractive in a set B ⊆ X if ω(x) ⊆ A for all x ∈ B.

Further, we say that A is locally stable if A is Lyapunov stable
and attractive in an open neighborhood U of A and that A is
globally stable if A is Lyapunov stable and attractive in X .

From the above definition it is clear that the basin of
attraction BA of a set A is the maximal subset of X on which
A is attractive. For many applications it would be desirable to
know BA exactly, to answer the question if a trajectory will
converge to the same asymptotic state after an initial, possible
large perturbation. Even though an exact characterization of
BA is impossible in many cases of interest, for example, due
to the curse of dimensionality, it is often possible to compute
the probability that a perturbed trajectory will converge back
to A, as the volume of BA under a probability measure μ

modeling the perturbation. Basin stability of a closed set A
is then defined as the volume of its basin of attraction under μ

[2].
Remark. (Attractors)
Naively speaking, attractors are subsets of state space to

which some initial conditions converge asymptotically. Often,
an attractor is conceptualized as an invariant set that fulfills
some stability property, e.g., Lyapunov stability, and is min-
imal in the sense that it has no proper subset with the same
properties. In his definition of attractors Milnor [3] gives up
the stability criterion and instead emphasizes “observability”
by requiring that the corresponding basin of attraction has
positive measure. According to Milnor a (minimal) attractor
is a closed set A ⊆ X , such that

(1) BA has positive measure, with respect to a measure μ

on the Borel σ -algebra of X ;
(2) there is no strictly smaller closed subset A′ ⊂ A, such

that BA′ has positive measure.
In our terminology condition 1 states that BA should have

positive basin stability. Since Milnor attractors need not even
be Lyapunov stable, the term “stability” might be slightly
misleading. Positive basin stability implies only a positive
probability that A is stable toward perturbations described
by μ.

3. Transfer operators

So far we described a dynamical system by its trajectories,
that is the action of a mapping ϕ on states x ∈ X . Equiva-
lently, we can study the action of the composition operator or
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Koopman operator Kϕ g = g ◦ ϕ on observables g in
L∞(X, μ) for a given measure μ. Kϕ is a bounded and linear
operator.

Remark. Since X is compact, the space of continuous
function from X to R denoted by C := C(X,R) is contained
in L∞(X, μ). If g ∈ C is a fixed point of the restricted operator
Kϕ |C , that is Kϕ |Cg = g, then equivalently

g[ϕ(x)] = g(x) ∀x ∈ X. (A3)

It follows that g[ϕk (x)] = g(x) for all k ∈ N, and hence g is
constant along trajectories and by continuity also on their limit
sets and basins of attraction. We conclude that the fixed points
of Kϕ in C characterize the basin structure of ϕ. In particular,
the constant function 1X is a fixed point of Kϕ . For recent
results on how to characterize the global stability of fixed
points through the eigenfunctions of the Koopmann operator
we refer the reader to Mauroy and Mezić [31].

The Koopman operator has a dual counterpart known
as Perron-Frobenius operator which generates the evolution
of probability densities f along trajectories. The Perron-
Frobenius operator Pϕ acts on L1(X, μ) and is defined by
requiring that for all μ-measurable sets A ⊆ X :∫

A
Pϕ f μ(dx) =

∫
ϕ−1(A)

f μ(dx). (A4)

Some caution has to be taken to ensure that ϕ and μ are
compatible, for details we refer to Lasota and Mackey [32].
If f is a fixed point of Pϕ , then μ f (A) := ∫

A f μ(dx) is an
invariant measure of ϕ, that is μ f [ϕ−1(A)] = μ f (A) for all
measurable A ⊆ X .

When concerned with asymptotic behavior invariant mea-
sures generalize in many ways the notion of an attractor.
This property is formulated in the famous ergodic hypothesis
asking that for every (reasonable) observable f : X → R:

lim
N→∞

1

N

N∑
k=1

f [ϕk (x)] =
∫

X
f dν. (A5)

Informally speaking, the ergodic hypothesis states that the
time-average of f along a trajectory should equal its space
average with respect an invariant measure ν.

If we are given a measure μ that characterizes observ-
able events, e.g., Lebesgue measure or a measure modeling
a perturbation, then usually this measure is not preserved
under ϕ. If it exists, then the invariant measure such that
Eq. (A5) holds μ-almost everywhere is called Sinai-Ruelle-
Bowen (SRB) measure [33] or sometimes physical measure.
Unfortunately, not every system has an SRB measure and it is
an active area of research to find conditions on ϕ that imply
its existence [34]. SRB measures are useful for similar reasons
as Milnor attractors—they ensure that the asymptotic states of
the system are compatible with the given measure μ.

4. Markov operators and stochastic systems

The Perron-Frobenius operator introduced in the previous
section is a special case of a Markov operator. From now on
we understand by a Markov operator [32] any linear operator
M : L1(X, μ) → L1(X, μ) satisfying

(1) M f � 0 for all f ∈ L1, f � 0, we say M is positive;
and

(2) ‖M f ‖1 = ‖ f ‖1 for all f ∈ L1, f � 0, we say M is
integral-preserving.

Just as the Perron-Frobenius operator describes the evo-
lution of a density in the case of deterministic dynamics, a
Markov operator describes the evolution of densities under
stochastic dynamics. Markov operators are closely connected
to Markov processes and their transition density functions
[35]. For our purposes the Markov operator framework is
convenient, since it allows to characterize the statistics of the
process on a density level and avoids having to deal with
individual trajectories.

Another convenient property of Markov operators is that
they can be approximated by Markov operators of finite-
rank [36], which are just row-stochastic matrices. One such
discretization scheme that goes back to an idea by Stanisław
Ulam is known as Ulam’s method.

5. Ulam’s method for Markov operators

Let M : L1(X, m) → L1(X, m) be a Markov operator,
where X ⊂ Rn is compact and m denotes the Lebesgue mea-
sure. Let Ah = {A1, . . . , AK } be a shape-regular partition of
X with mesh-size h. The basic idea of Ulam’s method [35]
is to obtain a coarse grained representation of the dynamics
by considering only the flow of probability between partition
elements. Consider the subspace Vh ⊂ L1 spanned by the
indicator functions 1A1 , . . . , 1AK . Let Qh : L1 → Vh be the
projection onto Vh given by

Qh f =
K∑

i=1

ci 1i with ci =
∫

Ai

f dm, (A6)

where 1i = m(Ai )−1 · 1Ai denotes the L1-normalized indicator
functions.

Lemma A.1. The discretized operator Mh := QhM|Vh is a
Markov operator as well.

Proof. See Ding et al. [37]. �
Denote the matrix representation of Mh with respect to

the basis 11, . . . , 1K by M̂h. Then the matrix entries M̂h,i j are
given by the relation

Mh 1i =
K∑

j=1

∫
Aj

M 1i dm · 1 j =
K∑

j=1

M̂h,i j 1 j, (A7)

and hence

M̂h,i j =
∫

X
1 j Mh 1i dm =

∫
X
1 j M 1i dm. (A8)

Remark. We use the convention that matrices act by right-
multiplication, i.e.,

Mh( f ) ≡ f̂ T M̂h, (A9)

where the left-hand side signifies the operator acting on
element f ∈ Vh and the right-hand side is the matrix repre-
sentation acting on the vector representation f̂ of f .

Corollary A.2. M̂h is a (row-)stochastic matrix.
Example A.1. Let Mϕ be a Perron-Frobenius operator with

respect to the measurable map ϕ : X → X . In this case the
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matrix representation of Mϕ is given by

M̂h,i j =
∫

X
1 j Mϕ 1i dm = 1

m(Ai )

∫
ϕ−1(Aj )

1Ai dm

= m[Ai ∩ ϕ−1(Aj )]

m(Ai )
. (A10)

We see that the entries of the matrix equal the probability that
a randomly chosen state in Ai gets mapped to Aj under action
of ϕ. Therefore, M̂h,i j is often called transition matrix.

In Appendix A 3 we stated that the Perron-Frobenius oper-
ator and Koopman operator are dual to each other. Duality
holds as well for the discretized operators, such that the
transposed transition matrix MT

h is an approximation of Kϕ ,
for details see, e.g., Klus et al. [35].

Ulam’s method is a Galerkin projection [35] and was orig-
inally developed to approximate fixed points f ∗ of the Perron-
Frobenius operator Mϕ . Thus, an important question is when
the fixed points Mϕ,h fh = fh of the finite-rank approximation
converge to f ∗ for appropriately refined partitions Ah of mesh
size h → 0. Li [38] and Ding and Zhou [39] proved conver-
gence for certain classes of piecewise continuous maps on
Rd . Convergence of the fixed point equation in the presence
of small random perturbation was shown in Froyland [40],
Dellnitz and Junge [41]. Indeed, the Galerkin discretization
itself may be interpreted as such a small perturbation of M that
converges back to the full operator with increasing partition
accuracy [40].

Since the transition matrix can be associated with a Markov
chain it is sometimes referred to as Markov model [22] and
was found to characterize the system’s dynamical properties,
even in cases where convergence of the fixed densities cannot
be shown. This approach proved useful as well for approx-
imating eigenfunctions with eigenvalues close to 1, which
characterize the metastable behavior of the dynamical system
[42]. Motivated by its connection to probability flows, see
Eq. (A10), the transition matrix was recently interpreted as
adjacency matrix of a weighted, directed graph, facilitating its
analysis by tools from network theory [43,44].

6. Numerical implementation of Ulam’s method

We consider the case that M := Mϕ is a Perron-Frobenius
operator. From now on denote the matrix representation M̂h

simply as Mh. The entries Mh,i j can be interpreted as transition
probabilities from box i to box j and are usually approximated
by Monte Carlo simulation. In every box Ai a large number of
test points xk

i with k = 1, . . . , K is randomly chosen, such that
the transition probability can be estimated by the fraction of
points that is mapped to box Aj ,

Mh,i j ≈ 1

K

K∑
k=1

1Aj

[
ϕ
(
xk

i

)]
. (A11)

It is easy to check that the resulting matrix is still stochastic
and thus a numerical realization of Ulam’s method [22,35,37].
For nondeterministic system, such that we are able to simulate
individual trajectories, the same approach can be applied.

APPENDIX B: CONVERGENCE RESULTS

In this section we will prove convergence results for the
geometric, respectively, ergodic averages of operators related
to ε-committor and EMS time. We develop the theory in a
general functional analytic setting since then the structure of
the proofs is clearer. At the same time the results are more pro-
found and might serve as a stepping stone for extending our
concepts to transfer operators acting on infinite-dimensional
spaces. Appendices B 1–B 3 establish ergodic theorems for
special classes of Hilbert space operators, and Appendix B 4
focuses on the important application case of stochastic ma-
trices. Most importantly we will see that under some as-
sumptions the geometric, respectively ergodic averages of an
operator O converge to a projection onto the fixed space of O.
Recall that if O is a Koopman operator or an approximation
thereof knowing its fixed space is equivalent to knowing,
respectively approximating, the basin structure of the un-
derlying dynamical system (see also Appendix A 3). These
results imply that the quantities that we propose as notions
of “stochastic basins of attraction,” namely, ε-committors and
EMS times, converge back to the classical basins of attraction
in the limiting cases.

1. Ergodic theorems for contractions on a Hilbert space

This paragraph follows the approach taken by Krengel [4].
Let H be a Hilbert space, and denote the scalar product of
u, v ∈ H as 〈u, v〉. B[H] is the set of bounded, linear operators
O : H → H . Denote by O∗ the dual of O ∈ B[H], such that
〈Ou, v〉 = 〈u, O∗v〉 ∀u, v.

The norm of an operator O ∈ B[H] is given by

‖O‖ = sup
‖v‖�1

‖Ov‖. (B1)

Lemma B.1. If O is a bounded, linear operator on H and
O∗ its dual, then

‖O‖ = ‖O∗‖. (B2)

Example B.1. If M is a real matrix, then its dual operator
is the transposed matrix MT .

O is called contraction, if ‖O‖ � 1. A bounded, linear
operator U is called unitary if U is surjective and preserves
the scalar product, i.e.,

〈Uu,Uv〉 = 〈u, v〉 ∀u, v. (B3)

An unitary operator is a contraction and its spectrum lies on
the unit circle, see Krengel [4].

Example B.2. Any Markov operator and in particular the
Perron-Frobnenius operator Pϕ is a contraction on L1(X, μ),
this follows directly from the definition of a Markov operator,
compare Appendix A 4. If μ is an invariant measure, then
Pϕ is a contraction on the Hilbert space L2(X, μ); see Lasota
and Mackey [32]. In this case the Koopman operator Kϕ is a
contraction on L2(X, μ) as well [5].

The following lemmata will allow a slick proof of the
classical mean ergodic theorem due to von Neumann and
of a related theorem that implies the convergence of the ε-
committors.
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Lemma B.2. Let O ∈ B[H] be a contraction on a real or
complex Hilbert space and v ∈ H . Then

v = Ov ⇔ v = O∗v. (B4)

Proof. If for some v ∈ H : ‖v‖2 = 〈v, Ov〉, then 〈v, Ov〉 is
real and 〈v, Ov〉 = 〈Ov, v〉 by symmetry of the scalar product.
Then we get

‖Ov − v‖2 = 〈Ov − v, Ov − v〉
= ‖Ov‖2 + ‖v‖2 − 2〈v, Ov〉
� 2‖v‖2 − 2‖v‖2 = 0, (B5)

where we used that O is a contraction in the last line. Thus,
v = Ov is equivalent to ‖v‖2 = 〈v, Ov〉 = 〈O∗v, v〉. Since
O∗ is a contraction as well by Lemma B.1 applying the
equivalence to O∗ yields the identity v = O∗v. �

We will often use the subspace fix(O) ⊂ H of O-invariant
vectors

fix(O) := {v ∈ H | Ov = v}, (B6)

Obviously, fix(O) consists of the eigenvectors with eigenvalue
1 and is closed.

A vector u is called orthogonal to a subspace V ⊆ H ,
if 〈u, v〉 = 0 ∀v ∈ V . In this case we write u ⊥ V . The
orthogonal complement V ⊥ of a subspace V is the set of all
vectors u that are orthogonal to V .

Lemma B.3. Let O ∈ B[H] be a contraction on a Hilbert
space H. Then the orthogonal complement fix(O)⊥ of fix(O)
is the closure of the subspace N spanned by {v − Ov | v ∈ H}.

Proof.

u ⊥ N ⇔ 〈u, (O − I )v〉 = 0 ∀v ∈ H

⇔ 〈O∗u − u, v〉 = 0 ∀v ∈ H

⇔ O∗u = u ⇔ Ou = u ⇔ u ∈ fix(O). (B7)

Thus, N is orthogonal to fix(O). Since fix(O)⊥ is closed
and contains N it contains N as well. Since a closed, lin-
ear subspace of a Hilbert space and its closure have the
same orthogonal complement, we have that N⊥ = fix(O) and
fix(O)⊥ = (N⊥)

⊥ = N . �
A projection is a linear map P : H → H , such that P2 = P.

It induces a decomposition of H = ker P ⊕ Im P into a direct
sum of its kernel and its image. If its kernel and image
are orthogonal onto each other, then P is called orthogonal
projection. The projection operator onto ker P is Q := I − P
and it is easy to see that QP = PQ = 0. Conversely, if H
can be written as a direct sum of closed subspaces U and
V , then every element h ∈ H = U ⊕ V can be written as
h = u + v with u ∈ U and v ∈ V . The map PU defined by
PU h = u, satisfies P2

U = PU and is called the projection onto U
along V.

We are now well prepared to study the convergence of
averages of powers of the operator. If O is a contraction,
then we define SNv := SN [O]v = 1

N

∑N−1
k=0 Okv, the so-called

Cesàro averages or ergodic means. Note the close connection
to the expected mean sojourn times, that were introduced
before.

Theorem B.4. (von Neumann mean ergodic theorem)
Let O ∈ B[H] be a contraction on a Hilbert space H. Then

for every v ∈ H

lim
N→∞

SN [O]v = Pfix(O)v, (B8)

where Pfix(O) : H → fix(O) is the orthogonal projection onto
the subspace fix(O).

Proof. The argument is similar to the next proof, see also
Krengel [4], Theorem 1.4. �

For a contraction O define the geometric averages Cεv :=
Cε(O)v := ε

∑∞
k=0(1 − ε)kOkv. Since ‖O‖ � 1, it is a direct

consequence of the summability of the geometric series, that
for any ε ∈ (0, 1] the operator norm of Cε is bounded by 1 and
that Cε is linear on H . Furthermore, we have the identity

Cεv = (1 − ε)Cε(Ov) + εv. (B9)

Theorem B.5. (geometric mean ergodic theorem)
Let O ∈ B[H] be a contraction on a Hilbert space H. Then

for every v ∈ H

lim
ε→0

Cε[O]v = Pfix(O)v, (B10)

where Pfix(O) : H → fix(O) is the orthogonal projection onto
the subspace fix(O).

Proof. We see immediately that Cεv = Pfix(O)v = v for all
v ∈ fix(O).

Let now u = (O − I )v for some v ∈ H then

Cεu = Cε(Ov) − Cεv = Cε(Ov) − (1 − ε)Cε(Ov) − εv

= ε[Cε(Ov) − v]. (B11)

Estimating the norm of the last term we get

ε‖Cε(Ov) − v‖ � ε(‖Ov‖ + ‖v‖) = 2 ε‖v‖, (B12)

and this converges to 0 for ε → 0. Now let u be in the
closure of N := (O − I )H , then there is a sequence (uk )k∈N ∈
N that converges to u, such that uk = (O − I )vk for some
vk ∈ H . Then for every δ > 0, there is K (δ) ∈ N such that
‖u − uK (δ)‖ < δ, and hence

lim
ε→0

‖Cεu‖ � lim
ε→0

[‖Cε(u − uK (δ) )‖ + ‖CεuK (δ)‖]

� ‖u − uK (δ)‖ + lim
ε→0

2 ε‖vK (δ)‖
< δ. (B13)

Since this inequality holds for all δ > 0 we conclude that
limε→0 ‖Cεu‖ = 0 on the closure of N , which is equal to
fix(O)⊥ by Lemma B.3.

If fix(O) is a closed, linear subspace, then it is a well-
known theorem that H = fix(O) ⊕ fix(O)⊥. Then we can
write any u ∈ H as u = v + w with v ∈ fix(O),w ∈ fix(O)⊥

and hence limε→0 Cεu = limε→0(Cεv + Cεw) = v = Pfix(O)u
and thus Pfix(O) is an orthogonal projection. �

Remark. According to the theorem the convergence of
Cε[O] to Pfix(O) is pointwise. If H = Rn, then this implies
uniform convergence. For simplicity, let ‖.‖ denote the norm
induced by the standard scalar product and ei the standard
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basis vectors. Denote Dε := Cε[O] − Pfix(O). Then

‖Dε‖ = sup
‖x‖=1

‖Dεx‖ � sup
‖x‖=1

N∑
i=1

|xi|‖Dεei‖

� N max
i=1,...,N

‖Dεei‖

� N max
i=1,...,N

2 ε‖ fi‖ → 0, (B14)

for ε → 0, where fi = 0 if ei ∈ fix(O), or else fi ∈ H is such
that ei = (O − I ) fi. In particular the convergence is uniform
if O is a contractive matrix.

Remark. We suppose that for compact, normal operators
the convergence is uniform as well. A proof via the spectral
theorem [45] might be possible but is, however, beyond the
scope of this work.

2. Brief summary of spectral theory for Hilbert space operators

In the next section we will prove the mean ergodic theo-
rems for another class of operators, which are not necessarily
contractions. The present section introduces some of the tools
needed for the proof, most notably we establish a link between
the spectral radius of an operator and the convergence of its
powers (Corollary B.7).

Let H be a complex Banach space and O : H → H a
bounded, linear operator. The resolvent set ρ(O) of O is the set
of all λ ∈ C, such that the operator λI − O is invertible with
a bounded, linear inverse. Its complement σ (O) := C \ ρ(O)
is called the spectrum of O. The spectrum can be split into
disjoint parts, depending on the reason why the operator
λI − O fails to be invertible.

The most important part for our purposes is the point
spectrum,

σP(O) := {λ ∈ C | ker(λI − O) �= {0}}. (B15)

The other parts are called the continuous spectrum,

σC (O) := {λ ∈ C | ker(λI − O) = {0}, Im(λI − O) �= H

and Im(λI − O) = H}, (B16)

and the residual spectrum,

σC (O) := {λ ∈ C | ker(λI − O) = {0}, Im(λI − O) �= H}.
(B17)

Every λ ∈ σP(O) is called an eigenvalue of O and the corre-
sponding eigenvectors are the elements of ker(λI − O), which
is the eigenspace of O at eigenvalue λ.

An important class of operators for which the structure of
the spectrum is particularly simple and well understood are
compact operators. An operator O is called compact if OA is
relatively compact for every bounded subset A ⊂ H .

Remark. (Matrices) If H is finite-dimensional, then O is
compact. In particular, every matrix is a compact operator.
This is a consequence of the Heine-Borel Theorem, which
states that in finite-dimensional spaces a subset is compact,
if and only if it is closed and bounded.

Remark. (Compact Domain) If H is compact, then every
map from H to itself is compact.

We will now state without proof a number of general re-
sults on compact operators O ∈ B[H]. The proofs are omitted

since they require advanced techniques that have little in
common with the main subject of this paper. For details we
refer to Kubrusly [45].

The so-called Fredholm Alternative states that the residual
and continuous parts of the spectrum of a compact operator
on a Hilbert space are either empty or {0}. In other words,
the nonzero spectrum of a compact operator equals its point
spectrum.

Theorem B.6. (Fredholm Alternative) Let O : H → H be
a compact, bounded, linear operator, then

σ (O) \ {0} = σP(O) \ {0}. (B18)

Furthermore, the spectrum is a countable set and its
only possible accumulation point is 0, see Kubrusly [45],
Corollary 2.20.

The spectral radius of an operator O is defined as

r(O) = sup
λ∈σ (O)

|λ|. (B19)

The Gelfand-Beurling formula establishes a connection be-
tween the spectral radius of O and the norm of its powers
‖On‖, it states that

r(O) = lim
n→∞ ‖On‖1/n. (B20)

A proof can be found in Kubrusly [45], Theorem 2.10. This
formula allows to prove that the power of an operator con-
verges uniformly to 0 if and only if its spectral radius is strictly
smaller than 1.

Corollary B.7. Let O be a bounded, linear operator on a
complex Banach space, then

r(O) < 1 ⇔ lim
n→∞ ‖On‖ = 0. (B21)

3. Ergodic theorems for a class of decomposable
Hilbert space operators

We are now ready to prove the mean ergodic theorems for
Hilbert space operators O that admit a decomposition into
the sum of a unitary operator and an operator with spectral
radius smaller than 1. An important class of such operators
are stochastic matrices, as we shall see in the next section.

Theorem B.8. Let O ∈ B[H] on a Hilbert space H. Assume
H = U ⊕ V is the direct sum of O-invariant closed subspaces
U and V , such that U := OPU is unitary and V := OPV has
spectral radius r(V ) < 1. Then

lim
N→∞

SN [O]v = Pfix(O)v = lim
ε→0

Cε[O]v ∀v ∈ H, (B22)

where fix(O) = ker(I − O) is the subspace of O-invariant
vectors and Pfix(O) is an orthogonal projection.

Proof. Since the subspaces U and V are O-invariant, we
have that OPU = PUO and OPV = PVO. This implies UV =
VU = 0 and further Ok = (U + V )k = U k + V k . Hence,
the averages SN [O] = SN (U ) + SN (V ) and Cε[O] = Cε(U ) +
Cε(V ) split into two distinct terms. The mean ergodic theo-
rems imply that

lim
N→∞

SN (U )v = Pker(I−U ) = lim
ε→0

Cε(U )v. (B23)

We show now, however, that limN→∞ SN (V )v = 0 =
limε→0 Cε(V )v.

022124-14



STOCHASTIC BASINS OF ATTRACTION AND … PHYSICAL REVIEW E 100, 022124 (2019)

By assumption r(V ) < 1 and, hence Corollary B.7 implies
limk→∞ ‖V k‖ = 0. It follows that for all δ > 0 there exists
M ∈ N, such that ‖V k‖ < δ for all k � M. Then

lim
N→∞

‖SN (V )‖ � lim
N→∞

1

N

M−1∑
k=0

‖Ok‖ + lim
N→∞

1

N

N−1∑
k=M

‖Ok‖

� lim
N→∞

(
M − 1

N
+ δ

N − M − 1

N

)
= δ,

(B24)

and since this holds for all δ > 0 we have that
limN→∞ SN (V ) = 0. By an analogous argument one
establishes limε→0 Cε(V ) = 0. It remains to show that
ker(I − U ) = ker(I − O). By assumption for every
x ∈ H = U ⊕ V there exist u ∈ U and v ∈ V such that
x = u + v. Assume that Ox = x, then

Ox = x ⇔ (U + V )(u + v)

= (u + v) ⇔ Uu + V v = u + v, (B25)

and since Uu ∈ U and V v ∈ V this is equivalent to

Uu = u and V v = v. (B26)

Since V has spectral radius smaller than 1 it cannot have any
fixed points except 0 and hence v = 0, which implies that
x = u. Hence, Ox = x if and only if Ux = x or equivalently
ker(I − U ) = ker(I − O). �

Remark. The projection operator in the theorem is the
orthogonal projection onto ker(I − U ) along Im(I − U ), how-
ever, in general ker(I − U ) need not be orthogonal onto the
subspace V from the theorem.

4. Ergodic theorems for stochastic matrices

Having established the mean ergodic theorems for fairly
general Hilbert space operators, we now turn to most im-
portant case for the applications we have in mind, which
are stochastic matrices. In this section we will introduce
some basic properties of stochastic matrices and then show
that they admit a decomposition like the one described in
Appendix B 3. We conclude this section by proving the mean
ergodic theorems for stochastic matrices.

From now on let M ∈ Rn×n be a stochastic matrix. A right
eigenvector of M at eigenvalue λ is a solution to the equation
Mv = λv and similarly a left eigenvector solves vT M = λvT .
A left eigenvector of M is a right eigenvector of MT and
vice versa. Since M and MT share the same characteristic
polynomial, their spectra and in particular their spectral radii
are the same.

Lemma B.9. M has spectral radius r(M ) = 1.
Lemma B.10. M has at least one left eigenvector at eigen-

value 1, which is a probability distribution vector.
An eigenvalue of a matrix is called semisimple, if its

geometric multiplicity equals its algebraic multiplicity or
equivalently if the corresponding eigenspace admits an or-
thogonal eigenbasis (over C). If all eigenvalues of a matrix
are semisimple, then it is diagonalizable [46].

Theorem B.11. If M is a stochastic matrix, then all eigen-
values λi with |λi| = 1 are semisimple.

Theorem B.12. Let M ∈ Rn×n be a stochastic matrix and
let Q ∈ Rn×n be invertible, such that J = Q−1MQ is the
Jordan normal form of M, then

lim
N→∞

SN [M] = lim
ε→0

Cε[M] = Pfix(M ), (B27)

where Pfix(M ) is a projection onto fix(M ) = {v ∈ Rn | Mv =
v} given by

Pfix(M ) = Q−1Pfix(J )Q, (B28)

and Pfix(J ) is an orthogonal projection.
Proof. We assume that the reader is familiar with the

Jordan normal form; a good reference is Meyer [46]. For the
Jordan normal form J of M it is obvious that eigenspaces
corresponding to different eigenvalues are orthogonal onto
each other. As stated above the spectral radius of a stochas-
tic matrix is 1 and all eigenvalues on the unit circle are
semisimple. Hence, J = U + V can be decomposed into a
unitary part and a part with spectral radius smaller 1, such that
UV = VU = 0. Since matrices are bounded, linear operators
on finite-dimensional spaces, pointwise convergence implies
uniform convergence. Thus, applying Theorem B.8 to J we
have

lim
N→∞

SN (J ) = Pfix(J ). (B29)

Using the identity M2 = (Q−1JQ)2 = Q−1JQQ−1JQ =
Q−1J2Q it is easy to see that

SN [M] = SN (Q−1JQ) = Q−1SN (J )Q, (B30)

and by taking limits we get

lim
N→∞

SN [M] = lim
N→∞

Q−1SN (J )Q = Q−1Pfix(J )Q. (B31)

It remains to show that Im(Q−1Pfix(J )Q) = fix(M ), which
holds since

xT ∈ Im(Q−1Pfix(J )Q)

⇔ xT Q−1Pfix(J )Q �= 0 ⇔ xT Q−1Pfix(J ) �= 0

⇔ xT Q−1J = xT Q−1 ⇔ xT Q−1JQx = xT

⇔ xT M = xT . (B32)

The argument for the limit limε→0 Cε[M] is analogous. �
Remark. As for any closed subspace of a Hilbert space,

there exists an orthogonal projection onto fix(M ). However,
the projection Pfix(M ) that we get from the theorem is, in
general, not orthogonal. This happens to be so, since stochas-
ticity of a matrix is a property that only holds with respect
to a certain basis of Rn, namely, the standard normal basis,
where every basis vector corresponds to a certain state of
the associated Markov chain. However, the spectrum of a
linear operator is independent of the basis and the theorem
is mainly a consequence of the spectral properties of M. We
obtain Pfix(M ) by switching to a suitable basis, such that M has
Jordan normal form, which allows us to apply the results of
the previous section. The resulting projection matrix Pfix(M )

is sometimes called spectral projection of M at eigenvalue
1. Meyer [46] gives an explicit characterization of Pfix(M ) in
terms of submatrices of M.

Above we saw that the right fixed points of the transition
matrix associated to a Perron-Frobenius are expected to be
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almost constant on the basins, compare Appendix A 3. For
general Markov chains, Deuflhard and Weber [47] give some
intuition on the structure of the right 1-eigenvectors. In the
ideal case of a Markov chain consisting of several uncou-
pled subchains, the right 1-eigenvectors will be constant on
the irreducible components. If a Markov chain has several
metastable states and transitions between these states are rare
events, then it can be thought of as small perturbations of
such an ideal chain. Deuflhard and Weber [47] show that
for nearly uncoupled chains the perturbed 1-eigenvectors
have eigenvalues close to 1 and are almost constant on the
metastable components. They exploit this fact to approximate
metastable states. However, in the presence of long transients
this constant level pattern is in general not preserved and more
complex algorithms are required [48,49].

APPENDIX C: DIFFERENCE ESTIMATES
FOR METASTABLE STATES

This Appendix does not intend to provide thorough treat-
ment of committor functions and EMS times in the presence
of metastability but rather aims to develop our intuition of
the behavior that is to be expected. Metastability in Markov
chains is an extensive area of research and various related
notions of metastable states and almost-invariant sets have
been proposed [6,10,48]. For our purposes it will suffice to
work with the straightforward idea that (left) eigenvectors
with real eigenvalues close to 1 characterize metastable states.
Note that the eigenvalues need to be real to avoid oscillations.

Let M be the transition matrix of a Markov chain and v

an eigenvector of M at a real eigenvalue λ ≈ 1, normalized
such that ‖v‖ = 1. Then ‖vT M − vT ‖ = (1 − λ)‖v‖ ≈ 0 and
the systems state described by v hardly changes during one
iteration of the system and may be considered as invariant on
short timescales.

If we consider Cε and SN as expected values of time aver-
ages along trajectories, then Cε corresponds to averaging with
respect to a geometric distribution with parameter ε, while SN

corresponds to averaging with respect to the equidistribution
on {0, . . . , N − 1} (cf. Sec. V). To compare both averages we
align the expected values of these distribution by choosing
ε = 2

N+1 and write in abuse of notation Cε = C 2
N+1

=: CN .
Then sN (v) = SN [λ]v, qN (m) = CN [λ]v and for the differ-

ence term h(λ, N ) := ‖sN (v) − qN (v)‖ we have

h(λ, N ) = ‖SN [λ]v − CN [λ]v‖ = |SN [λ] − CN [λ]| · ‖v‖

=
∣∣∣∣∣ 1

N

1 − λN

1 − λ
− 2

N + 1
· 1

1 − (
1 − 2

N+1

)
λ

∣∣∣∣∣. (C1)

Elementary analytic arguments reveal that the difference van-
ishes for fixed λ and N → ∞ as expected.

Figure 7 shows the difference terms for varied N and
several eigenvalues λ, possibly far from 1. We see that for
sufficiently large N the difference between EMS time and
ε-committor vanishes. Further, we observe that on small
timescales N such that the metastable state has not signifi-
cantly decayed yet, that is ‖vT MN − vT ‖ = 1 − λN ≈ 0, the
difference term is small as well. Among our example values
this effect is most significant for λ = 0.999, that is for a slowly
decaying metastable states.

FIG. 7. Error term h(λ, N ) as described by Eq. (C1) for different
values of λ and for ε = 2

N+1 . The green dashed line shows a dif-
ference term for a more complex metastable state given by a linear
combination of three eigenvectors. In this case β = 1

3 and αi = 1 for
all i = 1, 2, 3.

If we extend our notion of a metastable state and allow
m = β(

∑L
i=1 αivi ), where vi is an eigenvector of M at real

eigenvalue λi with ‖vi‖ = 1 for all i, and α1, . . . , αL, β ∈
[0, 1], such that ‖m‖ = 1, then the difference term
‖SN [M]m − CN [M]m‖ is bounded by∥∥∥∥∥β

L∑
i=1

αiv
T
i SN [M] − β

L∑
i=1

αiv
T
i CN [M]

∥∥∥∥∥
� β

L∑
i=1

αi

∥∥vT
i SN [λi] − vT

i CN [λi]
∥∥

= β

L∑
i=1

αih(λi, N ), (C2)

FIG. 8. h(λ, N ) for various complex λ is shown in red and blue
and for comparison h(|λ|, N ) is shown in yellow. We see that for
complex λ the difference term takes higher maximal values and
converges faster to zero than for their absolute values.
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that is by the weighted sum of the difference terms corre-
sponding to the different eigenvectors. In Fig. 7 an example
of such a combined term is plotted along the individual terms
corresponding to the distinct eigenvalues. We see that the
difference term for the combined metastable set decays faster
than the one corresponding to the largest eigenvalue. Thus,
it suffices to choose N large enough, such that h(λ, N ) is
small for the largest λ to ensure that the difference term of
a metastable state is small.

Remark. (Complex eigenvalues)
A generic transition matrix M is diagonalizable over C

with possibly complex eigenvalues and eigenvectors. General

linear combination of the kind m = β(
∑L

i=1 αivi ), with α

and β as above and with complex eigenvectors vi such that
‖vi‖∞ = 1, may no longer be interpretable as metastable
states due to osicillations; however, the difference terms
h(λ, N ) remain valid. We observe numerically that h(λ, N )
takes larger maximal values for λ ∈ C. However, simulations
show that h(λ, N ) converges faster to zero for complex λ

than for real λ with the same absolute value. Hence, to
choose N large enough for the difference term of such a
generalized state m to vanish we suggest to consider h(|λ|, N )
for the eigenvalue λ of largest absolute value, compare
Fig. 8.
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