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Persistent random motion with maximally correlated fluctuations
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How often should a random walker change its direction of motion in order to maximize correlation in
velocity fluctuations over a finite time interval? We address this optimal diffusion problem in the context of the
one-dimensional persistent random walk, where we evaluate the correlation and mutual information in velocity
trajectories as a function of the persistence level and the observation time. We find the optimal persistence
level corresponds to the average number of direction reversals asymptotically scaling as the square root of
the observation time. This square-root scaling law makes the relative growth between the average number of
direction reversals and the persistence length invariant with respect to changes in the overall time duration of the
random walk.
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I. INTRODUCTION

The persistent random walk is a basic model for correlated
diffusion with several applications [1], including the motion of
tracer particles in a turbulent flow [2], microscopic dynamics
of active matter [3,4], and scattering of waves [5–7]. In the
one-dimensional persistent random walk [8,9], the walker’s
step at any discrete time n will be preferentially taken in
the same direction as the previous step, with probability α

(Fig. 1). We assume there is no underlying directional bias,
which is to say space is homogeneous and isotropic. The
persistence level α can be thought of as an inertial control
parameter of the diffusion model that characterizes the ten-
dency for a particle (walker) to remain in its current state
of motion. If α = 1/2, then the walker tosses a fair coin to
determine the direction of each step and a simple random walk
is recovered. If 0 < α < 1/2, then the walker tends to reverse
its direction of motion when given an opportunity, leading to
an antipersistent random walk; whereas if 1/2 < α < 1, then
the direction of the walker changes less frequently in time and
the random walk is persistent. The latter is the case discussed
herein.

A fundamental result in persistent random-walk theory
[2,8], due to a variant of the central limit theorem for corre-
lated random variables, is that ordinary diffusion is recovered
in the long-time limit for any persistence level 1/2 < α < 1.
With that long-time limit in mind the particular value of α

has little importance. The specific value within that range has
no effect on the qualitative nature of walker trajectories; it
only sets the timescale at which the transition from ballistic to
diffusive motion occurs. The correlation time then determines
the magnitude of the diffusion coefficient through the Taylor-
Green-Kubo formula [10] (also known as just the Green-
Kubo formula in general transport processes). However, if the
diffusion process is limited to a finite time, as determined by
the total number of steps N , then the persistence level takes
on new importance. The essential nature of the correlated
random-walk trajectory can be changed from being strongly

diffusive to being strongly ballistic by varying α from one half
to one. We emphasize that this statement holds for any finite
observation time N , even in the asymptotic limit N → ∞.

Traditionally the persistence level is viewed as a fixed
property of the diffusion phenomenon of interest, whereas
the observation time is a quantity varied by the experimenter.
But in some cases the opposite notion may be more ap-
propriate, where there may be a natural time interval over
which to observe the process, and the desideratum is to vary,
or engineer, the parameters of the system to achieve certain
transport behavior during that time interval. This setting falls
within the framework of optimal diffusion in which natural
choices for the observation time interval may be dictated by
the characteristic properties of the system, for example, the
system’s linear size divided by the average particle velocity
[11] or the average lifetime of a walker [12].

A variety of objectives arise when framing optimal dif-
fusion problems. For example, there is the optimal search
problem where a random walker searches a physical space for
a specified target. An optimal solution is found by minimizing
the mean first passage time to reach the target [13,14]. Another
example objective is exploration, which can be optimized
by maximizing the mean area covered or convex hull of the
random walk [15,16]. A third example is fast relaxation to
equilibrium, where the optimal solution is that which mini-
mizes the relaxation time [17]. Additionally, some variations
of an optimal diffusion problem might involve time-dependent
control parameters, like engineered swift equilibration or
shortcuts to adiabaticity [18,19].

Outside of these well-founded optimal diffusion problems
there are many conceivable objective functions that might be
studied without corresponding a priori to a clear physical
interpretation in terms of the evolution of trajectories or prob-
ability density functions. For instance, there is the objective of
maximizing the velocity autocorrelation function

C(α, N ) = [vn − v(N )][vn+1 − v(N )], (1)
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FIG. 1. Illustrations of the persistent random walk. (a) Exam-
ple velocity trajectory. Green circles indicate the random walker’s
velocity at each time step. Red squares mark the occurrence of
direction-changing events. (b) Markov chain representation of the
walker’s velocity.

or the mutual information function

I (vn, vn+1; N ) =
∑
vn

∑
vn+1

p(vn, vn+1) ln

[
p(vn, vn+1)

p(vn)p(vn+1)

]
, (2)

which is the kind of optimized diffusion problem we address
herein. It is important to note that Eqs. (1) and (2) are
defined in this context to be functionals of the random-walk
velocity trajectory [v0; v1, . . . , vN ] generated with a given
persistence level α, with the overline in Eq. (1) denoting a
time average and the probabilities in Eq. (2) evaluated em-
pirically from time averages along single trajectories. These
objective functions measure, to some extent, the amount of
structure or complexity existing within a process and at least
qualitatively indicate that the optimal trajectories containing
highly correlated fluctuations should strike a balance between
disordered direction-changing events and ordered ballistic
motion. Equations (1) and (2) can be approximately under-
stood by considering a generic objective function F in the
form

F (α, N ) = F1(α) − FN (α), (3)

where F1 is a measure of local order at the level of one
time step, and FN is a measure of long-range order at the
level of N time steps, the longest timescale accessed by the
trajectory. F1 can be interpreted as a reward for correlated
motion, and FN a penalty for rarely changing direction (or,
conversely, a reward for random motion). The objective then
is to maximize correlation while retaining fluctuations in the
velocity trajectory. We seek to quantify this order-disorder
balance and build intuition about the physical consequences of
maximizing the correlation and mutual information objective
functions, Eqs. (1) and (2). We point out that it is necessary to
consider a finite observation time interval when formulating
the optimization problem. Maximizing the asymptotic mutual

information (N = ∞) entails setting the persistence level to
α = 1, which is a trivial solution without fluctuations. Similar
arguments apply to the correlation function, Eq. (1), which
measures correlation in velocity fluctuations, rather than ve-
locity itself, by way of subtracting the time-averaged velocity.
These considerations ensure the existence of competing terms
in the objective function at short and long timescales, F1 and
FN in Eq. (3).

Maximizing information-theoretic measures has been iden-
tified as an advantageous approach for generating self-
organized behavior in robotic systems [20,21]. In particular,
it was found by Ay et al. [22] that a protocol of maximizing
predictive information in the wheel velocity trajectories of a
simple two-wheeled robot results in the robot exploring space
efficiently. The optimal solution that maximized predictive
information was for the control parameter to be tuned to a
critical region near a pitchfork bifurcation. The two-wheeled
robot exhibits a run-and-tumble motion slightly more compli-
cated than a persistent random walk.

We study the one-dimensional persistent random walk
to determine the optimal persistence level α̂(N ) where the
walker’s motion has maximally correlated fluctuations. As a
Markov process with only two states and one control parame-
ter (Fig. 1), it is perhaps the simplest setting in which to study
optimal diffusion trajectories identified by an information
maximization criterion. The central problem can be rephrased
as the question: How often should a random walker switch
directions in order to maximize correlation in its velocity tra-
jectory? We find that the optimal strategy corresponds to the
average number of direction-changing events in a trajectory
scaling as the square root of the observation time.

In Sec. II we discuss the persistence time and average
number of events in persistent random-walk trajectories. This
is followed in Sec. III by a discussion of a scaling ansatz for
the optimal diffusion problem to be expected in the limit of
a long observation time interval. Following these preliminary
sections, we carry out an analysis of the correlation function,
Eq. (1), which behaves in a manner similar to mutual informa-
tion but is easier to analyze. In Sec. V the mutual information,
Eq. (2), is calculated analytically and its scaling behavior is
compared to the correlation function. The paper concludes
in Sec. VI with a discussion of open problems related to
maximally correlated diffusion, including universality of op-
timal strategies and connections to existing results for optimal
search and exploration by random walkers. We also mention
a potential application of the maximum information problem
for Markov chains to the thermodynamics of information
engines.

II. BASIC PROPERTIES OF PERSISTENT
RANDOM-WALK TRAJECTORIES

The analysis presented herein is based on realizations of
a one-dimensional persistent random walk in discrete time.
The walker’s speed is set to |v| = 1 for simplicity and velocity
trajectories are generated over N time steps (e.g., see Fig. 1).
For each trajectory [v0; v1, . . . , vN ] the initial velocity v0 is
randomly selected from +1 and −1 with equal probabil-
ity, and subsequent velocity values are randomly generated
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FIG. 2. Persistent random-walk trajectories. The number of
events (changes of direction) in a trajectory decreases and the per-
sistence time increases as α approaches 1.

according to the update rule

vn+1 =
{
vn Pr = α

−vn Pr = 1 − α
.

Persistent random-walk trajectories consist of laminar regions
of ballistic motion separated by direction-changing events
(Fig. 2). Hereafter an event refers to a change of direction
by the random walker. Trajectories can be characterized on
average by the number of events and the duration of the
persistent regions between events.

Formally, the velocity trajectory is a realization of a Pois-
son or Bernoulli process where the rate of events ε is related
to the persistence level by

ε = 1 − α. (4)

More specifically the process is a symmetric two-state Markov
chain, depicted in Fig. 1. The average number of events 〈Ne〉
in a trajectory is given by the product of the rate of events and
the time duration,

〈Ne〉 = εN = (1 − α)N. (5)

The persistence time τα of the random walk is the average
time between consecutive events. The probability distribution
function ψ (n) for an event to occur exactly n time steps after
the previous event occurred is

ψ (n) = αn−1(1 − α). (6)

From this waiting-time distribution, the average time between
events is

τα =
∞∑

n=1

nψ (n) = 1

1 − α
. (7)

The persistence time, as determined from the persistence
level α, is an inherent timescale of the stochastic process.
When analyzing observables of the process the observation
time should be compared with the persistence time. Ballistic
motion is observed on relatively short timescales N � τα .
Diffusive motion is observed on relatively long timescales
N � τα , see Fig. 2.

The persistence length lp of the random walk is the average
distance traveled by the walker between consecutive events.
Since we assumed the walker moves with speed |v| = 1, the
persistence length is equal to the persistence time defined in
Eq. (7),

lp(α) = τα = 1

1 − α
. (8)

The persistence length is an inherent length scale of the
stochastic process.

III. SCALING ANSATZ

Before going ahead, it is useful to discuss the expected
behavior of solutions to finite-time optimization problems in
the persistent random walk and introduce a scaling ansatz. We
are looking for the optimal persistence level α̂(N ) that max-
imizes a chosen objective function, a functional of random-
walk trajectories of duration N . We can expect the limiting
behavior:

lim
N→∞

α̂(N ) = 1; (9)

otherwise, the optimal trajectories will become too diffusive
as the observation time is increased. For large N , a reasonable
scaling assumption is of the inverse power law (IPL) form:

α̂(N ) ∼ 1 − 1

Nν
, (10)

where the IPL index is positive (ν > 0) to ensure Eq. (9) is
satisfied.

This scaling assumption can be alternatively expressed in
terms of the optimal rate of events ε̂(N ), which vanishes in
the limit of long observation times:

lim
N→∞

ε̂(N ) = 0, (11)

and scales as the IPL:

ε̂(N ) ∼ N−ν . (12)

For a finite observation time N , there exists a persistence
level αCLT(N ) at which central limit theorem approximations
of the random-walk process begin to break down. See Fig. 3
for example. This breakdown, which is indicative of the
transition between diffusive motion (〈Ne〉 � 1) and ballistic
motion (〈Ne〉 � 1), occurs when the number of events in
a trajectory is on the order of one, 〈Ne〉 ∼ 1. Equation (5)
implies the following relation between the number of steps
of the walker and the persistence parameter:

N ∼ 1

1 − α
= τα, (13)

where we also made use of the definition of the persistence
time in Eq. (7). Therefore, for observation times on the order
of the persistence time τα the central limit theorem is not yet
applicable. Alternatively, we can rewrite Eq. (13) in terms
of the persistence level, explicitly denoting the central limit
theorem condition on α:

αCLT(N ) ∼ 1 − 1

N
. (14)
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FIG. 3. Empirical probability distributions for the final position
xN reached by the random walker after N = 100 steps for various per-
sistence levels (generated from an ensemble of 106 trajectories). The
central limit theorem treatment of the random-walk process breaks
down and ballistic peaks become predominant as α approaches 1.

In other words, trajectories look diffusive over the finite
observation time when α � αCLT(N ).

Equation (14) provides the correct scaling behavior for the
transition between diffusive and ballistic motion, but it does
not provide an accurate ad hoc estimate of the persistence
level below which the random-walk process is sufficiently
diffusive for central limit theorem arguments to be safely
adopted. The problem is that the transition takes place over a
range of α, and we would like to establish a more conservative
estimate for αCLT that lies near the diffusive end of that range.
To do this we write:

αCLT(N ) ≈ 1 − κ

N
, (15)

where κ is a constant related to the average number of events
needed for the central limit theorem approximation to reach
a certain degree of accuracy. Equation (15) is equivalent to
the statement that central limit theorem arguments hold when
〈Ne〉 � κ . We adopt κ = 10, which satisfies the diffusive limit
〈Ne〉 � 1 by an order of magnitude. The implications of this
choice will become clearer following calculations in the next
section. For now we point out that ballistic trajectories are
governed by the probability for the random walker not to have

changed direction up to time N , P = (1 − ε)N . In the limit of
large N and small ε this probability becomes P = exp(−εN ).
Therefore, the condition of setting 〈Ne〉 � κ is analogous to
the statement that the normal approximation of the probability
distribution for the time-averaged velocity v(N ), or for the
final position x(N ) as shown in Fig. 3, ceases to be accu-
rate when the two ballistic peaks in the distribution exceed
a threshold of P = 1

2 exp(−κ ); for κ = 10 the threshold is
P ≈ 2.27×10−5 (with the factor of 1/2 coming from the
existence of two equiprobable initial directions, v0 = ±1).

We make the ansatz that optimal solutions, having maxi-
mum correlation and mutual information, follow the scaling
function Eq. (10) with an exponent ν < 1. When this is the
case, the relation

1
2 < α̂(N ) < αCLT(N ) < 1 (16)

holds if N is sufficiently large. For short observation times
Eq. (16) may be violated because of the different constants
showing up in the exact expressions for the optimal persis-
tence level in Eq. (10) and the value of κ in Eq. (15). When
sending N to infinity with ν < 1, a separation of scales occurs
between the central limit theorem boundary αCLT(N ) and the
optimal solution α̂(N ), because the latter quantity tends to one
more slowly. The optimal solution lies in the diffusive regime
and central limit theorem arguments apply when calculating
the optimal persistence level. These conditions lead to univer-
sality and perhaps also to wider applicability of the solution
beyond physical diffusion processes. This ansatz is founded
on the fact that we are looking for maximally correlated
fluctuations, and the process must be on the diffusive side
rather than on the ballistic side in order for large fluctuations
to exist.

IV. AUTOCOVARIANCE

First we study the autocovariance function:

C(α, N ) ≡ vnvn+1 − v2(N ) (17)

as a measure of correlated fluctuations in a single velocity
trajectory, such that the overline denotes a time average over
the observation time window. Operationally, the two-point
correlation is a sum over the steps in the random walk:

vnvn+1 = 1

N − 1

N−1∑
n=1

vnvn+1, (18)

and the time-averaged velocity is also a sum over steps:

v(N ) = 1

N

N∑
n=1

vn. (19)

We stress that the time-averaged velocity depends on the
observation time. Since there is no directional bias and the
magnitude of each step is of unit size, v(N ) vanishes in
the limit N → ∞ as events accumulate and erase the memory
of the initial condition v0. However, we are interested in the
finite-time fluctuations in observables of the random walk.
Moreover, we will study the behavior of the autocovariance
function along with its maximum value as a function of N .
The two-point correlation function vnvn+1 is a local quantity
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and therefore does not depend as strongly on N , in contrast to
the transient relaxation of v2. We focus analysis on the time
lag of one step because of the Markovian nature of the process.

Equation (17) is a sample autocovariance function for
adjacent velocity values. As an objective function, Eq. (17)
rewards motion continued along the current direction through
the first term on the right-hand side, but through the second
term it penalizes motion continued in the same direction
during a majority of the entire time. In this way the function
favors trajectories with large, correlated fluctuations. Analysis
of the autocovariance C(α, N ) serves as a simple route to
an optimal solution α̂(N ) that turns out to be similar to
mutual information. A similar autocorrelation approach has
been adopted for time-series analysis of brain activity [23,24],
as well as for phase transition dynamics [25]. Near phase
transitions, correlations in time and space are slowly decay-
ing IPL functions related by scaling critical exponents [26].
Consequently, maximum correlation or information protocols
often identify optimal regions in parameter space near critical
points, when they exist [27–30].

For any finite observation time the covariance will be a
stochastic quantity, and so in addition to the time average
within a given trajectory we further consider the average over
an ensemble of trajectories:

〈C〉 = 〈vnvn+1〉 − 〈v2(N )〉. (20)

Equation (20) is the objective function for the optimal diffu-
sion problem addressed in this section.

The first term on the right-hand side of Eq. (20), after
explicitly carrying out the two types of averages, is

〈vnvn+1〉 = 1

N − 1

N−1∑
n=1

〈vnvn+1〉 = 2α − 1, (21)

since the ensemble average makes the sum over time redun-
dant and the probability for consecutive velocity values to be
equal is, by definition, the persistence level α. The second
term on the right-hand side of Eq. (20) is more difficult to
evaluate because of the N dependence; the result is given
in Eq. (29). While the steps in the derivation of Eq. (29)
can be found in tutorial discussions of the mean-squared
displacement for the persistent random walk, we repeat them
here to make the discussion self-contained. The square of the
time-averaged velocity is given by the double sum:

v2(N ) = 1

N2

N∑
i=1

N∑
j=1

viv j . (22)

Thinking of the double sum in terms of a matrix whose
elements ai j are products of instantaneous velocity values
viv j , it becomes evident that the matrix is symmetric and
each diagonal element is 1. This realization leads to the
simplification:

v2(N ) = 1

N2

⎡
⎣N + 2

N∑
i=1

N∑
j=i+1

viv j

⎤
⎦, (23)

which readily simplifies on taking an ensemble average. On
bringing the ensemble average inside the summation, the

matrix of velocity pairs is converted into a matrix of cor-
relation coefficients ck = 〈viv j〉 with k = j − i. In this way
straightforward combinatorics yields:

〈v2(N )〉 = 1

N2

[
N + 2

N−1∑
k=1

(N − k)ck

]
. (24)

Adopting an event picture, it can be shown that the corre-
lation coefficients are given by the sum:

ck =
k∑

l=0

(−1)lP(l, k), (25)

where P(l, k) is the probability for l events to occur in k time
steps, i.e., the binomial probability:

P(l, k) =
(

k

l

)
(1 − α)lαk−l . (26)

The sums over even and odd values of l in Eq. (25) are sepa-
rately evaluated and then recombined to obtain the correlation
coefficient:

ck = (2α − 1)k ≡ rk, (27)

where to simplify notation we have introduced the new vari-
able:

r = 2α − 1. (28)

Note that r can be thought of as a velocity correlation level:
r = 0 corresponds to zero correlation reducing the analysis
to the simple random walk and r = 1 corresponds to ballistic
motion. Substituting the correlation coefficient into Eq. (24)
and evaluating the sum leads finally to the analytic expression:

〈v2(N )〉 = 1

N2

{
N + 2

[
(N − 1)r − Nr2 + rN+1

(1 − r)2

]}
. (29)

Most random-walk processes imply a fairly large obser-
vation time, N � 1. To account for this we manipulate the
expression in Eq. (29) for the second moment by collecting
terms in increasing powers of 1/N :

〈v2(N )〉 = 1

N

1 + r

1 − r
− 2r

N2(1 − r)2
(1 − rN ). (30)

Since we are interested in the regime of large but finite N ,
we drop the second term on the right-hand side of this last
expression. This must be done with some caution, however,
since we have to allow for the possibility that the region of
interest α ≈ α̂(N ) is very close to 1, which indeed happens
when N → ∞. It is useful to recall from Eq. (5) that the
average number of events in a trajectory of length N is
given by (1 − α)N . Accordingly, the second moment can be
expressed as an expansion in powers of 〈Ne〉−1,

〈v2(N )〉 = α

〈Ne〉 − 2α − 1

2〈Ne〉2
[1 − (2α − 1)N+1]. (31)

The large-N limit is more appropriately viewed as a limit of a
large average number of events, 〈Ne〉 � 1. When 〈Ne〉 is large
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this expression is approximately

〈v2(N )〉 ≈ α

〈Ne〉 = α

1 − α

1

N
, (32)

which is compatible with the central limit theorem.
When treating the persistence parameter α and the ob-

servation time N as independently adjustable quantities, for
example, fixing N large and then varying α over the entire
interval [1/2, 1], it is important to keep in mind that the
approximation yielding Eq. (32) will fail in the limit α → 1
if N is finite. The condition for failure of the approximation
can be stated as 〈Ne〉 < κ , or α exceeding the central limit
theorem value of the persistence parameter given by Eq. (15),
which was discussed in Sec. III. More precisely, Eq. (31) can
be written as

〈v2(N )〉 = α

〈Ne〉 − �2, (33)

where the deviation �2 from the central limit theorem expres-
sion, Eq. (32), is bounded by the average number of events:

�2 ≡ 2α − 1

2〈Ne〉2
[1 − (2α − 1)N+1] <

1

〈Ne〉2
. (34)

Therefore the estimate for αCLT in Eq. (15) based on the
average number of events 〈Ne〉 � κ is equivalent to setting a
threshold on the accuracy of the central limit theorem approx-
imation of the time-averaged velocity squared: �2 < 1/κ2

when α < αCLT. Looking ahead, we rely on the scaling ansatz
from Sec. III and assume that the central limit theorem
approximation is useful for the purpose of calculating the
optimal value of the persistence parameter. Comparing the
end result we find for α̂(N ) with the central limit theorem
boundary verifies the inequality in Eq. (16). This suggests
that the central limit theorem approximation is valid in the
vicinity of the maximum of the covariance function, though it
deteriorates for persistence values in αCLT < α < 1.

To better see that Eq. (32) is an expression of the central
limit theorem recall that the displacement of the walker after
N steps can be recovered from the mean velocity:

x(N ) =
N∑

i=1

vi = Nv(N ). (35)

Squaring this quantity and taking an ensemble average yields,
after inserting Eq. (32), the familiar asymptotic expression

〈x2(N )〉 ≈ α

1 − α
N (36)

for the second moment of the displacement growing linearly
in time. If we write:

〈x2(n)〉 = 2Dαn, (37)

for a one-dimensional diffusion process, then evidently the
diffusion coefficient Dα for the persistent random walk is
given in terms of the persistence level:

Dα = 1

2

α

1 − α
. (38)

Equation (38) clearly indicates that the diffusion coefficient
increases rapidly as α approaches one. This divergence occurs

because the persistence time or length, i.e., the effective
step size of the rescaled random walk, becomes infinite in
this limit. If we relate a large diffusion coefficient to more
efficient exploration of space, enough time must elapse (much
greater than the persistence time) in order for a region of
space to be truly explored, rather than just drifted through
without any changes in direction on the part of the walker.
This provides a better picture of how the persistence level
α and the observation time N need to be balanced against
one another for optimal diffusion. Note that with Eq. (35),
in addition to Eq. (21), we can alternatively write the velocity
autocovariance in terms of the displacement:

〈C〉 = 〈vnvn+1〉 − 1

N2
〈x2(N )〉. (39)

Eq. (39), with only ensemble averages, emphasizes that the
analysis of the persistent random walk based on time averages
of velocity, namely Eq. (20), can be interchanged with an
analysis based on related ensemble-averaged quantities or
vice versa.

Returning to the main calculation, from Eqs. (21) and (29)
we find the average of the autocovariance function, Eq. (20),
for a persistent random-walk trajectory:

〈C〉 = r − 1

N2

{
N + 2

[
(N − 1)r − Nr2 + rN+1

(1 − r)2

]}
. (40)

Assuming that 〈Ne〉 � 1 and adopting the approximate ex-
pression for the time-averaged velocity squared, Eq. (32),
results in the asymptotic velocity autocovariance:

〈C(α, N )〉 ≈ 2α − 1 −
(

α

1 − α

)
1

N
. (41)

The optimal persistence level α̂ is obtained from the extremum
of the average velocity autocovariance obtained by taking the
derivative of Eq. (41) with respect to α:

∂

∂α
〈C(α, N )〉 = 2 − 1

(1 − α)2

1

N
. (42)

Setting this derivative to zero yields the optimal value of the
persistence level:

α̂(N ) ≈ 1 −
(

1

2N

)1/2

. (43)

Equation (43) is the key result of this section. It provides our
first estimate of the optimal persistence level where fluctua-
tions are maximally correlated. Looking back to the scaling
assumption in Eq. (10) it is evident that the scaling exponent
is ν = 1/2. The scaling solution of α̂(N ) with the exponent
ν = 1/2 is referred to as the optimal strategy for generating
persistent random motion with maximally correlated fluctua-
tions over a finite time window N .

Figure 4 shows the behavior of the autocovariance function
and its maximum value. When N is relatively small, the
central limit theorem approximation is not yet accurate around
the maximum value of 〈C〉. In fact, for N = 100 we have
αCLT < α̂ in violation of the inequality in Eq. (16). However,
as N is increased αCLT becomes greater than α̂ and the
central limit theorem approximation becomes very good in
the vicinity of the optimal persistence level. This validates
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FIG. 4. Autocovariance function for increasing values of N . The
approximation of Eq. (41) (solid green line) is compared to numerical
simulation of the persistent random walk (purple markers). The
optimal persistence level in Eq. (43) (dashed red vertical line) is
included along with αCLT from Eq. (15) (short dashed cyan line).
The central limit theorem approximation becomes accurate around
the optimal persistence level α̂ for observation times N > 1000.

the scaling ansatz, as well as the optimal strategy found for
large N in Eq. (43). We note that the central limit theorem
approximation, although adequate for our analysis here of
large N , can be improved on by using large deviation theory
[31–33] or exact solutions known for the persistent random
walk and telegrapher’s equation [8,34].

More insight can be gained by considering the average
number of events in a trajectory when α = α̂(N ). Substituting
the optimal persistence value into Eq. (5) leads to:

〈Ne(α̂)〉 ≈
(

N

2

) 1
2

, (44)

which is a restatement, or corollary, of the key result Eq. (43).
It is evident that for trajectories to have maximally correlated
fluctuations the average number of events should be propor-

tional to the square root of the number of time steps in the
random walk.

At the optimal persistence level the persistence length
defined in Eq. (8) is

lp(α̂) ≈ (2N )
1
2 . (45)

Note that this entails the relation

N = lp〈Ne〉 (46)

for consistency.
The scaling exponent of ν = 1/2 appearing in Eqs. (44)

and (45) is important, perhaps more so than finding the exact
values of 〈Ne(α̂)〉 and lp(α̂) because the objective function
C(α, N ) is not unique, and slight changes to the objective
function will inevitably lead to a different optimal solution.
For example, if the autocovariance time lag is k steps such
that

〈Ck〉 = 〈vnvn+k〉 − 〈v2(N )〉, (47)

then based on Eq. (27) the objective function is approximately

〈Ck〉 ≈ (2α − 1)k − α

1 − α

1

N
, (48)

and in the dual limit of large N and α → 1 the optimal
solution is

α̂(N ) ≈ 1 −
(

1

2kN

) 1
2

. (49)

The scaling behavior is unchanged, but the constant prefactor
depends on the time lag k. To further see that ν = 1/2 is
to some extent a universal exponent that characterizes an
optimal strategy for a class of objective functions, in the next
section we perform calculations where mutual information is
the objective function. The exponent ν = 1/2 in one sense
marks the boundary between overly deterministic trajectories
and overly random trajectories. If the rate of events were to go
to zero relatively quickly as the observation time increases to
infinity, that is, if ν > 1/2 in Eq. (12), then the random-walk
trajectories would become more ordered or ballistic than what
is optimal. If the rate of events were to decay relatively slowly
with N , such that ν < 1/2 in Eq. (12), then the trajectories
would become more diffusive or disordered than what is
optimal.

To place the optimal solution in a proper context consider
the following basic scaling arguments. Assume that the aver-
age number of events scales with the observation time as

〈Ne(α̂)〉 ∼ Na, (50)

and the persistence length scales as

lp(α̂) ∼ Nb, (51)

then according to Eq. (46) the scaling exponents must satisfy
the condition:

a + b = 1. (52)

From the scaling assumption for the persistence level,
Eq. (10), a = 1 − ν and b = ν. Based on Eqs. (50) and (51),
it is useful to introduce an additional scaling equation for the
relative growth between the average number of events and the
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a

b

FIG. 5. Comparing exponents in the scaling laws Eqs. (50) and
(51) for different kinds of motion. The optimal strategy for maxi-
mally correlated persistent random motion corresponds to the scaling
exponents (a = 1/2, b = 1/2), which lies half way in between the
two extremes of ballistic motion and uncorrelated random motion on
the line a + b = 1.

persistence length:

〈Ne(α̂)〉
lp(α̂)

∼ Na−b = N1−2ν . (53)

The optimal solution corresponds to a = b = 1/2. Physi-
cally this means that the average number of events and the
persistence length both diverge as the observation time is
increased, but their relative growth is left invariant, a − b = 0
in Eq. (53). This central result should be compared with the
extreme cases of the simple random walk and ballistic motion.
For the simple random walk (α = 1/2), the average number of
events scales linearly with the observation time:

〈Ne〉 = N

2
, (54)

and the persistence length is constant:

lp = 2. (55)

Therefore, scaling analysis for the simple random walk yields
a = 1 and b = 0. For ballistic motion (α = 1), the average
number of events effectively vanishes:

〈Ne〉 < 1, (56)

while the persistence length exceeds the observation time:

lp > N. (57)

Therefore, ballistic motion corresponds to the scaling expo-
nents a ≈ 0 and b ≈ 1. Evidently the scaling exponents for the
optimal solution lie exactly in the middle of these two extreme
points on the line a + b = 1. Figure 5 illustrates these scaling
arguments.

Interestingly, the optimal strategy consisting of Eqs. (44)
and (45) appears to be different from that derived in the
optimal search problem, where a persistent random walker
is trying to minimize the first passage time to a target [14].
Therein it was suggested that the optimal strategy corresponds
to ballistic motion (in terms of scaling exponents):

lp ∼ L, (58)

where L is the linear size of the exploration space in which
the walker performs the search. The constant in the exact
expression for Eq. (58) is, however, smaller than 1, so there
are events in the trajectory. Also, the scaling result of Eq. (58)

was found for a two-dimensional persistent random walk in
a bounded space, so further analysis of the strategies for
maximizing correlation in similar situations is required to
make a fair comparison. In an attempt to compare to Eq. (45)
presently, we can relate the observation time to the system size
by N ∼ Lδ . If the observation time is naturally determined
from the system’s size divided by the walker’s speed, then
N ∼ L (δ = 1), and the two optimal strategies are different.
If instead the observation time can be freely adjusted and the
exponent δ selected through design of the optimal diffusion
experiment, then a correspondence may be established if, for
example, N ∼ L2 (δ = 2). In that case trajectories might look
ballistic for observation times on the order of the linear size
L but diffusive for observation times on the order of the
area L2. This heuristic correspondence does not account for
boundary effects that usually go along with setting a finite
system size (i.e., periodic boundary conditions are implicit in
the argument).

V. MUTUAL INFORMATION

The application of information theory made herein in-
volves calculating the average predictive information in a sin-
gle persistent random-walk velocity trajectory. The predictive
information is a measure of the information contained in the
history of a process that is useful for predicting future states;
it is defined as the mutual information between the history
of a process and its future [35]. Since the velocity in the
persistent random walk is a Markov process, the predictive
information reduces to the mutual information between con-
secutive velocity values [22]. We can calculate the mutual
information between consecutive velocity values through the
entropy relation:

I (vn, vn+1) = H (vn) + H (vn+1) − H (vn, vn+1), (59)

where, with nats as the unit of measurement, the Shannon
entropy of the instantaneous velocity is defined:

H (vn) = −
∑
vn

p(vn) ln p(vn) (60)

and the joint entropy is defined:

H (vn, vn+1) = −
∑
vn

∑
vn+1

p(vn, vn+1) ln p(vn, vn+1). (61)

Equation (59) is often referred to as a delayed mutual in-
formation, auto mutual information, or time-lagged mutual
information [36,37], where in this case the time lag is one
time step.

Two problems are commonly encountered when numer-
ically calculating mutual information from a time series
[38,39]: One is binning the data and the other is estimating
probabilities from a finite number of samples. The binning
problem is avoided here for the binary velocity trajectory.
However, the problem of interpreting probabilities as empiri-
cal rates holds paramount importance for this work. In order
to reproduce an information-theoretic analysis similar to that
for the correlation above, we work in the experimental or
applied setting where quantities entering into the equations
are empirical rates instead of the theoretical setting where
quantities are well-defined probabilities.
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We first consider the entropy in Eq. (60). To evaluate
the two terms in this sum, estimates for the single-point
probabilities p(vn = +1) and p(vn = −1) are required. The
direct approach to estimating a probability from a trajectory is
to count the number of instances occurring along the trajectory
and divide by the observation time to obtain a rate. For
example, if N+ is the number of time steps where vn = +1,
then:

p(vn = +1) ≈ N+
N

= n+. (62)

However, this approximation only works if N+ is very large.
In other words, rates converge to probabilities in the limit of
an infinite observation time:

lim
N→∞

N+
N

= p(vn = +1), (63)

the law of large numbers.
To evaluate the entropy, typically one would generate a

sufficiently long time series (based on timescales inherent
in the stochastic process) to effectively reach the infinite-
time regime N ≈ ∞ where rates can be freely interchanged
with probabilities as in Eq. (62). We are interested in the
behavior of the random-walk process and in the corresponding
information measures with increasing N . Consequently, we
fix the observation time N to a finite value, and we replace
the probabilities with empirical rates, which are stochastic
quantities, fluctuating from one trajectory to another. The
information measures then become stochastic quantities as
well. Finally we take an ensemble average of the single-
trajectory information measures to get a consistent estimate
of the finite-time random-walk behavior. Generally N cannot
be made large enough to neglect fluctuations in Eq. (62).
That is, finite-time fluctuations play a fundamental role in the
optimization problem addressed, even in the limit N → ∞.

The entropy H (vn) is based on the residence time of the
velocity trajectory in each of the two states, and is essentially
the same as H (vn+1). The finite-time (stochastic) entropy of
the velocity is written as:

H (v; N ) = −[n+ ln n+ + n− ln n−]. (64)

We stress that the entropy H (v; N ) in Eq. (64) is a func-
tional of a single velocity trajectory. Note the trajectory-level
entropy in Eq. (64) based on empirical rates (time aver-
ages) is different from the trajectory-level stochastic entropy
s(n) = − ln p(vn, n) defined in stochastic thermodynamics
[40,41]. The stochastic rates n+ and n− are related by the
normalization condition:

n+ + n− = 1. (65)

It is convenient to reintroduce here the time-averaged velocity
previously defined in Eq. (19):

v(N ) = n+ − n−, (66)

and change variables by expressing the rates in terms of the
time-averaged velocity:

n± = 1
2 (1 ± v). (67)

Then the entropy, Eq. (64), is also expressed in terms of the
time-averaged velocity:

H (v; N ) = − 1
2 [(1 + v) ln(1 + v)

+ (1 − v) ln(1 − v) − 2 ln 2]. (68)

Note that the time-averaged velocity v is restricted to the
interval [−1,+1]. Furthermore, it is expected to vanish in the
long-time limit N → ∞. This limiting behavior suggests an
expansion of the natural logarithm terms in the entropy, which
leads to the expression:

H (v; N ) = ln 2 −
∞∑

n=1

1

2n(2n − 1)
v2n. (69)

If we assume N is sufficiently large to warrant keeping only
the first two terms in an expansion of the natural logarithm:

ln(1 ± v) ≈ ±v − 1
2v2, (70)

then this large-N approximation leads to a simple expression
for the finite-time entropy of the instantaneous velocity:

H (v; N ) ≈ ln 2 − 1
2v2(N ). (71)

The ensemble average of the stochastic entropy is to this order
of approximation given by:

〈H (v; N )〉 ≈ ln 2 − 1

2
〈v2(N )〉 ≈ ln 2 − 1

2

α

1 − α

1

N
, (72)

where in the last step we utilized Eq. (32).
The structure of the finite-time corrections to the entropy is

evident from Eq. (72). The first term corresponds to the limit
of an infinite observation time:

〈H (v; N = ∞)〉 = H (v; N = ∞) = ln 2, (73)

where rates become equivalent to probabilities, and each
velocity trajectory spends an equal amount of time in the
v = +1 and v = −1 states, such that p(vn) = 1

2 in Eq. (60).
The second term in Eq. (72) is the O( 1

N ) correction to the
infinite (theoretical) entropy which is a consequence of the
central limit theorem approximation for the persistent random
walk.

Corrections such as Eq. (72) to entropy and other
information-theoretic quantities due to a finite number of
samples have been discussed in the literature [42–46]. Here
we are dealing with a correlated time series, and the cor-
relation time τα plays an important role in the finite-time
corrections [46], as can be seen from the dependence in
Eq. (72) on α. It is important to note that the convention
in information theory literature is to interpret the finite-time
fluctuations as a source of statistical error or bias in estimating
the “true” entropy H (v; ∞) of the process [43–46]: The
finite-time entropy Eq. (72) underestimates the true entropy,
and therefore measurements of 〈H (v; N )〉 are corrected by
adding on an O( 1

N ) term to extrapolate from the finite-time
measured value to the infinite-time result. We adopt a different
interpretation where the finite-time measurements are taken
as empirical entropies having physical significance, rather
than being systematically biased estimations of an idealized
asymptotic entropy H (v; N = ∞). Because all measurements
are finite in practice, the finite-time information measures are
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arguably more physically relevant to correlated fluctuations
than their infinite-time theoretical counterparts.

Adopting this physical perspective we proceed to calculate
the joint entropy, Eq. (61). The double sum results in four
terms representing the possible combinations of two consecu-
tive velocity values. The finite-time (stochastic) joint entropy
can be written as:

H (vn, vn+1; N ) =
4∑

i=1

Hi, (74)

where the H1 term represents the “++ ” combination where
both velocity values are positive, H2 represents “+−,” H3

represents “−+,” and H4 represents “−−.” For a generic term
Hi we write:

Hi = −ni ln ni. (75)

For example, when i = 2 we have

p(vn = +1, vn+1 = −1) ≈ N+−
N

= n+− = n2, (76)

and Eq. (75) becomes

H2 = −n2 ln n2 = −n+− ln n+− = H+−. (77)

Rather than utilizing the time-averaged velocity, as we
did with Eq. (67) for the single-point entropy calculation,
here we adopt a more general approach based on the central
limit theorem for Markov chains. (See the Appendix for a
discussion of the Markov chain central limit theorem.) We
assume the rate ni in Eq. (75) can be treated as a normal
random variable with mean μi and variance σ 2

i :

ni ∼ N
(
μi, σ

2
i

)
. (78)

In other words, we assume:

ni ≈ μi + σiξ = μi

(
1 + σi

μi
ξ

)
, (79)

where ξ is a Gaussian random variable with zero mean and
unit variance, ξ ∼ N (0, 1). Then we substitute this expression
into Eq. (75), which yields:

Hi ≈ −(μi + σiξ )

[
ln μi + ln

(
1 + σi

μi
ξ

)]
. (80)

We assume N is sufficiently large that σi, which is propor-
tional to 1√

N
, is much smaller than the mean μi. Then we

expand the natural logarithm, keeping only the first two terms
as we did in Eq. (70) to obtain the expression:

Hi ≈ −(μi + σiξi )

[
ln μi + σi

μi
ξ − 1

2

(
σi

μi
ξ

)2
]
. (81)

After multiplying out this expression and taking an ensemble
average we are left with:

〈Hi〉 ≈ −μi ln μi − 1

2

σ 2
i

μi
, (82)

noting that odd moments of ξ vanish and even moments are
equal to 1.

Next we calculate the mean and variance of the stochastic
rates in each case. The persistent random walk is defined by

the probability α for the velocity to not change from one step
to the next. If half of these cases where no change in velocity
occurs in the trajectory correspond to two positive values, we
obtain n++ = α/2 or, equivalently:

μ1 = α

2
. (83)

The variance is more difficult to calculate and details are
relegated to the Appendix where we discuss the central limit
theorem approximation for Markov chains. It turns out that
the variance is

σ 2
1 = α(α2 − 2α + 2)

4(1 − α)

1

N
. (84)

The associated entropy term is

〈H1〉 ≈ −α

2
ln

α

2
− α2 − 2α + 2

4(1 − α)

1

N
. (85)

Due to symmetry between “++” and “−−,” we have:

〈H1〉 = 〈H4〉. (86)

On the other hand, events occur in the trajectory with
probability 1 − α. For the “+−” case, the mean is

μ2 = 1 − α

2
, (87)

and the variance is

σ 2
2 = α(1 − α)

4
. (88)

The corresponding term in the joint entropy is

〈H2〉 = −1 − α

2
ln

1 − α

2
− α

4

1

N
, (89)

and once more by symmetry we have:

〈H2〉 = 〈H3〉. (90)

Combining the four terms, the finite-time joint entropy can be
written:

〈H (vn, vn+1; N )〉
≈ ln 2 − α ln α − (1 − α) ln(1 − α) − 2 − α

2(1 − α)

1

N
. (91)

Note, when α ≈ 1 we have:

〈H (vn, vn+1; N )〉
≈ ln 2 − α ln α − (1 − α) ln(1 − α) − 1

2

α

1 − α

1

N
, (92)

which connects back to the expressions involving the time-
averaged velocity 〈v2(N )〉. Taking the limit N → ∞ in
Eq. (91) recovers the asymptotic expression for the joint
entropy:

H (vn, vn+1; ∞) = ln 2 − α ln α − (1 − α) ln(1 − α). (93)

Using the above expressions for the entropies, the approx-
imate ensemble-averaged finite-time mutual information is

〈I (vn, vn+1; N )〉
≈ ln 2 + α ln α + (1 − α) ln(1 − α) − 1

2

α

1 − α

1

N
. (94)
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Note that from now forward we assume that α is close to 1.
Taking the limit N → ∞ in Eq. (94) recovers the asymptotic
expression for the mutual information:

I (vn, vn+1; ∞) = ln 2 + α ln α + (1 − α) ln(1 − α). (95)

Next we evaluate the optimal persistence level as a function
of the observation time by taking the derivative of the mutual
information:

∂

∂α
〈I〉 = ln α − ln(1 − α) − 1

2

1

(1 − α)2

1

N
. (96)

Setting this equation to zero establishes the problem to solve,
that being the transcendental equation:

ln α − ln(1 − α) − 1

2

1

(1 − α)2

1

N
= 0. (97)

We neglect the contribution from the ln α term since the
optimal value of α tends to 1 as N tends to infinity. In terms
of the small parameter ε = 1 − α we must solve:

ln ε = − 1

2Nε2
. (98)

By change of variables (ε → ez/2 and N → −1/c) this equa-
tion can be manipulated into an equation of the form zez = c
whose solution is, by definition, the Lambert W function
[47], z = W (c). Consequently, the solution to Eq. (98) can
be written in terms of the Lambert W function (the lower
branch, W−1):

α̂(N ) ≈ 1 − exp

[
1

2
W−1

(
− 1

N

)]
(99)

for the optimal persistence level or, alternatively,

ε̂(N ) ≈ exp

[
1

2
W−1

(
− 1

N

)]
. (100)

Equations (99) and (100), as solutions to the maximum in-
formation optimal diffusion problem, represent the key results
of this section. To gain insight into the optimal solution and to
connect it with the earlier results for autocovariance, note that
the Lambert W function can be approximated by

W−1(x) ≈ ln(−x) − ln[− ln(−x)] (101)

when x is small [47]. Substituting Eq. (101) into Eq. (100)
leads to the expression:

ε̂(N ) = 1 − α̂(N ) ≈ 1√
N ln N

. (102)

It is noteworthy that in this approximation ε̂(N ) is a regularly
varying function. In other words, we can write:

ε̂(N ) ≈
(

1

N

) 1
2

g(N ), (103)

where

g(N ) = 1√
ln N

(104)

FIG. 6. Mutual information for increasing values of N . The
approximation of Eq. (94) (solid green line) is compared to numerical
simulation of the persistent random walk (purple markers). The
infinite-N expression from Eq. (95) (convex black line) is included
for reference. The optimal persistence level in Eq. (99) (dashed red
vertical line) is included along with αCLT from Eq. (15) (short dashed
cyan line).

is a slowly varying function of the observation time N . If
we treat the slowly varying function g(N ) as approximately
constant, we recover the square-root scaling behavior:

α̂(N ) ∼ 1 − 1√
N

. (105)

Note the mutual information objective function leads essen-
tially to the same optimal strategy as the autocovariance
objective function studied in Sec. IV. These optimal strategies
have in common the scaling exponent ν = 1/2. For mutual
information this is no longer an exact scaling behavior, but
an approximation ν ≈ 1/2 of the more complicated regularly
varying function in Eq. (102). In practice the exponent ν

appears slightly larger than 1/2 because of the slow variation
of the natural logarithm factor in Eq. (102) as N goes to
infinity.
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FIG. 7. Scaling behavior of the optimal rate of events that max-
imizes mutual information. The approximate optimal solution given
by Eq. (100) (solid green line) is compared to numerical simulation
of the persistent random walk (purple squares). The approximation
of Eq. (102) (short dashed orange line) and the square-root scaling
(dashed black line), Eq. (103) with g(N ) = 1, are included for
reference.

Figures 6 and 7 show that the results of the theoretical
analysis for the mutual information agree with numerical
simulations of the persistent random walk. The mutual infor-
mation behaves in a way that is qualitatively similar to the
autocorrelation of Fig. 4. The central limit theorem approxi-
mation of Eq. (94) becomes very good for persistence levels
exceeding the optimal value α̂ as N increases toward infinity.
This validates the theoretical result in Eq. (99) for the optimal
persistence level when N is large.

VI. DISCUSSION

The optimal strategy for a persistent random walker to
maximize correlation or mutual information is to switch di-
rections at a rate which scales as one over the square root
of the overall time duration N . This results in fluctuating
trajectories that asymptotically are not biased toward either
direction, yet retain a highly correlated motion. Since the
optimal trajectories are diffusive the central limit theorem
plays a key role in the analysis and may lead to universality of
the optimal strategy, i.e., scaling behavior of optimal solutions
with exponent ν = 1/2, for a class of objective functions that
includes both the mutual information and the autocovariance
functions studied here. Objective functions associated with
this class approximately have the form of Eq. (3) where local
order increases linearly with the persistence level and long-
range order is inversely proportional to the average number of
events, in the dual limit of N → ∞ and α → 1. Universality
suggests that the results for the persistent random walk may be
applicable to other correlated stochastic processes displaying
a transition from ballistic to diffusive scaling.

The one-dimensional persistent random walk can be rein-
terpreted as a one-dimensional Ising model, which is an
example application of the Hammersley-Clifford theorem or
Markov-Gibbs equivalence [48]. Additionally, the autocovari-
ance function C(α, N ) defined in Eq. (17) can be mapped to

an Ising-like Hamiltonian,

H = −J
N−1∑
i=1

σiσi+1 − K

(
N∑

i=1

σi

)2

, (106)

where the σi are spin variables that replace the velocity
values of the random walk. The first term represents the
nearest-neighbor interaction energy, while the second term,
proportional to the mean field squared, represents the energy
cost associated with a nonvanishing mean field. The magnetic-
field-squared term in the Hamiltonian is found also in Ising
formulations of partition problems whose solutions involve
subsets with an equal number of elements [49]. The problem
of maximizing autocovariance in persistent random walk tra-
jectories is transformed into the statistical mechanics problem
of minimizing the free energy in the spin system. Note that
with both terms present in the Hamiltonian, the system is a
mixture of a one-dimensional Ising model (a spin chain) and
a Curie-Weiss model (a fully connected or complete graph).
When matching with the autocovariance of the persistent
random walk, the interactions on the one-dimensional chain
are ferromagnetic, J > 0, and these nearest-neighbor interac-
tions compete with long-range antiferromagnetic interactions
forming the complete graph. The map existing between the
persistent random walk and the Ising model opens up a variety
of analysis tools. For example, renormalization group analysis
of persistent random motion can be understood in terms of
the well-developed renormalization group theory for the Ising
model and vice versa [48]. Studying the generic Ising-like
Hamiltonian in Eq. (106) itself along with renormalization
and the mapping to the persistent random walk may provide
further insight into the maximum correlation optimization
problem and the universality class of objective functions with
index ν = 1/2. It is worth noting that the persistent random-
walk limit α → 1 is analogous to the zero-temperature limit
in the Ising model, and the exponent of 1/2 shows up also in
the scaling analysis of the free energy density and correlation
length for the zero temperature phase transition [50], when the
reduced temperature variable is defined as t = exp(−4J/kBT )
from the energy cost associated with flipping a single spin in
an ordered configuration.

The optimal strategy for maximizing correlation identified
here appears to differ from existing results for optimal search
and cover by persistent random walkers [14,51]; a persistence
length on the order of the system size was found to be most
efficient when searching for a target. However, it is difficult to
make a fair comparison presently because we only addressed
the simplest case of unbounded motion in one dimension,
while the search and cover problems are often formulated in
two- and three-dimensional bounded spaces. Since the central
limit theorem plays a key role in our analysis, we expect that
the scaling solution Eq. (10) with exponent ν = 1/2 will hold
also in higher dimensions if the space is not bounded. The
argument is that the second moment of position, entering into
the objective functions as in Eq. (39), for example, grows
linearly in time for a normal diffusion process regardless
of the dimension. Changing the dimension only changes the
constant prefactor in Eq. (37). However, it would be important
to check this argument through further analysis and numerical
simulations in higher dimensions and modify the analysis
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accordingly for bounded spaces, which at the same time
would facilitate a better comparison between the different
objectives of maximizing correlation and minimizing search
and cover times.

To establish a more complete picture of optimal diffu-
sion and universality classes of optimal solutions, it would
be interesting to consider the maximum correlation problem
for other types of random walks, including run-and-tumble
motion [52], Lévy walks [53], and different multistate random
walks [8,54], e.g., where the speed is no longer constant. The
analysis could be extended to continuous time and space or
to account for noisy measurements of the velocity. In general,
optimization could act on the waiting-time distribution that
governs the occurrence of events. For example, a truncated
IPL distribution would be of particular interest because in
that case an intermediate asymptotic scaling regime can arise
where the diffusion process is anomalous. Lévy-type motion
is often cited as a way to enhance search strategies [53],
and one could check how it affects correlation and mutual
information. Additionally, correlated random motion in more
general environments could give insight into the connections
between the maximum information protocols and optimal
control. For example, the environment might contain obsta-
cles, where it was shown that maximizing information can
lead to an efficient exploration of space [22]. The scaling
result we have found should provide a reference point for the
more complicated random motion in random environments
and perhaps could be useful in a perturbation theory or
homogenization approach valid for environments with weak
disorder.

Maximizing correlation and mutual information in a
Markov process of finite time duration is likely to have appli-
cations beyond physical diffusion processes and the persistent
random walk. For an example we mention recent develop-
ments in the thermodynamics of information engines. Cor-
relations are a fuel source. However, an information engine
must be designed in a way that allows it to extract work from
correlations [55–57]. In particular, an information engine may
be designed to extract work from a Markov chain of bits that
contains correlations but no overall bias [57]. Therefore the
optimal diffusion strategy might be useful also as a strategy
for engineering a fuel source for certain types of information
engines, since the protocol effectively maximizes correlation
between adjacent entries in a finite tape without introducing
an overall bias. This example further suggests that finite-
time fluctuations in information-theoretic measures may have
physical significance for engineering applications rather than
being interpreted as a source of error in a statistical analysis
with insufficient data.

APPENDIX

In this Appendix we discuss the Markov chain central
limit theorem and variance calculations. We closely follow
Refs. [58,59] and recommend consulting these references for
additional details about Markov chains that are not included
here.

Consider a regular Markov chain with r states
{s1, s2, . . . , sr} and an r×r transition matrix P. For a
realization of the Markov chain, the state at time n is

denoted by S(n). A key notion of Markov chains is that the
joint probability for the process to be in state si at time n
and state s j at a later time m is determined by iterating the
transition matrix from the initial probability. That is, for the
joint probability:

Pr[S(n) = si, S(m) = s j] = Pr[S(n) = si]p(m−n)
i j , (A1)

where p(k)
i j stands for element (i, j) of the k-step transition

matrix Pk . The Markov chain converges to equilibrium, such
that:

lim
N→∞

PN = W. (A2)

Each row of the matrix W is equal to the equilibrium distribu-
tion for the r states or Wi j = w j where w j is the equilibrium
probability for the chain to be in state s j .

The matrix product Mk = (P − W )k = Pk − W tends to
the zero matrix as k goes to infinity, and the series
I + M + M2 + · · · converges to the matrix inverse (I − M )−1.
The fundamental matrix Z is defined:

Z =
∞∑

k=0

(P − W )k = (I − P + W )−1, (A3)

and is useful for calculating many asymptotic properties of the
Markov chain. Note that I is the identity matrix. Importantly,
the fundamental matrix is Cesaro summable:

Z = lim
N→∞

N−1∑
k=0

N − k

N
(P − W )k, (A4)

which can be written alternatively as:

Z = I + lim
N→∞

N−1∑
k=1

N − k

N
(Pk − W ). (A5)

A stochastic observable A(N ) of interest is the fraction of
time that the chain spends in state si during the first N time
steps. If Ni is the total number of time steps spent in state si

up to time N , then:

A(N ) = Ni

N
= 1

N

N∑
n=1

χn, (A6)

where χn is a random variable or indicator function defined
by:

χn =
{

1 if S(n) = si

0 otherwise . (A7)

We are interested in calculating the limiting variance of
A(N ). The variance is defined:

Var[A(N )] = 〈A2(N )〉 − 〈A(N )〉2. (A8)

Substituting Eq. (A6) into Eq. (A8) yields:

Var[A(N )] = 1

N2

N∑
n=1

N∑
m=1

〈χnχm〉 −
(

N∑
n=1

〈χn〉
)2

, (A9)

or, equivalently,

Var[A(N )] = 1

N2

N∑
n=1

N∑
m=1

(〈χnχm〉 − w2
i

)
, (A10)
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after bringing the mean value inside the double sum. The
correlation coefficient 〈χnχm〉 for the Markov chain is deter-
mined by the probability to be in state si at a certain time step,
taken to be the equilibrium probability wi, multiplied by the
transition probability to return to state si in k = |n − m| time
steps:

〈χnχm〉 = wi p
(k)
ii . (A11)

Note that p(0)
ii = 1 by definition. From Eq. (A11), the expres-

sion for the variance in Eq. (A10) becomes

Var[A(N )] = wi

N

[
(1 − wi ) + 2

N−1∑
k=1

N − k

N

(
p(k)

ii − wi
)]

.

(A12)

In the limit N → ∞ the sum converges and is related to the
fundamental matrix Z by Eq. (A5):

lim
N→∞

N∑
k=1

N − k

N

[
p(k)

ii − wi
] = zii − 1. (A13)

The asymptotic variance is expressed in terms of the equi-
librium probability wi and the diagonal element zii of the
fundamental matrix:

Var[A(N )] = 1

N

(
2wizii − wi − w2

i

)
. (A14)

For N large the variance can be approximated by a constant
factor divided by N . We mention that the expression for the
constant factor in Eq. (A14) is stated in Ref. [59] without any
derivation. The complete derivation (with some typos) can be
found in Ref. [58].

In summary the Gaussian or central limit theorem approx-
imation for the fraction of time spent in state si is given by:

A(N ) = Ni

N
≈ wi +

√
2wizii − wi − w2

i

N
ξ, (A15)

where ξ ∼ N (0, 1) is a normalized Gaussian random vari-
able.

Example 1. Two-state Markov chain. Let the transition
matrix be given by:

P =
[

1 − a a
b 1 − b

]
. (A16)

The row vector w = [w1 w2] of equilibrium probabilities
that solves the equation:

wP = w (A17)

under the normalization condition:

2∑
i=1

wi = 1 (A18)

has the simple form:

[w1 w2] =
[

b

a + b

a

a + b

]
. (A19)

The diagonal elements of the fundamental matrix, found by
substituting Eq. (A16) and Eq. (A19) into Eq. (A3), are

Z11 = b(a + b) + a

(a + b)2
, (A20)

Z22 = a(a + b) + b

(a + b)2
. (A21)

From Eq. (A14), the variance for the fraction of time spent in
state 1 for a trajectory of duration N is

Var

[
N1

N

]
= ab(2 − a − b)

(a + b)3

1

N
. (A22)

Although the equilibrium probabilities of the two states may
be different, the variance for the fraction of time spent in state
2 is the same as state 1, Var[ N2

N ] = Var[ N1
N ]. Therefore we have

the central limit theorem approximation:

N1

N
≈ b

a + b
+

√
ab(2 − a − b)

(a + b)3

1

N
ξ, (A23)

N2

N
≈ a

a + b
+

√
ab(2 − a − b)

(a + b)3

1

N
ξ, (A24)

where ξ ∼ N (0, 1).
The transition matrix for the persistent random-walk

Markov chain, Fig. 1, has the form:

P =
[

α 1 − α

1 − α α

]
. (A25)

Letting a = b = 1 − α in the above equations for the general
two-state Markov chain, we end up with:

Var

[
N1

N

]
= Var

[
N2

N

]
= 1

4

α

1 − α

1

N
. (A26)

Recall that the time-averaged velocity:

v(N ) = N1 − N2

N
(A27)

is an observable of interest that was introduced in Eq. (19). Its
variance in terms of the residence times is given by:

Var[v(N )] = Var

[
N1

N

]
+ Var

[
N2

N

]
− 2Cov

[
N1

N
,

N2

N

]
.

(A28)

Since N2
N = 1 − N1

N , the covariance between residence times
takes the form:

Cov

[
N1

N
,

N2

N

]
= −Var

[
N1

N

]
. (A29)
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FIG. 8. Four-state Markov chain diagram representing the tran-
sitions between each velocity pair (vn, vn+1).

Therefore the asymptotic variance of the time-averaged veloc-
ity is

Var[v(N )] = 〈v2(N )〉 = α

1 − α

1

N
. (A30)

This recovers the earlier result in Eq. (32) by way of the
fundamental matrix in the Markov chain representation of the
persistent random-walk velocity trajectory.

Example 2. Four-state Markov chain. Here we dis-
cuss the four-state Markov chain depicted in Fig. 8.
Each state represents one of the possible velocity pairs
(vn, vn+1): State 1 corresponds to (vn = +1, vn+1 = +1),
state 2 corresponds to (vn = +1, vn+1 = −1), state 3
corresponds to (vn = −1, vn+1 = +1), and state 4 cor-
responds to (vn = −1, vn+1 = −1). From the two-state
Markov chain for the persistent random-walk velocity tra-
jectory we can construct the four-state Markov chain
for consecutive velocity pairs by moving a window of
size two along the original velocity trajectory. For ex-
ample, the velocity trajectory [+1,+1,−1,−1,+1] be-
comes [(+1,+1), (+1,−1), (−1,−1), (−1,+1)], and the
four-state Markov chain follows the transition sequence

1 → 2 → 4 → 3. The 4×4 transition matrix for this Markov
chain has the form:

P4 =

⎡
⎢⎣

α 1 − α 0 0
0 0 1 − α α

α 1 − α 0 0
0 0 1 − α α

⎤
⎥⎦. (A31)

The row vector w = [w1 w2 w3 w4] of equilibrium
probabilities is defined by the equilibrium condition:

wP4 = w. (A32)

The equilibrium probabilities can be found by solving the
above system of equations supplemented with the normaliza-
tion condition:

4∑
i=1

wi = 1, (A33)

and the symmetry conditions w1 = w4 and w2 = w3 for an
unbiased process. We find the values:

w =
[
α

2

1 − α

2

1 − α

2

α

2

]
. (A34)

From P4 and w the fundamental matrix can be constructed
according to Eq. (A3). For its diagonal elements we find:

Z11 = Z44 = 3α − 4

4(α − 1)
, (A35)

Z22 = Z33 = 3

4
. (A36)

From Eq. (A14) the asymptotic variance for the fraction of
time spent by the process in each of the states is

Var

[
N1

N

]
= Var

[
N4

N

]
= α(α2 − 2α + 2)

4(1 − α)
(A37)

and

Var

[
N2

N

]
= Var

[
N3

N

]
= α(1 − α)

4
. (A38)

The results for the equilibrium vector, Eq. (A34), and asymp-
totic variances, Eqs. (A37) and (A38), were used in the
calculation of the time-lagged mutual information in Sec. V.
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[16] M. Luković, T. Geisel, and S. Eule, New J. Phys. 15, 063034
(2013).

022119-15

https://doi.org/10.1016/S0378-4371(02)00805-1
https://doi.org/10.1016/S0378-4371(02)00805-1
https://doi.org/10.1016/S0378-4371(02)00805-1
https://doi.org/10.1016/S0378-4371(02)00805-1
https://doi.org/10.1112/plms/s2-20.1.196
https://doi.org/10.1112/plms/s2-20.1.196
https://doi.org/10.1112/plms/s2-20.1.196
https://doi.org/10.1112/plms/s2-20.1.196
https://doi.org/10.1103/PhysRevE.91.062715
https://doi.org/10.1103/PhysRevE.91.062715
https://doi.org/10.1103/PhysRevE.91.062715
https://doi.org/10.1103/PhysRevE.91.062715
https://doi.org/10.1063/1.5027734
https://doi.org/10.1063/1.5027734
https://doi.org/10.1063/1.5027734
https://doi.org/10.1063/1.5027734
https://doi.org/10.1103/PhysRevE.59.6517
https://doi.org/10.1103/PhysRevE.59.6517
https://doi.org/10.1103/PhysRevE.59.6517
https://doi.org/10.1103/PhysRevE.59.6517
https://doi.org/10.1103/PhysRevE.68.031102
https://doi.org/10.1103/PhysRevE.68.031102
https://doi.org/10.1103/PhysRevE.68.031102
https://doi.org/10.1103/PhysRevE.68.031102
https://doi.org/10.1103/PhysRevE.78.031121
https://doi.org/10.1103/PhysRevE.78.031121
https://doi.org/10.1103/PhysRevE.78.031121
https://doi.org/10.1103/PhysRevE.78.031121
https://doi.org/10.1216/RMJ-1974-4-3-497
https://doi.org/10.1216/RMJ-1974-4-3-497
https://doi.org/10.1216/RMJ-1974-4-3-497
https://doi.org/10.1216/RMJ-1974-4-3-497
https://doi.org/10.1088/1751-8113/43/3/035001
https://doi.org/10.1088/1751-8113/43/3/035001
https://doi.org/10.1088/1751-8113/43/3/035001
https://doi.org/10.1088/1751-8113/43/3/035001
https://doi.org/10.1103/PhysRevE.91.052115
https://doi.org/10.1103/PhysRevE.91.052115
https://doi.org/10.1103/PhysRevE.91.052115
https://doi.org/10.1103/PhysRevE.91.052115
https://doi.org/10.1103/RevModPhys.83.81
https://doi.org/10.1103/RevModPhys.83.81
https://doi.org/10.1103/RevModPhys.83.81
https://doi.org/10.1103/RevModPhys.83.81
https://doi.org/10.1103/PhysRevLett.108.088103
https://doi.org/10.1103/PhysRevLett.108.088103
https://doi.org/10.1103/PhysRevLett.108.088103
https://doi.org/10.1103/PhysRevLett.108.088103
https://doi.org/10.1007/s10955-009-9905-z
https://doi.org/10.1007/s10955-009-9905-z
https://doi.org/10.1007/s10955-009-9905-z
https://doi.org/10.1007/s10955-009-9905-z
https://doi.org/10.1088/1367-2630/15/6/063034
https://doi.org/10.1088/1367-2630/15/6/063034
https://doi.org/10.1088/1367-2630/15/6/063034
https://doi.org/10.1088/1367-2630/15/6/063034


ADAM SVENKESON AND BRUCE J. WEST PHYSICAL REVIEW E 100, 022119 (2019)

[17] S. Jafarizadeh, IEEE Control Syst. Lett. 2, 465 (2018).
[18] I. A. Martínez, A. Petrosyan, D. Guéry-Odelin, E. Trizac, and

S. Ciliberto, Nat. Phys. 12, 843 (2016).
[19] M. Chupeau, B. Besga, D. Guéry-Odelin, E. Trizac, A.

Petrosyan, and S. Ciliberto, Phys. Rev. E 98, 010104(R) (2018).
[20] N. Ay, H. Bernigau, R. Der, and M. Prokopenko, Theory Biosci.

131, 161 (2012).
[21] G. Martius, R. Der, and N. Ay, PLoS ONE 8, e63400 (2013).
[22] N. Ay, N. Bertschinger, R. Der, F. Güttler, and E. Olbrich,

Eur. Phys. J. B 63, 329 (2008).
[23] F. Lombardi, H. J. Herrmann, D. Plenz, and L. de Arcangelis,

Sci. Rep. 6, 24690 (2016).
[24] C. Meisel, K. Bailey, P. Achermann, and D. Plenz, Sci. Rep. 7,

11825 (2017).
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