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Interplay of adsorption and surface mobility in tracer diffusion in porous media
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We model the diffusion of a tracer that interacts with the internal surface of a porous medium formed by a
packing of solid spheres. The tracer executes a lattice random walk in which hops from surface to bulk sites and
hops on the surface have small probabilities compared to hops from bulk sites; those probabilities are related to
bulk and surface diffusion coefficients and to a desorption rate. A scaling approach distinguishes three regimes
of steady state diffusion, which are confirmed by numerical simulations. If the product of desorption rate and
sphere diameter is large, dominant bulk residence is observed and the diffusion coefficient is close to the bulk
value. If that product is small and the surface mobility is low, the tracers are adsorbed most of the time but
most hops are executed in the bulk. However, for high surface mobility, there is a nontrivial regime of dominant
surface displacement, since the connectivity of solid walls allows the tracers to migrate to long distances while
they are adsorbed. In this regime, we observe rounded tracer paths on the sphere walls, which are qualitatively
similar to those of a recent experiment on polystyrene particle diffusion. The calculated average residence times
are proportional to the bulk and surface densities of an equilibrium ensemble of noninteracting tracers, and
the relation between those densities sets the adsorption isotherm. Simulations performed with initially uniform
(nonequilibrium) distribution of tracers in the pores show other nontrivial results in cases of dominant surface
residence: slow increase of the mean-square displacement at short times, since the tracer has not explored a
homogeneous medium, and a remarkable slowdown between the first encounter with a solid wall and the first
hop from that point. Relations between our results and other models of diffusion and adsorption in porous media
are discussed.
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I. INTRODUCTION

Diffusion of tracers in disordered media has attracted much
attention in recent decades due to a large number of techno-
logical applications and a large variety of scaling scenarios
in experiments and models [1,2]. In a homogeneous medium,
normal or Fickean diffusion is characterized by a linear time
increase of its mean square displacement, i.e.,

〈r2〉 ≈ 2dDt, (1)

where D is the diffusion coefficient and d is the dimension of
the medium.

Periodic or random packings of solid spheres are models
of porous media in which diffusion was already studied the-
oretically and experimentally [3–10]. Despite the apparently
simple features of these packings, nontrivial phenomena may
be observed. Kim and Torquato [3,4] calculated the diffusion
coefficient as a function of the diameter of a tracer that ran-
domly moved in the interstices of those media and proposed to
use that result to describe macromolecule transport in porous
media. Kluijtmans and Phillipse [6] measured the diffusion
coefficients of fluorescent molecules and of colloidal parti-
cles in media with that geometry and obtained values much
smaller than the theoretical predictions, but explained the
discrepancies by hydrodynamic interactions. In Refs. [5,9],
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the diffusion coefficient was calculated in models with dif-
ferent diffusivities in the bulk pores and on the surfaces of the
spheres. Recently, Babayekhorasani et al. [8] studied diffusion
of colloidal particles in the interstices of a random packing
of glass beads and, depending on the choice of the solvent,
obtained a normal behavior as in Eq. (1) or subdiffusive
behavior [1].

Here we study a model of tracer diffusion in periodic
porous media formed between solid spheres considering that
the diffusions along the solid walls and in the bulk fluid have
different coefficients and that desorption from those walls has
a low rate compared to the adsorption. These features are
represented in a random walk model by different probabilities
of hops in the bulk and along the walls and different prob-
abilities for adsorption and desorption. Instead of focusing
on a particular application, our aim is to analyze the scaling
scenario that results from the interplay of adsorption, bulk
mobility, and surface mobility.

A phenomenological approach is developed to distinguish
cases of dominant bulk residence and dominant surface res-
idence and, in the latter case, to distinguish the regimes of
dominant bulk or surface displacement. The diffusion coeffi-
cients in these scaling regimes are determined in terms of the
stochastic parameters of the model and the ratio R between
solid sphere radius and tracer diameter; these parameters can
be in turn expressed in terms of kinetic parameters, namely
the surface and bulk diffusion coefficients and a desorption
rate. Numerical simulations confirm the predictions of the
scaling approach. Our discussion will highlight the nontrivial
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features of the regime of dominant surface residence and dis-
placement, in which the tracers move to long distances while
they are adsorbed at the solid walls. For instance, the rounded
trajectories shown in the simulations are qualitatively similar
to those observed in experiments with colloidal particles [8].
We also address the problem of an ensemble of noninteracting
tracers with the same kinetic parameters. At long times, their
densities in the bulk and on the solid surface are proportional
to the corresponding residence times of a single tracer, and the
relation between those densities is the adsorption isotherm of
the system.

Our simulations are performed with an initial uniform dis-
tribution of tracers in the pore space. This is a non-equilibrium
condition which leads to nontrivial properties at short times,
before the asymptotic scaling is attained. For small rates
of desorption and surface diffusion, we show a remarkable
slow down of diffusion when the average displacement is
of order �R, which is quantitatively explained by an ex-
tended scaling approach. At shorter times, when the tracers
have explored only small regions between the spheres, the
mean square displacement increases slower than linearly in
time.

This paper is organized as follows. In Sec. II, we present
the model and the methods of solution. In Sec. III, we
present numerical results for several parameter sets to show
the possible time evolutions of the mean square displacement
and tracer trajectories. In Sec. IV, the diffusion coefficient is
predicted in the three scaling regimes and the scaling relations
are checked numerically. In Sec. V, the equilibrium isotherm
for an ensemble of tracers is obtained. In Sec. VI, we analyze
the slowdown observed in simulations with initial uniform
distribution of tracers and the crossover to normal diffusion. In
Sec. VII, we discuss relations with other models. In Sec. VIII
we present our conclusions.

II. MODEL AND METHODS

A. Model definition

Our model is defined in a simple cubic lattice in which
the edge of a site is a. The solid part of the medium is
formed by discretized spheres of radius aR whose centers are
organized in a simple cubic lattice of edge 2aR, with integer
R, as illustrated in Fig. 1(a). In this geometry, neighboring
spheres have a small contact region. We assume that the
porous medium between the spheres is filled with a fluid. The
porosity of this medium in the continuous limit (sufficiently
large spheres) is ≈0.4764; for R ∼ 10, the porosity is not very
different from this value.

The neighborhood of a site is defined as the set of 6 nearest
neighbor (NN) and 12 next nearest neighbor (NNN) sites.
This 18-site neighborhood was considered in previous mod-
els because if simplifies the description of adsorbed particle
diffusion [11]. The pore sites that have no neighboring solid
site are called bulk sites. The pore sites that have one or
more neighboring solid sites are called surface sites. These
definitions are illustrated in Fig. 1(b).

The tracers do not interact with each other, which may
be a reasonable assumption for a dilute solution. Each tracer
occupies a single pore site, as shown in Fig. 1(b), and

FIG. 1. (a) Spheres of radius R = 10. (b) The three types of sites,
whose spatial organization is illustrated in a square region. A tracer
can occupy a bulk or a surface site. (c) Hop attempts of the tracer are
indicated by red arrows. Black arrows show the possible outcomes of
those attempts with the corresponding probabilities.

its diffusion is represented by a random walk in the pore
sites. A tracer is in the adsorbed state if it is at a surface
site.

In each time interval τ , the tracer attempts to hop to a
randomly chosen neighboring site (target site): a NN site
is chosen with probability 1/12 and a NNN is chosen with
probability 1/24; in steady state diffusion, this corresponds to
an isotropic discretization of ∇2P = 0 for the tracer concen-
tration P [12].

If the current site of the tracer is a bulk site, the hop attempt
to any target site (bulk or surface) is accepted with probability
1. If the current site is on the surface, we distinguish three
cases. First, a hop attempt to a neighboring solid site is always
rejected. Second, a hop to another surface site represents sur-
face diffusion and is executed with probability pS; otherwise,
the hop attempt is rejected and the tracer remains at its current
position. Third, a hop to a bulk site represents desorption and
is executed with probability pD; otherwise, the hop attempt
is also rejected and the tracer remains at its current position.
These possibilities are illustrated in Fig. 1(c).

The tracer displacement along a solid wall may be hindered
by hydrodynamic interactions, as discussed in Refs. [8,13–15]
in the context of colloidal particle diffusion. Our model
proposes a simple stochastic description of the consequences
of these interactions by considering pS < 1. Desorption oc-
curs with an increase in the distance between the tracer
particle and the solid wall, which also depends on the in-
teraction between the tracer and fluid layers near the wall.
Considering an attractive interaction with the wall, we use
pD < 1.

We denote as tD the time of tracer diffusion. A dimension-
less diffusion time is defined as

t ≡ tD
τ

. (2)
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B. Physical interpretation of the model parameters

The lattice constant a may be interpreted as the mean
free path of a tracer. Although the illustrations in Figs. 1(b)
and 1(c) suggest that the tracer diameter is close to a, the
model may also be used for tracers with diameters smaller
than a.

If the diffusion coefficient of a tracer in a free solution is
D0 (i.e., a solution in a vessel without obstacles), then this
coefficient is related to the time for one hop attempt and to the
lattice constant as

D0 = a2

4τ
. (3)

The factor 4 in Eq. (3) is a consequence of the possible hops
to NN or NNN sites [11]; with hops only to NNs, that factor
would be 6.

The diameter of the solid spheres (obstacles of the porous
medium) is

d = 2Ra, (4)

Consequently, R is the ratio between the sphere radius and the
tracer mean free path.

The distinction between bulk and surface sites is necessary
for the description of an adsorption process. The assumption
that surface sites are only those neighbors of solid sites means
that the interaction between the tracer, the solid walls, and the
fluid near the walls has a range of the same order as a. This
assumption is implicit in several lattice models of colloidal
particle adsorption with surface diffusion [16,17]. It also gives
reasonable results for growth of macromolecule films and
colloidal films [18].

When the tracer is at a bulk site, we assume that the hops to
neighboring bulk and surface sites have the same probability
(1). Since the hop to a surface site represents a transition
to an adsorbed state, our assumption means that the energy
barrier for adsorption is neglected. This approximation is also
considered in several models of colloidal particle adsorption
[16,17].

The reduced probability pS of hops along the surface of the
spheres implies that the surface diffusion coefficient is

DS ∼ pSD0 ∼ a2 pS

4τ
. (5)

The rate of desorption of a tracer from the surface is

rD ∼ pD

τ
. (6)

Our model obeys detailed balance conditions. We associate
energies EB and ES with bulk and surface sites, respectively,
so that the ratio of surface-to-bulk and bulk-to-surface hop
probabilities is

pD = exp [(ES − EB)/(kBT )]. (7)

D0 and DS may also be written in terms of activation energies
for diffusion and in terms of a characteristic frequency for
those hops.

C. Methods of solution

A simple analytical calculation of the diffusion coefficient
is not possible for this model because the hopping rates

depend not only on the current site but also on the target site;
for instance, a surface-to-bulk hop and a surface-to-surface
hop have different probabilities. This justifies the use of other
methods, namely a combination of scaling arguments and
numerical simulations.

The scaling regimes of the model and the crossovers
between them are first obtained by an approach which is
based on the comparison of characteristic times for diffusion
in surface and bulk regions and characteristic lengths of the
tracer displacement in those regions. The methods are similar
to those used to distinguish scaling regimes in island coars-
ening with diffusion, aggregation, and detachment [19,20].
Their advantage is the phenomenological description of the
interplay between the physical and chemical processes and
the system geometry, which helps the extensions to other
problems with the same processes.

We also perform simulations of the random walk model
in lattices built with spheres of radius R varying from 10 to
320. For R = 10, we consider several values of pS and pD

from 10−6 to 10−1; for larger sphere radii, most simulations
consider pD ranging from 10−6 to 10−2 and pS � pD. For
each set of parameters {pS, pD, R}, we calculate the mean
square displacement 〈r2〉 by averaging over the trajectories
of 106 tracers. The maximal hopping times range from 106τ

to 107τ .
The initial tracer position in the simulations is randomly

chosen among the pore sites. This is not the equilibrium
distribution of the tracers. The equilibrium distribution in bulk
and surface sites is obtained after long simulation times and is
analytically calculated in Sec. IV A.

A dimensionless mean square displacement is defined as

r2(t ) ≡ 〈r2〉
a2

. (8)

Thus, r2
1/2 is an estimate of the effective tracer displacement

in lattice units.
The numerical method used here reproduces directly the

model rules: at each time interval τ , one NN of the current
site is chosen and the hop is executed with the corresponding
probability. This is possible in a reasonable computational
time because the model is simple and the asymptotic scaling
is attained with displacements not much larger than Ra. On
the other hand, a kinetic Monte Carlo approach would be
necessary in highly inhomogeneous environments, in systems
with interactions between the diffusing tracers [19,20], or if
chemical reactions were involved [21].

III. OVERVIEW OF SIMULATION RESULTS

Figure 2(a) shows the time evolution of the normalized
mean square displacement r2 in a medium where R = 10, for
pS = 10−3 [fixed surface diffusion coefficient; Eq. (5)], and
for several values of the desorption probability pD. Figure 2(b)
shows the time evolution of the dimensionless mean square
displacement r2 in a medium with R = 40, for pD = 10−3

[fixed desorption rate; Eq. (6)], and several values of pS . These
plots contain data for several orders of the ratio pS/pD, with
two values of the sphere radius.

At long times, the slopes of all plots are close to 1, which
is consistent with normal diffusion. This occurs when the
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FIG. 2. Mean square displacement as a function of time (solid
lines) for the parameters shown in the plots: (a) constant surface
diffusion coefficient (decreasing pD from top to bottom); (b) constant
desorption rate (decreasing pS from top to bottom). Curves for
pD � 10−5 in (a) and for pS � 10−3 in (b) are superimposed. The
red dashed lines have slope 1. The black dotted lines are linear fits of
long time data which are used to estimate the diffusion coefficient.

tracer scans a region much larger than the sphere diameter,
i.e., r2 � R2. However, in some cases normal diffusion can be
observed for r2 slightly larger than R2. This is a consequence
of the large-scale homogeneity of the medium. The diffusion
coefficient is estimated in this long-time regime. It will be
predicted by a scaling approach in Sec. IV A and a comparison
with the numerical values will be presented in Sec. IV B.

At short times, for small pD or small pS , Figs. 2(a) and 2(b)
show slopes slightly smaller than 1. Figure 3 highlights this
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10−3, 10−5, 40, 0.91

FIG. 3. Mean square displacement as a function of time (from
bottom to top at short times, pD = 10−3, 10−5, 10−4, and 10−2). The
black dotted lines are linear fits between r2 ≈ 1 and r2 ≈ 0.1R2, and
the corresponding slopes α are shown.

FIG. 4. Examples of tracer trajectories: (a) pD = 0.2,

pS = 10−4, R = 20, dominant bulk residence; (b) pD = 10−3,

pS = 10−4, R = 20, dominant surface residence with dominant bulk
displacement; (c) pD = 10−3, pS = 10−1, R = 20, dominant surface
residence and dominant surface displacement. The perspective shows
larger transparent spheres in the front and smaller opaque spheres in
the back.

short-time scaling of r2 for four sets of parameters and shows
fits of each data set between r2 ≈ 1 (average displacement of
one particle diameter) and r2 ≈ 0.1R2 (average displacement
nearly one third of the radius of the solid spheres). The slopes
α of those fits range between 0.85 and 0.91; these values are
strongly dependent on the choice of the fitting region, but local
slopes are always smaller than 1 in all the fitted ranges.

The slow increase of r2 compared to the normal diffusion
relation [Eq. (1)] is a consequence of the tracer motion in an
apparently inhomogeneous medium at short times. In highly
disordered media (e.g., fractal media), deviations from this
linear relation appear at all timescales [1], which characterizes
subdiffusion:

〈r2〉 ∼ tα, (9)

with α < 1; for recent reviews, see Refs. [22,23]. In this
context, our results at very short times suggest an apparent
(not true) subdiffusion, which shows that the interpretation
of short-time results in related models and experiments must
be done carefully. Alternatively, our results may also be
interpreted in terms of a time varying diffusion exponent, as
suggested in Ref. [24], but such an approach is not considered
here.

Another nontrivial feature observed in Figs. 2(a) and 2(b)
for small pD and pS is the plateau of r2 between the initial
regime and the asymptotic regime of normal diffusion. It is
typically observed with r2 ∼ (0.2–0.3)R2, which means that
the tracer is confined to a small region for a long time. This
localization may last several time decades, as illustrated by
the results for pD � 10−5 in Fig. 2(a).

The confinement is a consequence of the uniform initial
distribution of the tracers combined with the strong adsorp-
tion after the first collisions with the solid walls. It will be
explained by a crossover scaling approach in Sec. VI. Note
that this feature differs from the long-time (asymptotic) satu-
ration of the mean square displacement of tracers confined to
closed regions, which is observed in porous media below the
percolation threshold [1] and which was recently illustrated in
models of colloidal particle diffusion in gels [25]. Instead, in
the present model, the confinement is always a transient effect.

Figure 4 shows three types of trajectories observed in the
simulations. They correspond to the three scaling regimes
which will be described in Sec. IV A. In (a), the tracer moves
most of the time in the middle of a pore, with rapid collisions
with the solid walls. The trajectory in (b) does not have many
differences from that in (a), since most hops are executed in
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(a) (b) (c)

FIG. 5. Three possible diffusion regimes: (a) dominant bulk residence; (b) dominant surface residence with dominant bulk displacement;
(c) dominant surface residence and dominant surface displacement.

the middle of the pores (pS is very small); however, the tracer
spends much longer times at the collision points because pD

is small. In (c), the rounded parts of the trajectory shows that
most hops of the tracer are executed along the solid walls; a
larger value of pS permits those hops before the tracer desorbs
from the wall (pD is very small).

Rounded trajectories of tracers were also observed in
experiments on colloidal particle diffusion in Ref. [8]. The
qualitative relation with that work is discussed in Sec. VII.

IV. DIFFUSION COEFFICIENTS

Here we are concerned with the long-time features of the
model. We estimate average residence times and diffusion
lengths in the surface and in the bulk regions and then present
a scaling approach to estimate the order of magnitude of
the diffusion coefficient. Numerical results supporting our
predictions are presented.

A. Scaling approach

The fraction of the time in which a tracer is at bulk sites is
denoted as fB; the fraction of time at surface sites is denoted
as fS , with fB + fS = 1. Each fraction is proportional to the
product between the hop probability to that set of sites and
the density of sites in that sets; see, for instance, a discussion
for a broad range of diffusion models in Ref. [26]. The hop
probability from bulk to surface is 1 and from surface to bulk
is pD. The densities of surface and bulk sites are defined as
ρS and ρB, respectively, and can be calculated by assuming
perfect solid spheres:

ρS ≈ 4πR2

(2R)3 − 4πR3/3
= 1

(2/π − 1/3)R
,

ρB = 1 − ρS ≈ 1 − 1

(2/π − 1/3)R
. (10)

Consequently, the fractions of the time at the surface and at
the bulk are

fS = ρS

ρS + pD · ρB
= 1

1 + (2/π − 1/3)y − pD
,

fB = (2/π − 1/3)y − pD

1 + (2/π − 1/3)y − pD
, (11)

where

y ≡ RpD (12)

These fractions determine the equilibrium distribution of an
ensemble of noninteracting tracers.

If fS 	 1, the tracer is predominantly found in the bulk.
Since pD < 1, Eq. (11) implies that this regime is possible
only if y � 1; Eq. (12) then requires R � 1. The fractions
of the residence time are fS ∼ 1/y and fB ≈ 1. In these
conditions, the diffusion coefficient is expected to be close
to the free solution value D0, with small corrections due
to the adsorption events. These features are schematically
represented in Fig. 5(a); an example of tracer trajectory in this
regime was shown in Fig. 4(a).

The other limiting case, in which fB 	 1, is of dominant
surface residence. From Eq. (11), this is possible only if
y 	 1 or, in terms of model parameters, pD 	 1/R. Since we
typically work with R � 1, we have y/π � pD and Eq. (11)
gives fB ∼ y, fS ≈ 1.

A balanced residence between bulk and surface is obtained
for y ∼ 1.

Dominant surface residence does not imply that the tracer
displacement predominantly occurs in the surface because
such displacement depends on the surface mobility. For in-
stance, if the mobility on the surface is very low, it is possible
that most hops are executed in the bulk, although the residence
time is smaller there. This is schematically represented in
Fig. 5(b), in which the tracer remains adsorbed for significant
times but does not move along the solid walls; a trajectory
corresponding to this regime was shown in Fig. 4(b) and does
not have significant differences from that shown in Fig. 4(a).
On the other hand, if the surface mobility is large, then the
tracer can move along the solid walls before desorption, as
illustrated in Fig. 5(c); this is a case in which residence and
displacement are dominant at the surface. The trajectories
consequently have pieces with rounded shape, as shown in
Fig. 4(c).

We distinguish these regimes by comparing the surface and
bulk displacements. In a time interval δt , the residence time
in the bulk is fBδt and the residence time at the surface is
fSδt . The average displacements at the surface and in the bulk
within this time are δlB ∼ (D0 fBδt )1/2 and δlS ∼ (DS fSδt )1/2,
respectively, where D0 and DS are given in Eqs. (3) and (5).
This leads to

δlS

δlB
∼

[
pS

pD[(2/π − 1/3)R − 1]

]1/2

∼
√

pS

RpD
. (13)

The second approximation in Eq. (13) considers R � 1 and
omits a numerical factor of order 1. The corrections are
proportional to 1/(2R); if R is not very large (e.g., between
10 and 50), these corrections may be relevant.
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The scaling variable

x ≡ pS

RpD
(14)

can be used to determine the region in which the diffusion
length is larger. If x � 1, the mobility of the adsorbed tracers
is sufficiently high so that the displacement along the surface
is dominant; Fig. 4(c). If x 	 1, the mobility in those surfaces
is very low, so that the displacement in the bulk is dominant
(even if the residence in the bulk is relatively short); Fig. 4(b).

The factor R that appears in Eqs. (12) and (14) is a
consequence of Eq. (10). Thus, it represents a volume-to-area
ratio which is scaled by the factor a (tracer diameter). The
increase of this ratio means that the number of surface sites
becomes smaller if compared with the number of bulk sites.

The diffusion coefficient is expected to be a function of the
scaling variables x and y:

D = D0F (x, y), (15)

where F is a dimensionless scaling function. For y � 1,
which is the case of dominant bulk residence, we have
F (x, y) ∼ 1, independently of x. For y 	 1, which is the case
of dominant surface residence, two scenarios are possible:

(i) If x 	 1, diffusion occurs mainly in the bulk, but the
fraction of time in this region is fB ∼ y; thus,

D ∼ yD0 (16)

and Eq. (15) gives F (x, y) ∼ y.
(ii) If x � 1, diffusion occurs mainly in the surface, with

the surface diffusion coefficient

D = DS, (17)

as given in Eq. (5); thus, F (x, y) ∼ pS ∼ xy.
The relations for dominant surface residence also suggest

F (x, y) = yG(x), y 	 1, (18)

where G is another scaling function: G(x) ∼ 1 for x 	 1 and
G(x) ∼ x for x � 1.

Finally, note that the conditions pD < 1 and pS < 1 con-
strain the values of the scaling variables to

y < R, xy < 1. (19)

B. Numerical estimates

The diffusion coefficients are calculated from the log r2 ×
log t plots by performing linear fits of the long-time data,
as illustrated in Figs. 2(a) and 2(b). Here we focus on the
case of dominant surface residence, y 	 1, in which the
diffusion coefficient may have significant deviations from the
bulk value D0. In terms of the model parameters, the scaling
relations (15) and (18) suggest that D/(RpDD0) is a function
of pS/(RpD); see also Eqs. (12) and (14).

Figure 6 shows that this scaling is observed with very good
accuracy for a constant sphere radius R = 10; the universal
curve in which the data collapse is G(x) [Eq. (18)]. The inset
of Fig. 6 shows the nonscaled data for several pD and pS .
For pS/(RpD) 	 1, we have the regime of dominant bulk
displacement, in which D ∼ RpDD0 [G(x) ∼ 1]. In this case,
the diffusion coefficient does not depend on the mobility
of the tracer on the surface because it is very small. For
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FIG. 6. Scaled diffusion coefficients as a function of a scaling
variable for dominant surface residence, R = 10, and the probabili-
ties indicated in the plot. The inset shows the diffusion coefficient as
a function of pS for each value of pD.

pS/(RpD)�1, the data are in a curve with slope close to
1, which is consistent with G(x) ∼ x and D ∼ pSD0 = DS

[Eq. (5)]; this is the expected coefficient for dominant surface
displacement.

Figure 7 shows D/(RpDD0) as a function of pS/(RpD) for
several values of R and several values of the probabilities pD

and pS . It confirms the validity of the scaling approach includ-
ing the dependence of the diffusion coefficient on R. The data
collapse is not so accurate as in with Fig. 6 because the finite
values of R lead to corrections related to the approximation in
Eq. (13).

C. Scaling relations with kinetic parameters

For an application of this model, the scaling variables must
be related to the kinetic parameters defined in Sec. II B. Using
Eqs. (3)–(6), (12), and (14), we can define the physically
measurable variables corresponding to y and x, respectively,
as

yM ≡ adrD

D0
, xM ≡ Ds

adrD
(20)

(numerical factors were omitted when passing from x, y to
xM, yM ).
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FIG. 7. Scaled diffusion coefficient as a function of a scaling
variable in the regime of dominant surface residence, for the model
parameters indicated in the plot.
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The condition for dominant bulk residence, in which the
diffusion coefficient is close to that in a free solution, is
yM � 1, which gives rD � D0/(ad ). This relation sets a
minimum value for the desorption rate, which depends on
the free diffusion properties and on geometric properties of
the medium. When this rate is far below this limit, i.e.,
rD 	 D0/(ad ), dominant surface residence is observed.

The dominant surface residence and bulk displacement
is observed for xM 	 1, which gives Ds 	 adrD. On the
other hand, if residence and displacement are dominant at the
surface, we have Ds � adrD.

V. ADSORPTION ISOTHERMS

The fractions of the residence time in the bulk and on
the surface given in Eq. (11) are long-time averages, i.e.,
steady state properties of the single-particle diffusion model.
Those fractions may be measured in the time ranges in which
the diffusion coefficients are calculated; see, e.g., the linear
fits in Figs. 2(a) and 2(b). Since the model obeys detailed
balance conditions, an ensemble of noninteracting tracers in
equilibrium will be distributed in bulk and surface regions
with the same fractions fB and fS .

In such equilibrium condition, the surface coverage θ is
defined as the number of adsorbed tracers per unit area of the
surface, and the density of tracers in the bulk, σ , is defined as
the number of tracers per unit volume of bulk sites. Let N be
the number of tracers in a unit cell of the lattice, i.e., inside
a cube of side 2aR. The number of tracers in the bulk is fBN
and the number of tracers on the surface is fSN , where fB and
fS are given in Eq. (11). Thus, the surface coverage and the
bulk density for large R are

θ = fSN

4π (aR)2 , σ = fBN

(2aR)3 − 4π (aR)3/3
. (21)

Using Eq. (11), we obtain

θ = 1

1 − [(2/π − 1/3)R]−1 apD
−1σ. (22)

This linear relation between θ and σ is a Henry isotherm.
For large spheres compared to the tracers (R � 1) and

using the activated form of pD in Eq. (7), we obtain

θ = a

pD
σ = aR

y
σ = a exp [(EB − ES )/(kBT )]σ. (23)

This isotherm is expressed in terms of different quantities to
help its physical interpretation.

In the last equality of Eq. (23), we have ES < EB. Thus, for
fixed σ , we expect a decrease of θ as the temperature increases
(favoring desorption).

The first equality in Eq. (23) involves two factors: the
lattice constant a, which is a microscopic length character-
izing the mean free path of the tracer, and the probability
pD, which is related to the strength of adsorption. In cases
of strong adsorption, we have pD 	 1, so that a/pD is much
larger than the microscopic length a. Physically, it means that
the fractional occupancy of surface sites is much larger than
the fractional occupancy of bulk sites. This is reasonable for
dominant surface residence.

The second equality in Eq. (23) involves a factor which
is the ratio between the characteristic length of the porous
medium, aR, and the scaling variable y. If that length is
known, the adsorption isotherm may be used to distinguish
regimes of dominant surface or bulk residence.

Some previous models of bulk and interface diffusion in
the pores of impenetrable sphere packings considered the
adsorption isotherm as part of the model definition (in contrast
with our work, which postulates the values of the kinetic
parameters pS and pD). In Ref. [5], the calculations considered
the condition Keq 	 Lc to relate the equilibrium constant Keq

of the isotherm and a characteristic length scale Lc of the
medium (see Eq. 4.33 of that paper). In the notation of the
present model, we understand that these quantities are given
as Keq ∼ a/pD and Lc ∼ aR; consequently, that work had a
focus on the case y � 1, which corresponds to dominant bulk
residence. In Ref. [9], the isotherm was written in terms of
two dimensionless quantities, the coverage θ and a relative hu-
midity x, and the calculations were performed for θ/x ≈ 4. In
the context of our model, we understand that this value of θ/x
means that the occupancy fractions in bulk and interface are of
the same order of magnitude; thus, the kinetic coefficients of
mass transfer between them are also of the same order. Since
diffusion in the bulk is faster, this is expected to be a regime
of dominant bulk displacement.

VI. CROSSOVER TO NORMAL DIFFUSION

Here we extend the scaling approach of Sec. IV A to
describe quantitatively the slowdown (or saturation) of tracer
displacement that separates the initial regime and the asymp-
totic regime, as shown in Fig. 2. We focus on the case of
dominant surface residence (y 	 1).

For large sphere radius, the number of bulk sites is much
larger than the number of surface sites. Due to the uniform
initial tracer distribution, most tracers start moving in the
bulk. At short times, the mean square displacement is not
very different from the free solution value 〈r2〉 ∼ D0tD (the
apparent anomaly in Fig. 3 is very weak). However, this initial
regime ends when the tracers collide with solid walls, whose
distance is of order Ra; thus, 〈r2〉 ∼ (Ra)2 at this point. The
characteristic time tI in which it occurs is

tI ∼ (Ra)2

D0
∼ R2τ. (24)

The crossover to the asymptotic normal diffusion is ex-
pected at a time tc in which the long-time diffusion length
is of the same order as the sphere radius R = Ra. In this
situation, the homogeneity of the medium begins to control
the diffusion. If tc � tI , the mean square displacement is
approximately constant between tI and tc.

In the regime of dominant bulk displacement (x 	 1), D is
given in Eq. (16) and the crossover time is denoted t (B)

c . The

diffusion length at that time is δlB ∼
√

yD0t (B)
c . This crossover

occurs when δlB ∼ Ra, which gives

t (B)
c ∼ R

pD
τ. (25)
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FIG. 8. Scaled mean square displacement as a function of scaled
time in conditions of dominant surface residence and (a) dominant
bulk displacement, (b) dominant surface displacement.

At longer times, the mean square displacement varies as
〈r2〉 ∼ yD0tD ∼ RpDD0tD. Thus, it is expected to follow the
dynamic scaling relation

〈r2〉 ∼ RpDD0tDF
(

tD

t (B)
c

)
, (26)

where F is a scaling function. This relation includes the
regime of diffusion slowdown (but not the initial regime
t < tI ).

Using Eqs. (2) and (3), we can write Eq. (26) in terms
of dimensionless variables; it predicts that r2/(RpDt ) is a
function of t pD/R. Figure 8(a) shows a plot of those quantities
for model parameters consistent with the conditions y 	 1
and x 	 1. The left parts of the curves correspond to short-
time displacements, which are not described by the scaling
approach. The saturation of r2 corresponds to the inclined
region, with slope close to −1, and the asymptotic normal
diffusion corresponds to the horizontal region. In these two
regions, the data collapse is very good.

Since r2 is constant between tA and t (B)
c , the number of time

decades of this regime is log10 [t (B)
c /tA] = log10 (1/y) here,

Eqs. (12), (25), and (24) were used. For instance, consider the
data in Fig. 2(b), in which log10 (1/y) ≈ 1.4; for pS � 10−3

(x � 2.5 × 10−2), r2 is approximately constant from t ∼ 103

until a time slightly above 104, i.e., more than one time decade
later.

In the case of dominant surface displacement (x � 1),
the diffusion coefficient is given by Eq. (5) and the diffu-

sion length at a crossover time t (S)
c is δlS ∼

√
DS fSt (S)

c . The
crossover occurs when δlB ∼ Ra, so that

t (S)
c ∼ R2

pS
τ. (27)

The long-time mean square displacement is 〈r2〉 ∼ pSD0tD;
this leads to the dynamic scaling relation

〈r2〉 ∼ pSD0tDG
(

tD

t (S)
c

)
, (28)

where G is another scaling function.
In terms of dimensionless quantities, Eq. (28) predicts that

r2/(pSt ) is a function of t pS/R2. These scaled variables are
plotted in Fig. 8(b) considering data with x � 1, y 	 1. We
observe a good data collapse in the inclined region, which
corresponds to the saturation of r2. There are deviations in
the right parts of those plots, which correspond to normal
diffusion.

These deviations are also consequence of the approxima-
tion in Eq. (13) and in the scaling variable of Eq. (14), which
neglected corrections of order 1/R. Also note that this is a
regime in which most hops are executed along the surface
walls and the hops between different spheres are possible only
at the narrow bridges connecting them. Those bridges have
a small number of sites [see, e.g., Fig. 1(a)], which means
that they become proportionally narrower as R increases. In
Fig. 8(b), this feature helps to explain the small decrease in
the value of r2/pSt as R increases.

Equations (27) and (24) give t (S)
c /tA ∼ 1/pS , which

means that constant r2 is observed in a number of time
decades log10 (1/pS ). For instance, in Fig. 2(a), we have
log10 (1/pS ) = 3. Indeed, for pD � 10−5 (y � 10−4, x � 10),
r2 is approximately constant from t ∼ 102 to t ∼ 105, i.e., in
three time decades.

It is important to stress that the features described here
are consequences of the choice of a uniform (nonequilibrium)
initial distribution of the tracers. If the initial distribution of
tracer positions is obtained after thermalization (i.e., after
a time longer than t (B)

c or t (S)
c ), then we expect that the

subsequent mean square displacement increases linearly in
time since short times, with the same diffusion coefficient
obtained in Sec. IV. This is illustrated in Fig. 9, in which the
time counter was restarted after a thermalization time 106 and
the displacements were measured from the tracers positions at
the restart. For the same model parameters, Figure 2(a) shows
the initial slow increase of r2 and the subsequent slowdown
up to times ∼105 in the case of initial uniform distribution
of tracer positions. This shows the importance of accounting
for effects of initial conditions in the analysis of real diffusion
problems.

If the crossover time t (B)
c [Eq. (25)] is experimentally

measured, it can be used to estimate the desorption rate; on
the other hand, if the adsorption isotherm is known [Eq. (23)],
then the relaxation time to attain equilibration, t (B)

c , can be
predicted. Along the same lines, if the crossover time t (S)

c
[Eq. (27)] is experimentally measured, it can be used to
estimate the ratio of diffusion coefficients at the surface and in
the bulk. A similar effect of initial conditions was observed in
the model of Ref. [27], which suggested the measurement of
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FIG. 9. Mean square displacement as a function of time for
the parameter set shown in the plot, with times and displacements
measured from the position of each tracer after a thermalization
time 106.

a crossover time in the fluctuation of the diffusion coefficient
for estimating the surface diffusivity.

A slowdown of the mean square displacement was also
observed in diffusion of colloidal suspensions of hard spheres
with excluded-volume interactions in Ref. [28]. The effect
was explained by the predisposition of encounters of the
spheres after they moved a distance close to their average
separation and was modeled by a biased random walk. The
slowdown is not so drastic as observed here, but an interesting
aspect is that it is also related to the first collision of the tracer
with some obstacle (in that case, another tracer).

VII. RELATION WITH OTHER WORKS

Some previous works showed important consequences of
the interplay of adsorption and surface diffusion.

In a recent work on Knudsen diffusion in cylindrical
pores, the beneficial effect of surface diffusion was shown,
particularly for the molecules to cross ink-bottle pores [29].
The calculated effective diffusion coefficients was approx-
imately constant for slow surface diffusion, but varied by
several orders with increasing surface diffusion coefficient.
This parallels the behavior observed in Figs. 6 and 7, which
suggests that the model of Ref. [29] also has scaling regimes
of dominant displacement in the bulk or on the surface.

The beneficial effect of surface diffusion was also antic-
ipated in a study of random walks in fractal media [30].
When the hops along the solid walls were more probable than
the hops from the walls to the inner parts of the pores, the
exponent α [Eq. (9)] increased in comparison to the case with
uniform probabilities. This occurred because the enhanced
adsorption allowed the tracers to contour the large obstacles
in shorter times.

In the case of dominant surface residence with dominant
bulk displacement, we showed that D is proportional to the
ratio R between solid sphere radius and tracer mean free
path. This occurs because the fraction of surface sites, where
motion is delayed, is inversely proportional to R (also note that

dominant surface residence is possible only for RpD 	 1).
This size effect is a consequence of strong adsorption. On the
other hand, in media where adsorption can be neglected, size
effects are consequence of steric hindrance, i.e., the particles
with sizes close to the sizes of the pores have smaller D
[31–33]. The limiting case of hindrance effect is the subdif-
fusion in fractal media, which is related to the self-similarity
of the obstacle distributions [1]. Thus, for the interpretation
of data on diffusion in porous media, it is important to
distinguish these two possible origins of size effects, namely
strong adsorption or steric hindrance.

There are also works which account for surface diffusion
but which are apparently in regimes of dominant bulk resi-
dence or displacement. In Ref. [9], gas diffusion was modeled
in porous media formed with simple cubic arrays of solid
spheres, and the effective diffusion coefficient was shown to
increase with the surface diffusivity. As discussed in Sec. V,
the model parameters considered in that work give dimen-
sionless values of surface coverage and of gas density with
the same order of magnitude, which suggests dominant bulk
displacement. The diffusion coefficients in a similar porous
medium were calculated in Ref. [5] by accounting for surface
diffusion, which considered a regime equivalent to dominant
bulk residence.

Here we only observe small deviations of the mean-square
displacement from the linear behavior [Eq. (15)] at short
times (apparent anomaly), but it is interesting to note that
crossovers from well defined short-time anomalous scaling
[Eq. (9)] to normal diffusion were already observed in other
systems where adsorption plays a role. Some recent examples
are one-dimensional diffusion with reversible adsorption at
one site [34], diffusion between parallel plates with different
adsorption properties [35], and infiltration of adsorbed tracers
in a porous medium with depth decreasing available area [11].

A recent work on polystyrene particle diffusion in random
packings of glass beads showed that normal and anomalous
diffusion can be obtained with different solutions [8]. The
porosity of those packings varied between 0.34 and 0.36, the
particles had diameter 0.400 μm, and the beads had diameters
between 5.4 and 30 μm. The diffusion in a glycerol/water
mixture was normal, but anomalous diffusion with exponent
α = 0.6 was observed in a solution of semidilute hydrolyzed
polyacrylamide (HPAM). In the anomalous case, the maximal
measured mean square displacements were approximately
one tenth of the square bead radius. Particle trajectories
were monitored and, in HPAM solution, some of them had
curvatures that indicated long times adsorbed in the bead
surfaces.

Figure 4(c) shows a trajectory of a tracer particle whose
rounded parts are very similar to those observed in Ref. [8].
This suggests a regime of dominant surface residence and
displacement in that experiment. Our simulations also show a
slow increase of the mean-square displacement at short times,
but this is a consequence of the uniform initial distribution
of tracers in the pores (most of them starting at the bulk),
while the distribution in the experiments is probably closer
to equilibrium. Moreover, the slopes α obtained here (Fig. 3)
are much larger than the exponents obtained in the experi-
ments, and our random walk model is Gaussian, while the
experimental distributions of particle displacements were not
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Gaussian. These observations preclude a quantitative descrip-
tion of those experiments with the present model.

VIII. CONCLUSION

We studied a model of random walks in the interstices
of a simple cubic packing of solid spheres which represents
diffusion of a tracer interacting with the internal surface of
that medium. The diffusion in the solid walls and in the
bulk fluid have different coefficients and hops from those
walls to the bulk are less probable than hops in the opposite
sense, which describes adsorption effects. Although the study
was performed with a relatively simple pore-solid geometry,
several experimental and theoretical works with this geometry
justify that choice.

A scaling approach showed three different regimes for
diffusion in this medium: dominant bulk residence, in which
the tracer moves in the bulk most of the time and the dif-
fusion coefficient is of the same order of the coefficient in
free solution; dominant surface residence with dominant bulk
displacement, in which the tracer is adsorbed on the sphere
walls most of the time, but with a very small mobility in that
region, so that the average displacement is dominated by hops
in the bulk; and dominant surface residence with dominant
surface displacement, in which the tracer is adsorbed on the
sphere walls most of the time and executes most hops along
those walls. These regimes are quantitatively characterized
in terms of model probabilities and, for applications, they
are related to the geometric properties of the medium, the
diffusion coefficients, and the desorption rate. This scaling
approach is confirmed by numerical simulations. The average

residence times of tracers in the bulk and on the surface lead
to a simple adsorption isotherm relating surface and bulk
densities with kinetic parameters and the medium geometry.

In cases of strong adsorption and/or low mobility on the
sphere surfaces, simulations with initially uniform tracer dis-
tributions suggest an apparent subdiffusion at very short times.
The regime of dominant surface residence and dominant sur-
face displacement also shows rounded trajectories of adsorbed
particles. These features are qualitatively similar to those
observed in the colloidal particle adsorption in the HPAM
solution described in Ref. [8]. This shows that the scaling
regimes analyzed here may be of relevance to experiments,
although the quantitative description may require modeling
more complex interactions.

We believe that the scaling relations obtained here may also
be extended to diffusion in porous medium formed by pack-
ings of other solids with smooth shapes and with aspect ratios
close to 1 (i.e.. characterized by a single length parameter).
In those cases, typical values of the porosity are between 0.4
and 0.7 [36], which is of the same order as the porosity of
our samples. We also believe that the present work motivates
the development of similar approaches for gas transport when
surface diffusion plays a role [29,37].
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