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We consider the overdamped motion of a Brownian particle in an unbiased force field described by a periodic
function of coordinate and time. A compact analytical representation has been obtained for the average particle
velocity as a series in the inverse friction coefficient, from which follows a simple and clear proof of hidden
symmetries of ratchets, reflecting the symmetry of summation indices of the applied force harmonics relative
to their numbering from left to right and from right to left. We revealed the conditions under which (i) the
ratchet effect is absent; (ii) the ratchet average velocity is an even or odd functional of the applied force,
whose dependences on spatial and temporal variables are characterized by periodic functions of the main
types of symmetries: shift, symmetric, and antisymmetric, and universal, which combines all three types. These
conditions have been specified for forces with those dependences of a multiplicative (or additive-multiplicative)
and additive structure describing two main ratchet types, pulsating and forced ratchets. We found the fundamental
difference in dependences of the average velocity of pulsating and forced ratchets on parameters of spatial and
temporal asymmetry of potential energy of a particle for systems in which the spatial and temporal dependence
is described by a sawtooth potential and a deterministic dichotomous process, respectively. In particular, it is
shown that a pulsating ratchet with a multiplicative structure of its potential energy cannot move directionally if
the energy is of the universal symmetry type in time; this restriction is removed in the inertial regime, but only if
the coordinate dependence of the energy does not belong to either symmetric or antisymmetric functions.
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I. INTRODUCTION

Deterministic ratchets include systems in which directed
motion of particles arises due to the rectification of cycli-
cally repeating perturbations described by periodic functions
of time [1–8]. Unlike a case of stochastic ratchets, which
are, as a rule, associated with the functioning of protein
engines [9–18], deterministic ratchets are controlled by using
human-created processes. The motion of particles suspended
in solutions and exposed to a periodic asymmetric potential
[19,20] (dielectrophoresis effect [21]), vortices in supercon-
ductor systems [22], atoms in dissipative optical lattices [23],
and electrons in organic semiconductors [24] are controlled
just by such deterministic processes. One of the necessary
conditions for the existence of particle current as the ratchet
effect is the absence of reflection symmetry of a system in
which this motion occurs [13,25]. There are, however, other
(less obvious) types of symmetries that regulate the presence
or absence of the ratchet effect, and the ability to recognize
those symmetries is absolutely necessary for understanding
mechanisms of diffusion transport of nanoparticles, as well
as for designing nanomachines. The revealing of symmetry
properties by the standard symmetry analysis, that is, by
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finding a group of transformations that leave the equation
of motion invariant, was carried out in [26]. Another way
to discover symmetry properties of ratchets is to analyze
solutions of either equations of motion or stochastic equations
for the distribution function describing particle motion in a
thermal reservoir. Of course, such a way is also not very easy,
since for the symmetry analysis it is necessary to get these
solutions or good approximations to them.

In the ratchet theory, the most widely used approximation
is the overdamped regime, in which friction is considered to
be prevailing over inertia, and the time over which Maxwell
velocity distribution is established (τv = m/ζ , m is the particle
mass, ζ is the friction coefficient) can be considered as the
smallest time parameter of the system (τv → 0) [27]. Next, in
the overdamped regime, one can obtain relatively simple ana-
lytical expressions for the ratchet average velocity by describ-
ing their functioning within the adiabatic [28–31] or high-
temperature [32,33] (low-energy) approximations. Moreover,
choosing those adiabatic or low-energy approximations as the
main approaches, one can return again, within their frame-
works, to the inertial dynamics and obtain expressions for the
characteristics of such ratchets containing inertial corrections
[34,35]. In this way, a number of nontrivial properties of
Brownian motors have been discovered, which are a result of
the presence or absence of one or another symmetry of particle
potential energies [30,31,33,34,36].
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It should be borne in mind that the operation of time
reversal, which is often included in the analysis of symmetry
properties of a system, entails an additional, fundamental dif-
ficulty, since the laws of mechanics are known to be reversible
under the time reversal, while the laws of statistical physics
that seemingly use these laws of mechanics, are irreversible.
Therefore, it is difficult to expect that, in dissipative systems,
the probabilities of realization (statistical weights) of forward
and backward trajectories of a particle will be identical. All
that leads to the necessity of analyzing the symmetry of solu-
tions of statistical equations; it is a difficult problem in view
of the difficulty of finding these solutions, which, in addition,
may prove to be very cumbersome for any analysis. If, for
all that, one succeeded in analyzing the symmetry properties,
then the detected symmetry types are called hidden, empha-
sizing the fact that they cannot be obtained by the standard
symmetry analysis. Significant progress in discovering hidden
symmetries of ratchet systems was achieved in the recent
work of Cubero and Renzoni [37]. The conclusions about the
existence of certain hidden symmetries follow there from a
rather cumbersome analysis of the symmetry of space-time
Fourier components of a resolvent representing the formal
solution of the Smoluchowski equation (see the supplemental
material in [37]).

In this article, the same hidden symmetries are proved very
simply and quite clearly. To do this, we use the approach
of Ref. [33], in which the solution of the Smoluchowski
equation is obtained as a series in the inverse friction coef-
ficient. This solution allows one to write a compact analytical
representation for the ratchet average velocity, which contains
products of Fourier components of an applied force, which
is periodic both in coordinate and in time. The proof of
the hidden symmetries of ratchet systems contained in the
expression for the average velocity is carried out in Sec. II
(see also Appendixes A and B), and it is based on the fact
that there exists an additional symmetry in the numbering of
the summation indices of these Fourier components in the
products.

Section III gives a summary of the main symmetry types
of periodic functions, which include shift, symmetric, and an-
tisymmetric types; this allowed us to introduce an additional,
universal, type of symmetry that combines all three types.
The presence of such symmetry in spatial and/or temporal
variables yields special, not typical for other symmetries,
properties of ratchets. This section is illustrated with construc-
tive examples of designing all symmetry types on the basis of
a single template and gives a comprehensive visual represen-
tation of correspondences between symmetries of a function
and those of its derivative, which is especially important for
comparing properties of ratchets resulting from symmetry
features of potential energies and corresponding forces.

Symmetry properties of ratchets with an applied fluctuating
force which is a function of coordinate and time of an arbitrary
structure are described in Sec. IV. Since the properties of
ratchet systems with a force of a multiplicative structure are
closest, in certain conclusions, to the case of an arbitrary
structure, they are also analyzed in Sec. IV. The most general
conclusions obtained here are, to some extent, used in all
subsequent sections, which specify the structure of the force,
as well as the spatial and temporal dependencies. Namely,

in Sec. V, symmetry properties of ratchets with an applied
force of a two-component additive-multiplicative structure
are considered, and in Sec. VI, an asymmetric dichotomous
process of fluctuations of a sawtooth potential. The same
section, Sec. VI, presents the results for both pulsating and
forced ratchets in terms of temporal and spatial asymme-
try parameters, which can be rigorously determined just for
a sawtooth-shaped potential relief undergoing dichotomous
fluctuations (the most common model in the ratchet theory).

In the final section we summarize the results obtained and
discuss their significance for analyzing properties of ratchet
systems. We emphasize the generality of the results, based on
the use of the exact analytical solution of the Smoluchowski
equation, and compare them with the symmetry results ob-
tained under some approximations. A comparative analysis is
made of situations in which the revealing symmetry properties
required using the time reversal operation (properties based on
hidden symmetries) or have been found without it. This deter-
mines whether the conclusions are valid only in overdamped
systems or hold or arise in the inertial regime.

II. SYMMETRY OF THE SOLUTION OF THE
SMOLUCHOWSKI EQUATION

We consider, following Refs. [33,38], one-dimensional
dynamics of a Brownian particle in a viscous medium, which
is characterized by a function x(t ) (particle position) that
satisfies the Langevin equation:

mẍ = −ζ ẋ + F (x, t ) + ξ (t ). (1)

Here ẋ(t ) and ẍ(t ) are the first and second time derivatives of
x(t ), m is the particle mass, ζ is the friction coefficient, and
F (x, t ) = −∂U (x, t )/∂x is an applied force corresponding to
the potential energy U (x, t ). The applied force is considered
as a periodic function of the coordinate x and time t , F (x +
L, t ) = F (x, t + τ ) = F (x, t ), where L and τ are the spatial
and temporal periods. Thermal fluctuations are modeled by
Gaussian white noise ξ (t ) with the mean value 〈ξ (t )〉 = 0
and the correlation function 〈ξ (t )ξ (t ′)〉 = 2ζkBT δ(t − t ′) (kB

and T is the Boltzmann constant and equilibrium absolute
temperature, respectively).

For small particles in a sufficiently viscous medium, the
inertial term mẍ can be omitted. Then for statistical descrip-
tion of such (inertialess) motion of a Brownian particle, one
can use the distribution function ρ(x, t ) that satisfies the
Smoluchowski equation [27],

∂

∂t
ρ(x, t ) = − ∂

∂x
J (x, t ),

J (x, t ) = −D
∂

∂x
ρ(x, t ) + ζ−1F (x, t )ρ(x, t ), (2)

and the normalization condition
∫ L

0 ρ(x, t )dx = 1. The ex-
pression for the flux J (x, t ) contains the diffusion coefficient
D = kBT/ζ . For a steady-state process, after the system for-
gets its initial condition, the desired average value of particle
velocity [motor velocity, which is a functional of the applied
force F (x, t )] is determined by the double integral:

〈v〉 = v{F (x, t )} = 1

τ

∫ τ

0
dt

∫ L

0
dxJ (x, t ). (3)
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The periodicity of F (x, t ), both in coordinate and
time, makes it efficient to apply the double Fourier
transform to obtain solutions of the Smoluchowski
equation: f (x, t ) = ∑

q j fq j exp(ikqx − iω jt ), kq = (2π/L)q,
ω j = (2π/τ ) j, where q and j are integers, kq and ω j are
wave vectors and frequencies, and f (x, t ) = f (x + L, t + τ )
is an arbitrary function, which in the context of the problem
may be, for example, a force or a distribution function. To
shorten the notation, it is convenient to designate a pair of
indices q and j as one index p = (q, j) and use it in further
transformations. Then the desired functional (3) takes the
following form:

v{F (x, t )} = ζ−1L
∑

p

F−pρp, (4)

in which, according to Eq. (2), the Fourier components ρp of
the distribution function ρ(x, t ) satisfy a system of algebraic
equations:

ρp = L−1δp,0 + ζ−1a−p

∑
p′

Fp−p′ρp′ ,

ap = aq j = ikq

Dk2
q + iω j

, (5)

where δp,0 ≡ δq,0δ j,0 (δq,0 and δ j,0 are the Kronecker delta
symbols).

The structure of system (5) is such that ρp equals the sum
of two contributions, independent and dependent on ρp, the
latter being proportional to ζ−1. Thus, it is advisable to search
for its solution by an iterative procedure in the form of a power
series in the inverse friction coefficient:

ρp =
∞∑

n=0

ζ−nρ (n)
p . (6)

Substituting (6) into (5) gives an iterative solution:

ρ (0)
p = L−1δp,0, ρ (n)

p =
n�1

a−p

∑
p′

Fp−p′ρ
(n−1)
p′ . (7)

After (n − 1) iterations we get the following result:

ρ (1)
p = L−1a−pFp,

ρ (n)
p =

n�2
L−1a−p

∑
p2...pn

Fp+p2 ap2

× F−p2+p3 · · · apn−1 F−pn−1+pn apn F−pn . (8)

Substituting this result into (6) and (4), together with the
replacement of the index p → −p1 as well as zeroing the
Fourier component F0 to eliminate trivial motion of a particle
under the action of a constant applied force (which is not
related to the ratchet effect), allows one to write the desired
functional as

v{F (x, t )} =
∞∑

n=1

ζ−n−1R(n){F (x, t )},

R(n){F (x, t )} =
∑

p1...pn

ap1 · · · apn Fp1 Fp2−p1 · · · Fpn−pn−1 F−pn .

(9)

Note that introducing new summation variables p′
1 = p1,

p′
l = pl − pl−1 (l = 2, . . . , n), which provide equalities pl =∑l

r=1 p′
r (l = 1, . . . , n), yields an alternative representation

for the functional (9) given in [38]:

R(n){F (x, t )}
=

∑
p′

1...p
′
n

ap′
1
· · · ap′

1+···+p′
n
Fp′

1
· · · Fp′

n
F−p′

1−···−p′
n
. (10)

If the force is time independent, F (x, t ) = f (x), repre-
sentation (9) is reduced to a sum equal to zero (see
Appendix A),

R(n){ f (x)} =
(

i

D

)n ∑
q1···qn ( �=0)

fq1 f−q1+q2 f−q2+q3 · · · f−qn−1+qn f−qn

kq1 · · · kqn

= 0, (11)

as it should be.
Next we demonstrate that the result (9) satisfies the vector and shift symmetry of ratchet systems, which are determined by

the following equalities:

v{F (−x, t )} =
(vect)

−v{−F (x, t )}, (12)

v{F (x + x0, t + t0)} =
(shift)

v{F (x, t )}. (13)

The equality (12) means that coordinate inversion (the transformation x → −x) yields inversion of directions of all vector
quantities, which are the force and average velocity. The shift symmetry (13) reflects the fact that the average velocity is invariant
under arbitrary translations (shifts) of the origin of coordinates and time [shifts by x0 and t0 in (13) should be considered
independently].

To prove the vector symmetry (12), we note that, in the Fourier components, the transformation x → −x corresponds to the
index transformation q → −q. For this transformation, in terms of the pair of indices p = (q, j), we introduce the notation
p̄ = (−q, j), so that the transformation p → p̄ corresponds to x → −x, and the Fourier component Fp̄ corresponds to the
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function F (−x, t ). With the definition ap in (5), we have the property ap̄ = −ap, so that from (9) follows a chain of equalities:

R(n){F (−x, t )} =
∑

p1...pn

ap1 · · · apn Fp̄1 Fp̄2−p̄1 · · · Fp̄n−p̄n−1 F−p̄n

=
p̄l =p′

l

∑
p′

1...p
′
n

ap̄′
1
· · · ap̄′

n
Fp′

1
Fp′

2−p′
1
· · · Fp′

n−p′
n−1

F−p′
n

=
∑

p′
1...p

′
n

(−1)nap′
1
· · · ap′

n
Fp′

1
Fp′

2−p′
1
· · · Fp′

n−p′
n−1

F−p′
n

= −
∑

p′
1...p

′
n

ap′
1
· · · ap′

n

(−Fp′
1

)(−Fp′
2−p′

1

) · · · (−Fp′
n−p′

n−1

)(−F−p′
n

)

= −R(n){−F (x, t )}, (14)

from which we have the desired equality (12).
To prove the invariance of (9) under the transformation of the shift symmetry (13), one should take into account that, although

under the shifts by x0 and t0, each Fourier component Fp acquires a phase factor exp(ikqx0 − iω jt0), the product of these factors
appearing in the expression Fp1 Fp2−p1 · · · Fpn−pn−1 F−pn turns out to be equal to 1. Note that the symmetry properties (12) and (13)
are always valid, and here we are only convinced that the resulting solution (9) remains invariant under these transformations,
as it should be. There are, however, other symmetry transformations, known as hidden symmetries, which leave the solution
invariant. Below one of these hidden symmetries is discussed in detail.

The generality of the expression (9), which is actually an exact solution of the Smoluchowski equation with an arbitrary
force F (x, t ), periodic in coordinate and time, makes it easy to prove the hidden symmetry found by Cubero and Renzoni (see
Ref. [37] and the cumbersome proof of this symmetry in its supplemental material):

v{F (x, t )} =
(C-R)

v{F (−x,−t )}. (15)

To prove (15), we use the correspondence between the function F (−x,−t ) and its Fourier components F−p, so that the
representation (9) yields the following transformation:

R(n){F (−x,−t )} =
∑

p1···pn

ap1 · · · apn F−p1 F−p2+p1 · · · F−pn+pn−1 Fpn

=
pl =p′

n+1−l
(l=1,...,n)

∑
p′

1···p′
n

ap′
n
· · · ap′

1
F−p′

n
Fp′

n−p′
n−1

· · · Fp′
2−p′

1
Fp′

1
= R(n){F (x, t )}. (16)

It proves the presence of the discussed hidden symmetry. Similarly, we can prove the same property starting from representation
(10), if we use the following change of summation variables p′

l = −p′′
n+2−l (l = 2, . . . , n),

∑l
r=1 p′

r = ∑n+1−l
r=1 p′′

r (l =
1, . . . , n) [38]:

R(n){F (−x,−t )} =
∑

p′
1···p′

n

ap′
1
· · · ap′

1+···+p′
n
F−p′

1
F−p′

2
· · · F−p′

n
Fp′

1+···+p′
n

=
∑

p′′
1···p′′

n

ap′′
1+···+p′′

n
· · · ap′′

1
F−p′′

1−···−p′′
n
Fp′′

n
· · · Fp′′

2
Fp′′

1
= R(n){F (x, t )}. (17)

Note that the presence of the hidden symmetry (15) [just as
the hidden symmetry for forced ratchets, defined by relation
(B2) in Appendix B] is a consequence of the symmetry of
the solution represented by summing products of space-time
harmonics: Renumbering summation indices of the harmonics
in the products from right to left gives the same result for
the average velocity of a ratchet operating in the overdamped
regime as the result in the case of an inverted coordinate and
time with numbering of summation indices from left to right.

It should be mentioned that the equality (15) follows
formally from the Langevin equation (1): Under the replace-
ment x → −x, t → −t , the quantity ẋ(t ) does not change
its sign, while ẍ(t ) changes, so, at m = 0, we obtain 〈ẋ〉 =
ζ−1〈F (x, t )〉 = ζ−1〈F (−x,−t )〉. However, this observation

cannot serve as a rigorous proof, since, as noted above, in
dissipative systems, the forward and backward trajectories of
a particle contribute to the average velocity with different
statistical weights. Therefore, to reveal and prove hidden
symmetries, one cannot dispense with analyzing explicit so-
lutions of the Smoluchowski equation. The only benefit from
such a comparison of the original Langevin equation and that
transformed by the replacement x → −x and t → −t is that
it leads to the following conclusion: One cannot expect the
conservation of the symmetry property (15) at m �= 0.

The relations (12), (13), and (15) define symmetry trans-
formations at which the average ratchet velocity changes its
sign [as in Eq. (12)] or remains unchanged. The first two
transformations are always valid, and the last takes place only
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in the overdamped regime, when friction prevails over inertia.
Additional information on symmetry properties of a ratchet
can be obtained when the average velocity turns out to be
an even or odd functional of the applied force F (x, t ). The
presence of these additional properties can be determined by
a structure and symmetry of F (x, t ); we will discuss that in
subsequent sections. We also note here that, in the general
case, the functional v{F (x, t )} can always be represented as
a sum of two functionals, even and odd in F (x, t ):

v{F (x, t )} = veven{F (x, t )} + vodd{F (x, t )}, (18)

where

veven{−F (x, t )} = veven{F (x, t )},
vodd{−F (x, t )} = −vodd{F (x, t )}. (19)

Turning to the structure of the solution (9), it is easy to con-
clude that the even functional veven{F (x, t )} contains contribu-
tions R(n){F (x, t )} with odd n values, while the odd functional
vodd{F (x, t )} contains those with even n values. For exam-
ple, for systems characterized by the property v{F (−x, t )} =
v{F (x, t )}, which holds true for forced ratchets with the
additive structure of the force F (x, t ) = g(x) + R(t ) [37],
using the vector symmetry transformation yields v{F (x, t )} =
v{F (−x, t )} =

(vect)
−v{−F (x, t )}; that is, the functional is odd

for this class of ratchets. It is clear that the converse is also
true: The property v{g(x) + R(t )} = v{g(−x) + R(t )} follows
from the oddness of the functional vodd{g(x) + R(t )}. In Ap-
pendix B, we show how an additive structure of F (x, t ) leads
to zero even functionals veven{F (x, t )}; that is, we give an
alternative proof of the hidden symmetry found in [37] for
a forced ratchet.

III. SYMMETRY PROPERTIES OF PERIODIC FUNCTIONS

In this section we discuss symmetry properties that per-
tain to ratchets with potential energies described by periodic
functions. Consider a periodic coordinate function u(x) and its
derivative with the opposite sign, f (x) = −du(x)/dx, which
can be considered as the potential energy of a particle in some
periodic structure, with which the particle interacts, and a
force corresponding to the energy. Let us choose a coordinate
function of an arbitrary shape ũ(x) on a length interval L [as,
for example, ũ(x) = sin(πx/L) exp(−Ax) in Fig. 1] and use
it as a template. If this function has no symmetry elements,
then, being translated with a period L, it gives an example of a
periodic function, u(x), also without symmetry elements. We
will do the same with the function f̃ (x) = −dũ(x)/dx [see
Fig. 1(a)] and obtain an example of f (x).

Next, we contract ũ(x) two times along the horizontal axis
and use the result û(x) = ũ(2x) (0 < x < L/2) to construct
periodic functions with various symmetry elements. To build
symmetric functions of the first type, with so-called shi f t
symmetry, we shift the obtained fragment û(x) by half a period
L/2 and reverse its sign. The set of these two constructed
fragments is translated further with the period L to obtain a
periodic function [Fig. 1(b)]. From the construction, it is clear
that the arising periodic function u(x) and its derivative f (x)

FIG. 1. Examples of periodic functions built with the template
ũ(x) = sin(πx/L) exp(−Ax) and its derivative (upper and lower
curves): asymmetric functions (a), shift-symmetric functions (b),
antisymmetric source function and its symmetric derivative (c),
symmetric source function and its antisymmetric derivative (d), and
universally symmetric functions (e), simultaneously belonging to sh,
a, and s types of symmetry.

(with the opposite sign) satisfy identical properties,

ush(x + L/2) = −ush(x), fsh(x + L/2) = − fsh(x), (20)

which are a definition of a sh-symmetric function (called
supersymmetric in [13,25]), when the second half of the
function is exactly opposite to its first half. Note that if
we write Eq. (20) with an arbitrary shift x0, for example,
ush(x + x0) = −ush(x), then by applying this symmetry trans-
formation twice, we get ush(x + 2x0) = ush(x). On the other
hand, since L is the smallest period of ush(x), then 2x0 =
L, and the shift exactly by half the period, x0 = L/2, is a
fundamental condition for existence of the shift symmetry
given by Eq. (20).

Functions of the second and third types of symmetry can
be realized, respectively, by reflection of the fragment û(x)
about an axis drawn through a point x = L/2, or by using
this point as a center of symmetry. Next, one should place the
transformed fragment near the source one and then translate
the resulting pair with the period L. As a result, we obtain
periodic functions of symmetric and antisymmetric types (s
and a types), which satisfy the equations,

us(x + xs) = us(−x + xs), ua(x + xa) = −ua(−x + xa),

(21)

where xs and xa set, respectively, the position of a symmetry
axis and symmetry center. Hereinafter, the indices s, a, and sh
denote symmetric, antisymmetric, and shift-symmetric func-
tions. Term-by-term differentiation of Eqs. (21) by coordinate
and substitution xs ↔ xa leads to equalities,

fa(x + xa) = − fa(−x + xa), fs(x + xs) = fs(−x + xs),

(22)
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from which it follows that s-symmetric functions become a
symmetric, and vice versa [Figs. 1(c) and 1(d)]. By choosing
the origin at a point corresponding to a symmetry element
which exists in a system (xs or xa), s and a functions are re-
duced, respectively, to even or odd. The three symmetry types
listed here correspond to classification of periodic functions
given in Ref. [26].

From the diagrams in Figs. 1(c) and 1(d), one can see that,
for s or a functions, each period L contains, respectively, two
axes or two symmetry points spaced apart from each other by
half a period. Let us prove the validity of this observation by
a s-symmetric function. If the argument x + xs of us(x + xs)
is denoted by x′, then the first equality of (21) takes the
form us(x′) = us(−x′ + 2xs), which can be considered as an
equivalent definition of s symmetry [similarly, a symmetry
can be defined as ua(x′) = −ua(−x′ + 2xa)]. Next, we con-
sider a point x′

s = xs − L/2 shifted by half a period relative
to the symmetry axis xs. For this point we have us(x′) =
us(−x′ + 2x′

s + L); that is, us(x′) = us(−x′ + 2x′
s), and x′

s is
the position of the second symmetry axis shifted by half a
period, as was to be proved.

It is important to note that there exists a class of functions
that possess all three types of symmetries listed; that is,
they are simultaneously s, a, and sh functions. The simplest
example here is a sinusoid, which can be “transformed” into
a certain even or odd function by a chosen shift of the origin,
and also demonstrates sh-type symmetry: Shifting it by half
a period and a sign change accompanying the shift leads to
the same curve. We will consider such functions as a separate
class of functions with the universal type of symmetry and
introduce the label u for it. The importance of this (universal)
class lies in the fact that all properties inherent separately
to ratchets with symmetries s, a, and sh are simultaneously
inherent to ratchets with u-type symmetry in spatial and
temporal dependencies of their potential energies. This leads
to a number of interesting and not always obvious conclusions
presented in this article.

To construct a periodic u-type function, one can take, for
example, an antisymmetric function ua(x) [which uses our
template ũ(x)] and choose its L-width segment, ũa(x). It will
serve as a new pattern, with a-type symmetry. Next, one
should contract the pattern ũa(x) twice along the horizontal
axis, ûa(x) = ũa(2x), place it into the left half period, and in
the right half period place its reflection about the axis x =
L/2. After translating the resulting pair of fragments by the
period L, one obtains the periodic function shown in Fig. 1(e).
Graphically, it is easy to see that this function, in addition
to the properties (21), also satisfies the sh-symmetry property
(20). It is easy to prove rigorously that if a function simulta-
neously has two symmetries, then it also has the third one. For
instance, in the example considered, s and a symmetries arose
by construction, while sh symmetry is proved as follows.
In the first expression of Eq. (21), we make the replace-
ment x′ = x + xs, so that we have us(x′) = us(−x′ + 2xs).
Next, we similarly rewrite the second expression of Eq. (21),
ua(x′) = −ua(−x′ + 2xa) (with x′ = x + xa). Since we con-
sider u(x) that simultaneously possesses s and a symmetries,
then u(x) = ua(x′) = us(x′), and the equality u(−x′ + 2xs) =
−u(−x′ + 2xa) holds. With the replacement x′′ = −x′ + 2xs,
we get u(x′′) = −u(x′′ − 2xs + 2xa). In accordance with our

FIG. 2. Examples of periodic piecewise linear functions: non-
symmetric of a general form (a), antisymmetric (b), symmetric (c),
and universally symmetric (d).

construction, coordinates of a symmetry axis and a symmetry
center are as follows: xs = L/2 and xa = L/4. Therefore,
xs − xa = L/4, u(x′′) = −u(x′′ − L/2) = −u(x′′ + L/2), and
we arrive at property (20), which was to be proved.

The fact that all symmetry types can be obtained by using
the same fragment of an arbitrary curve (pattern), which, by
means of shifts, contractions, and reflections, completes in
the whole period a periodic function belonging to a certain
symmetry type, says that the cardinality of a set of functions
of s, a, sh, and u types are the same. The arbitrariness of a
choice of the pattern suggests an infinitely large number of
realizations of each symmetry type. Therefore, the conclu-
sions of this article, which formulate symmetry properties of
ratchets with potential energies of one or another symmetry
type in coordinate and time variables, are very common and
seem essentially important.

In conclusion of this section, we give examples, by a time
function σ (t ), of concrete implementations of the discussed
symmetry types in case of piecewise linear functions (Fig. 2).
Such functions are widely used in the theory of Brownian
motors. The shape of curve (a) illustrates the most general
case, which does not belong to any of the symmetries under
consideration [like the curves (a) in Fig. 1], but it is reduced
to a curve with a symmetry of the types listed by a certain
choice of the parameters: s type takes place at τ0+ = τ0−,
a type at τ+ = τ−, and u type at simultaneous fulfillment
of equalities τ+ = τ− and τ0+ = τ0− (sh type itself is not
realized). The shape of curve (b) [a special case of (a) at
τ+ = τ− = 0] is often found in ratchet models with sawtooth
coordinate dependencies of potential energies (sawtooth po-
tentials). Finally, the step functions (c) and (d) describe, re-
spectively, asymmetric (with s-type symmetry) and symmetric
(with u-type symmetry) deterministic dichotomous processes
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of potential energy change in time (also known as a two-state
model, which implies that each state does not depend on time).

IV. SYMMETRY PROPERTIES OF RATCHETS WITH AN
ARBITRARY STRUCTURE OF F(x, t ),

In the most general case, a two-variable function F (x, t )
can be expressed in terms of one-variable functions, of co-
ordinate and time, by the following N-component additive-
multiplicative form:

F (x, t ) =
N∑

r=1

g(r)(x)σ (r)(t ), (23)

in which it is assumed that the N value can tend to infinity
[as, e.g., in the case of the function F (x − at ) for which
the representation (23) is obtained by expanding it into a
Taylor series for at at N → ∞]. Setting the N value in (23)
specifies the dependencies under study, and therefore allows
one to give them a clear comparative analysis. For example,
an additive-multiplicative form with N = 2 is frequently used
in the theory of ratchets; we consider such systems in the next
section. In this section, we will start from formulating the
ratchets’ symmetry properties without detailing the structure
of F (x, t ). First we will discuss symmetries of F (x, t ) in a
spatial variable, and then in time. In this consideration, the
transformation of one of the variables is accompanied by the
constancy of the other, which can be considered as a parame-
ter. Possible symmetry types, in a spatial or temporal variable,
are limited to s, a, sh, and u types, which will be enumerated.
Symmetry properties obtained in this way include, as a special
case, those obtained by considering F (x, t ) of a multiplicative
form g(x)σ (t ), in which symmetry types of g(x) or σ (t ) are
separately examined [then, for example, the sign of F (x, t )
can be changed by transformation of only one function, g(x)
or σ (t )]. Next we will consider several important cases of
mixed symmetry, in which certain symmetry types of F (x, t )
are realized only at performing simultaneous transformation
of two variables, x and t .

Symmetry in a spatial variable. The first important, in-
tuitively obvious, and known symmetry property is that in
systems without a preferential direction the ratchet effect
cannot exist [13]. The potential energy of a particle in
such systems evidently possesses s symmetry, U (x + xs, t ) =
U (−x + xs, t ); therefore a corresponding force, F (x, t ) =
−∂U (x, t )/∂x, is a symmetric, F (x + xa, t ) = −F (−x +
xa, t ), and the position of the symmetry axis, x = xs, for the
potential becomes the center of symmetry, x = xa, for the
force. Let us write the following chain of equalities, in which
the second equals sign corresponds to the selected symmetry
of F (x, t ), and the words in parentheses under other equals
signs hereinafter indicate the symmetry operations used [see
relations (12), (13), and (15)]:

v{F (x, t )} =
(shift)

v{F (x + xa, t )} = v{−F (−x + xa, t )}

=
(shift)

v{−F (−x, t )} =
(vect)

−v{F (x, t )} = 0 . (24)

The equality to zero appears as the v{F (x, t )} value is equal
to itself with the opposite sign. This zero proves the absence
of the ratchet effect in the systems under discussion.

The useful symmetry property, namely, the oddness of the
functional v{F (x, t )} in F (x, t ),

v{F (x, t )} = −v{−F (x, t )} ≡ vodd{F (x, t )}, (25)

resides in spatially antisymmetric systems, U (x + xa, t ) =
−U (−x + xa, t ), with a s-symmetric force, F (x + xs, t ) =
F (−x + xs, t ) (a center of symmetry of the potential x =
xa corresponds to a symmetry axis of the force x = xs).
Indeed,

v{F (x, t )} =
(shift)

v{F (x + xs, t )} = v{F (−x + xs, t )}

=
(shift)

v{F (−x, t )} =
(vect)

−v{−F (x, t )}. (26)

Evenness of the functional v{F (x, t )} in F (x, t ),

v{F (x, t )} = v{−F (x, t )} ≡ veven{F (x, t )}, (27)

takes place for shift-symmetric spatial dependence of the
potential energy, U (x + L/2, t ) = −U (x, t ) [or the cor-
responding force, F (x + L/2, t ) = −∂U (x + L/2, t )/∂x =
−F (x, t )]:

v{F (x, t )} =
(shift)

v{F (x + L/2, t )} = v{−F (x, t )}. (28)

The listed symmetry properties are of general character
in the sense that only the spatial variable is subjected to
the symmetry operations, but no transformation of the time
dependence of the force is assumed. Since time reversal does
not occur in the analysis at all, symmetry properties associated
only with coordinate transformations are valid not only in
the overdamped mode, when friction prevails over inertia,
but also for inertial dynamics. The time t can be any fixed
time. In Table I, the “nonsymm” column corresponds to the
considered symmetry properties under transformations of the
spatial variable. The universal type of symmetry combines
s, a, and sh types, so it is not surprising that u type is
characterized by the absence of the ratchet effect in the same
way as s type [Eq. (24)]. If we proceed from the properties of
the two types, a and sh, we also get that the velocity vanishes
but due to the fact that a functional, which is both even and
odd [Eqs. (26) and (28)], can only be zero. Obtaining an
identical result (the absence of the effect for a potential of u
type over the spatial variable) through different considerations
is not surprising, since, as noted above, the fulfillment of two
standard symmetries automatically entails the fulfillment of
the third.

Symmetry in time variable. Among symmetry transfor-
mations with respect to time variable, only one operation
is not connected with time reversal: It is the shift transfor-
mation defining a sh-symmetric function as F (x, t + τ/2) =
−F (x, t ). Since this type of symmetry is similar to the
shift transformation of the spatial variable, F (x + L/2, t ) =
−F (x, t ), then, similarly to (28), we get

v{F (x, t )} =
(shift)

v{F (x, t + τ/2)} = v{−F (x, t )}, (29)

and the evenness of the functional (29) also holds when taking
into account inertial effects.

When using time reversal in symmetry analysis, one should
take into account the presence of Cubero-Renzoni hidden
symmetry in ratchet systems (15), because of which the
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TABLE I. Symmetry properties of ratchets with a multiplicative structure of potential energy, U (x, t ) = w(x)σ (t ), and the corresponding
force, F (x, t ) = g(x)σ (t ), where g(x) = −dw(x)/dx. The information indicated in the table’s cells is as follows: “0”, “even,” and “odd”
denote the absence of the ratchet effect, and evenness and oddness of the functional v{F (x, t )}, respectively. The “(o-d)” stresses mean that the
property is valid only in the overdamped regime. The results in the rows and columns of “nonsymm” are valid for the function F (x, t ) of the
general form, without detailing its structure, since one of the variables does not undergo symmetry transformations.

x-symmetries t-symmetries ( ( )tσ ) 

( )w x  ( )g x nonsymm sh s a u 

nonsymm nonsymm  even  

odd (o-d) 0 (o-d) 

even 

0 (o-d) 
sh sh even even even 

0 (o-d) 

even 

0 (o-d) 

even 

0 (o-d) 

a s odd 0 odd odd 

0 (o-d) 

0 

s a 0 0 0 0 0 

u u 0 0 0 0 0 

obtained symmetry properties of ratchets will hold valid only
in the inertialess overdamped mode. We now turn to the
consideration of such properties, in which the above sym-
metries under coordinate transformation will be replaced by
their time analogs. For an a-symmetric function, F (x, t +
ta) = −F (x,−t + ta), the transformation similar to (24) is as
follows:

v{F (x, t )} =
(shift)

v{F (x, t + ta)}

= v{−F (x,−t + ta)} =
(shift)

v{−F (x,−t )}

=
(C-R)

v{−F (−x, t )} =
(vect)

−v{F (x, t )} = 0 . (30)

The oddness of the functional, similar to (25), holds for
a s-symmetric in time function, F (x, t + ts) = F (x,−t + ts).
The chain of transformations, constituting the proof of this
property, contains all the links included in (26) and one
additional—the use of Cubero-Renzoni symmetry:

v{F (x, t )} =
(shift)

v{F (x, t + ts)}

= v{F (x,−t + ts)} =
(shift)

v{F (x,−t )}

=
(C-R)

v{F (−x, t )} =
(vect)

−v{−F (x, t )}. (31)

In Table I, the line “nonsymm” corresponds to the con-
sidered symmetry properties related to transformations of the
time variable. Just as when considering symmetries related to
transformations of a spatial variable, the u type of symmetry

combines s, a, and sh types, and therefore the functional
v{F (x, t )} is even in F (x, t ) in the general case and equal
to zero in the absence of inertia. This means that the ratchet
effect, which is prohibited in the overdamped regime, can be
permitted by taking inertia into account. The evenness of the
functional [described by Eq. (29)] indicates that the existence
of an additional spatial symmetry of s or a types together with
the multiplicative structure of F (x, t ) leads to the absence of
the ratchet effect even for inertial particles (for the symmetry
of s type, it follows from the fact that the functional is
simultaneously even and odd). If the multiplicative structure
is not assumed, then conclusions of this kind will be justified
only in the case when they are based on proofs including
parallel symmetry transformations both in coordinates and
time. In the cells of Table I, at the intersections of rows and
columns corresponding to s, a, sh, and u types of symmetry,
we present information on the properties of the functional
v{F (x, t )} for these cases.

Mixed symmetry types. Consider some important symmetry
types of F (x, t ) concerning simultaneous transformations of
two variables x and t . Let us prove that there is no ratchet
effect in a system with a potential that has the property
U (x, t + ts) = −U (x + L/2,−t + ts) (in Refs. [13,25] such a
potential was called a supersymmetric potential). It can be in-
terpreted as a potential with sh-symmetric coordinate depen-
dence [corresponding to the same sh-symmetric coordinate
dependence of a force, F (x, t + ts) = −F (x + L/2,−t + ts)]
and with s-symmetric dependence on time. The proof of the
symmetry prohibition of the ratchet effect in such systems
implies the time reversal transformation and (due to this) the
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use of the hidden symmetry (15), namely,

v{F (x, t )} =
(shift)

v{F (x, t + ts)} = v{−F (x + L/2,−t + ts)}

=
(shift)

v{−F (x,−t )} =
(C-R)

v{−F (−x, t )}

=
(vect)

−v{F (x, t )} = 0 . (32)

As Cubero-Renzoni symmetry is used, the ratchet effect dis-
appears (in general, and not as a result of a special tuning
of system parameters) only in the overdamped regime. If the
force has a similar property, F (x + xs, t ) = −F (−x + xs, t +
L/2), but with inverted symmetries, which can be interpreted
as s-symmetric coordinate dependence of the force (corre-
sponding to a-symmetric coordinate dependence of the poten-
tial) and sh-symmetric dependence on time, then the ratchet
effect is absent in the general case, in both inertial and
inertialess dynamics, since the time reversal operation is not
involved in the proof:

v{F (x, t )} =
(shift)

v{F (x + xs, t + τ/2)} = v{−F (−x + xs, t )}

=
(shift)

v{−F (−x, t )} =
(vect)

−v{F (x, t )} = 0 . (33)

Note that simultaneous transformation of two variables
is not equivalent to two separate transformations of each
variable, if we assume, for example, a multiplicative form
of F (x, t ). Due to this, we cannot generally relate the sign
inversion of F (x, t ) to any particular operation in coordinate
and time. Therefore, the used interpretation (and others of a
similar kind) of the mixed transformation as a combination of
two separate transformations of coordinate and time is rather
conditional and can only serve as an intuitive explanation
of the meaning of the transformations being carried out. We
illustrate this with a few examples.

One can try to interpret the property F (x + x0, t ) =
F (−x + x0, t + τ/2) as a symmetry in coordinate with xa =
x0, due to which the sign of F (x, t ) undergoes a first change,
and sh symmetry in time causing the second sign change.
But, as a result, there will be no sign change for F (x, t ). For
a multiplicative force, F (x, t ) = ga(x)σsh(t ), the functional
v{F (x, t )} will be equal to zero due to the asymmetry of
ga(x) [see (24) and Table I]. However, an arbitrary structure
of F (x, t ) together with simultaneous transformation of the
variables yields

v{F (x, t )} =
(shift)

v{F (x + x0, t + τ/2)} = v{F (−x + x0, t )}

=
(shift)

v{F (−x, t )} =
(vect)

−v{−F (x, t )} , (34)

that is, only the oddness of the functional v{F (x, t )} in F (x, t )
[see (25)], but not the absence of a current at all. The property
under discussion can also be regarded as both s symmetry
with respect to coordinate with xs = x0 and a time shift by
half a period without a change in the sign of F (x, t ). But this
interpretation will not change the above result, v{F (x, t )} =
vodd{F (x, t )}.

One can try to interpret the property F (x + x0, t + t0) =
F (−x + x0,−t + t0) as a set of two s symmetries or two a
symmetries. For F (x, t ) of an arbitrary structure, this prop-
erty will not yield any symmetry consequences, whereas

for a multiplicative structure of F (x, t ), the result will be
v{F (x, t )} = 0. Finally, in the case of F (x + x0, t + t0) =
−F (−x + x0,−t + t0) we have

v{F (x, t )} =
(shift)

v{F (x + x0, t + t0)}

= v{−F (−x + x0,−t + t0)}
=

(shift)
v{−F (−x,−t )} =

(C-R)
v{−F (x, t )} , (35)

so v{F (x, t )} = veven{F (x, t )} in the overdamped regime
[the corresponding results for multiplicative forces F (x, t ) =
ga(x)σs(t ) or F (x, t ) = gs(x)σa(t ) are given in Table I].

V. TWO-COMPONENT ADDITIVE-MULTIPLICATIVE
FORM OF THE FUNCTION F(x, t ),

Consider symmetry properties of ratchets for which the
function F (x, t ) contains only two summands, N = 2, in
the representation (23) with g(1)(x) = f (x), g(2)(x) = g(x),
σ (1)(t ) = 1, and σ (2)(t ) = σ (t ). This structure of a two-
variable function is most often used in the theory of ratchets,
since the potential energy and the corresponding force are
sums of stationary and fluctuation contributions,

U (x, t ) = u(x) + w(x)σ (t ), F (x, t ) = f (x) + g(x)σ (t ),

f (x) = −du(x)/dx, g(x) = −dw(x)/dx, (36)

so that the functioning of ratchets can be quite effectively
analyzed analytically within standard methods of theoretical
physics, for example, by using Green’s functions describ-
ing the diffusion dynamics in the potential profile u(x) (see
Ref. [39] and the literature cited therein).

The analysis of symmetry properties of ratchets with the
force F (x, t ) of (36) is complicated by the fact that the func-
tions f (x) and g(x) can relate not only to different symmetry
types, but, even within the same symmetry type, have different
(noncoinciding) axes or centers of symmetry. Since the time
dependence of F (x, t ) is controlled, according to (36), by a
single function of time, σ (t ), it would be expedient to consider
first various symmetry types of σ (t ), based on the above
properties (29)–(31) for σ (t ) = σsh(t ), σa(t ), and σs(t ). The
consideration yields the following relations:

v{ f (x) + g(x)σsh(t )} = v{ f (x) − g(x)σsh(t )},
v{ f (x) + g(x)σa(t )} =

(o-d)
−v{− f (x) + g(x)σa(t )},

v{ f (x) + g(x)σs(t )} =
(o-d)

vodd{ f (x) + g(x)σs(t )} (37)

(the “(o-d)” under the equals signs mean that the equalities
are valid only in the overdamped regime). The first of these
equalities reflects the fact that the ratchet velocity turns out
to be an even functional of g(x) for the sh-symmetric time
dependence. The second and third equations, occurring only
in the overdamped regime, mean that the velocity will be an
odd functional of f (x) at σ (t ) = σa(t ) and an odd functional
of the total force F (x, t ) = f (x) + g(x)σ (t ) at σ (t ) = σs(t )
[in the derivation of the third equality, the transformation
chain is similar to (31)].

For the function σ (t ) of the universal symmetry, σ (t ) =
σu(t ), all three properties (37) are realized simultaneously.
We comment on this situation as follows. In the overdamped
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regime, the oddness of v{F (x, t )} with respect to F (x, t ) of
the additive-multiplicative structure (36), realized with σ (t ) =
σs(t ), means that the functional v{F (x, t )} can be represented,
in the general case, as a sum of two contributions. The first
one is an odd functional of f (x) and even of g(x), and the
second, on the contrary, is an even functional of f (x) and
odd of g(x) (the product of two even or two odd components
is “rejected” by the required oddness with respect to the
total force). If, in addition to the s symmetry of the time
dependence, its sh symmetry takes place (a symmetry is then
realized automatically), then the second contribution should
be absent [according to the first equality in (37)], so that only
the first one remains. In the general case, taking inertia into
account, only the first equality in (37) will be true.

It is interesting to analyze symmetry properties of ratchets
with two s-symmetric functions of coordinate, u(x) and w(x),
characterized by different positions of their symmetry axes.
The corresponding forces then refer to a-symmetric functions
satisfying equalities f (x + x( f )

a ) = − f (−x + x( f )
a ) and g(x +

x(g)
a ) = −g(−x + x(g)

a ) with different symmetry centers x( f )
a

and x(g)
a . Using the a symmetry of the function g(x) leads to

the following chain of equalities:

v{ f (x) + g(x)σ (t )}
=

(shift)
v
{

f
(
x + x(g)

a

) + g
(
x + x(g)

a

)
σ (t )

}

= v
{

f
(
x + x(g)

a

) − g
( − x + x(g)

a

)
σ (t )

}
=

(vect)
−v

{− f
( − x + x(g)

a

) + g
(
x + x(g)

a

)
σ (t )

}

=
(shift)

−v
{− f

( − x + 2x(g)
a

) + g(x)σ (t )
}
. (38)

Next we continue this chain using the a symmetry of the
function f (x):

− v
{− f

( − x + 2x(g)
a

) + g(x)σ (t )
}

=
(shift)

−v
{− f

( − x + 2x(g)
a + x( f )

a

) + g
(
x − x( f )

a

)
σ (t )

}

= −v
{

f
(
x − 2x(g)

a + x( f )
a

) + g
(
x − x( f )

a

)
σ (t )

}
=

(shift)
−v

{
f
(
x − 2x(g)

a + 2x( f )
a

) + g(x)σ (t )
}
. (39)

Equating the beginning of the chain [left side of (38)] and its
end [right side of (39)] and stressing the antisymmetry of f (x)
and g(x) with the subscript, we obtain the following symmetry
property:

v{ fa(x) + ga(x)σ (t )}
= −v

{
fa

(
x + 2x( f )

a − 2x(g)
a

) + ga(x)σ (t )
}
. (40)

The meaning of the result is as follows. If the symmetry
centers are coincident, x( f )

a = x(g)
a , the a-symmetric (in coor-

dinate) function is the total force F (x, t ), at which there is no
ratchet effect, according to the proof (24). When x( f )

a �= x(g)
a ,

although each of the functions is a symmetric, but the total
function F (x, t ) is not, so then, from Eq. (40), the property
v{F (x, t )} = 0 does not follow, and the ratchet effect can
exist. Note that since for the functions fa(x) and ga(x), one
period contains two centers of symmetry shifted by half a
period, then in Eq. (40) each of them can be x( f )

a and x(g)
a .

VI. ASYMMETRIC DICHOTOMOUS FLUCTUATIONS
OF THE FORCE F(x, t )

The absence of time dependence in the parameters of
a system in certain states or at certain time intervals is a
significant fact or an assumption that can simplify calculations
of characteristics of this system. The simplification is caused
by the fact that there appears the possibility of description,
stochastic or deterministic, of time evolution of the system
either in terms of transition rates between these states or
by involving solutions of equations with time-independent
parameters, stitching them at times of transitions between the
states. The simplest situation is realized when there are only
two such states or intervals—dichotomous model. A dichoto-
mous process is usually understood as a process in which
there exist two states, denoted here by the symbols “+” and
“–”, in which a certain stochast ic function of time, R(t ), takes
two values, R+ or R−, that is, R(t ) = R±. The rate constants
of transitions between the states, + → − and − → +, are
designated by γ+ and γ−, respectively. Next, we introduce
the time asymmetry parameter, ε ≡ (γ− − γ+)/(γ− + γ+); its
zero value means the time symmetry of the dichotomous
process. The inverse rate constants of transitions define av-
erage lifetimes of the states, τ± = γ −1

± , which are equal to
each other for a time-symmetric process. The time-asymmetry
parameter is expressed through the average lifetimes of the
states as follows:

ε = τ+ − τ−
τ+ + τ−

. (41)

The average value of R(t ) is determined by the obvious
ratio

〈R(t )〉 = R+τ+ + R−τ−
τ+ + τ−

= R+ + R−
2

+ R+ − R−
2

ε, (42)

which is invariant under the transformation + ↔ −, ε ↔
−ε. For many applications, values R(t ) = R± are considered
for which this average value is zero, 〈R(t )〉 = 0. Then it is
convenient to represent R(t ) as

R(t ) = R[σ (t ) − ε], σ (t ) = ±1, 〈σ (t )〉 = ε, (43)

wherein the stochastic function of time σ (t ) takes values
±1, and its average value is exactly equal to the asymmetry
parameter ε [R is a constant, such as R± = R(±1 − ε)].

A slightly less widespread terminology supposes a
determinist ic process described by a periodic (with a period
τ ) function of time R(t ) that takes two values R+ or R− at time
intervals τ+ and τ− (with τ+ + τ− = τ ) which is also called
dichotomous. The usefulness of such terminology is that the
relations (41)–(43) remain valid for the deterministic process
as well; the difference is only that the average lifetimes τ±
of the states become their real durations [widths of the steps
of the stepwise function R(t ) in Fig. 3]. The fact that the
functions R(t ) or σ (t ) are now periodic allows one to use,
for their characterization, symmetry properties of periodic
functions [see Eqs. (20)–(22)]. Not the least of the facts is
that for calculating characteristics of systems in question, one
can use Fourier components of periodic functions to simplify
the model.

Consider the stepwise function shown in Fig. 3. It is easy
to see that this function is of s-symmetry type, since it has
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FIG. 3. Symmetry transformations of a stepwise function σs(t, ε)
describing a deterministic dichotomous process: original function
(a), the original function shifted by half a period (b), σs(t + τ/2, ε),
and with the sign of ε reversed (c), σs(t,−ε), [which is equal to the
inverted function σs(t + τ/2, ε); see Eq. (44)].

symmetry axes passing through midpoints of long and short
steps. To avoid terminological confusion, we emphasize here
that one should distinguish an asymmetry of a dichotomous
process, characterized by the parameter ε, and the s symme-
try of a periodic function, which describes this process. A
stepwise function is always s symmetric (since it contains the
mentioned symmetry axes), whereas a dichotomous process is
symmetric only at ε = 0. Obviously, in this particular case of
ε = 0, the s-symmetric function σ (t ) is simultaneously sh and
a symmetric, and therefore, it refers to the universal symmetry
type (it is u symmetric). Bearing in mind that the parameter
ε characterizes symmetry properties of the process itself (the
dichotomous process), it is advisable, in description, to explic-
itly indicate the dependence σ (t ) on ε, and also to emphasize
its s symmetry with the corresponding index: σ (t ) = σs(t, ε).
We define the unbiased operation of sign reversal of ε as the
replacement τ+ ↔ τ− performed in the function σ (t ) in such a
way that its symmetry axes do not undergo any displacements
[compare Figs. 3(a) and 3(c)]. Then, one can check directly
(see Fig. 3) that for such functions the following symmetry
property holds:

σs(t + τ/2, ε) = −σs(t,−ε), (44)

which passes, as already noted above, into u symmetry with
ε = 0 [sh-symmetry behavior (44) here, σs(t + τ/2, 0) =
−σs(t, 0), is a particular case of the arising general u sym-
metry]. If the origin of the coordinates is chosen coinciding
with the position of a symmetry axis of the function σs(t, ε),
then its Fourier components become

σ0(ε) = ε, σ j (ε) =
j �=0

2

π j
sin

π j

2
(1 + ε). (45)

Property (44) in Fourier space is written as (−1) jσ j (ε) =
−σ j (−ε). One can verify it by direct substitution of com-
ponents (45) into this equality. When ε = 0 this property
limits possible j values to odd numbers, as it should be for
sh-symmetric functions.

Suppose that, in the multiplicative-additive form (36), the
equality u(x) = λw(x) holds, where w(x) is a sawtooth poten-
tial with the widths of its links l and L − l . Then its derivative
g(x) = −dw(x)/dx is described by a s-symmetric stepwise
function, for which the asymmetry parameter κ = 2l/L − 1
can now be entered as a spatial asymmetry parameter as well
as the designation gs(x, κ ), in full analogy with the description
of time dependence for the above deterministic dichotomous
process. For the function gs(x, κ ), a property similar to the
property (44) will be valid:

gs(x + L/2, κ ) = −gs(x,−κ ). (46)

By virtue of the proportionality of f (x) and g(x), f (x) =
λg(x), the total force will be of the following multiplicative
form:

F (x, t ; λ, κ, ε) = gs(x, κ )[λ + σs(t, ε)]. (47)

The average velocity of such a ratchet is an odd functional
of F (x, t ; λ, κ, ε) [see (31)], and therefore of the function
gs(x, κ ), due to its s symmetry [see also (25)]; hereafter we
denote this fact by the index “odd”. Alternately using the
properties (46) and (44), we get the following:

vodd{gs(x, κ )[λ + σs(t, ε)]}
= vodd{−gs(x,−κ )[λ + σs(t, ε)]}
= vodd{gs(x, κ )[λ − σs(t,−ε)]}. (48)

At ε �= 0 the considered odd functional is a sum of two
contributions, which are even and odd functionals of σs(t, ε)
(see the reasoning in Sec. V) and the latter becomes zero at
ε = 0. On the other hand, it is easy to verify that, from the
relations (48), the average velocity should be turned to zero at
κ = 0, and in the case of λ = 0 at ε = 0.

Next we will perform similar transformations for a ratchet
with a fluctuating force (rocking or forced ratchet), character-
ized by the function

F (x, t ; κ, ε) = gs(x, κ ) + Rs(t, ε), (49)

with zero-mean fluctuations, 〈Rs(t, ε)〉 = 0. Since, by (43),
Rs(t, ε) = R[σs(t, ε) − ε], then the property (44) transforms
here into a similar property for Rs(t, ε): Rs(t + τ/2, ε) =
−Rs(t,−ε). The average ratchet velocity is an odd functional
of F (x, t ; κ, ε) due to s symmetry of this function both in x
and t . Therefore, the average velocity can be represented as a
sum of two contributions: The first one is an odd functional
in gs(x, κ ) and even in Rs(t, ε), and the second, in contrast, is
an even functional in gs(x, κ ) and odd in Rs(t, ε). Alternately
using the properties (46) and (44) for the force (49), we obtain

vodd{gs(x, κ ) + Rs(t, ε)}
= vodd{−gs(x,−κ ) + Rs(t, ε)}
= vodd{gs(x, κ ) − Rs(t,−ε)}. (50)

From this relation, it follows that with κ = 0 only
the second contribution, being an even functional in
gs(x, 0) and odd in Rs(t, ε), is different from zero,
and with ε = 0 only the first contribution, which is
an even functional in Rs(t, 0) and odd in gs(x, κ ).
Since from (50) it follows that vodd{gs(x, κ ) + Rs(t, ε)} =
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−vodd{gs(x,−κ ) + Rs(t,−ε)}, then the average velocity turns
to zero only at κ = ε = 0.

Now let us analyze relations (48) and (50) to clarify the
type of dependences of the functional v{F (x, t ; λ, κ, ε)} on
the asymmetry parameters. For this, expand it in small κ

and ε:

v{F (x, t ; λ, κ, ε)} = A(λ) + κB1(λ) + εB2(λ)

+ κεC(λ) + O(κ2, ε2), (51)

where the coefficients A(λ), B1(λ), B2(λ), and C(λ) are func-
tions of ratchet parameters, independent of the asymmetry
parameters, and O(κ2, ε2) denotes terms of the order κ2 and
ε2. From (48) it follows that v{F (x, t ; λ, 0, ε)} = 0, and hence
A(λ) = B2(λ) = 0. Since equality v{F (x, t ; 0, κ, 0)} = 0 also
holds, then B1(0) = 0, and therefore, the coefficient B1(λ)
itself can be represented as B1(λ) = λB̃1(λ). Therefore, for a
ratchet with the multiplicative force (47), we have the equality

vodd{gs(x, κ )[λ + σs(t, ε)]}
= κ[λB̃1(λ) + εC(λ)] + O(κ2, ε2). (52)

For a ratchet with the fluctuating force (49), the quantity
F (x, t ; λ, κ, ε) and the coefficients in (51) do not depend on λ;
therefore the arguments λ can be omitted. Using the property
v{F (x, t ; 0, 0)} = 0, we obtain A = 0, so that

vodd{gs(x, κ ) + Rs(t, ε)} = κB1 + εB2 + O(κ2, ε2, κε).
(53)

The main results of this section are the formulas (52) and
(53), which show how the presence or absence of spatial
and temporal asymmetry can affect the average velocity of
pulsating and forced ratchets with a sawtooth coordinate
dependence of potential energy and its dichotomous time de-
pendence. For pulsating ratchets, the structure (47) considered
here as a dependence of the force on coordinate and time
corresponds to fluctuations of the potential in amplitude. Then
the formula (52) shows that the ratchet effect is absent in a
spatially symmetric system (κ = 0), while, in the presence of
spatial asymmetry (κ �= 0), stopping points become possible
with a change in time asymmetry when λ B̃1(λ) + ε C(λ) = 0.
One can say that the presence of such stopping points and the
possibility of reversing the motion direction arise due to com-
petition of spatial and temporal asymmetry of the system. The
parameter λ characterizes the degree of pulsing of the ratchet
in amplitude. Indeed, if we introduce the ratio α of potential
energy amplitudes in two states, U−(x) = αU+(x), −1 � α �
1, then α is associated with λ through the following ratio:
α = (λ − 1)/(λ + 1). At λ = 0 the potential energy fluctuates
in sign [α = −1, U−(x) = −U+(x)], and it follows from
Eq. (52) that vodd{gs(x, κ )σs(t, ε)} ≈ κ ε C(0). This means
that the ratchet effect is absent not only at κ = 0, but also
at ε = 0. Using the concept of the “thermodynamic action,”
this fact was first established by Tarlie and Astumian [40] for
a multiplicative flashing ratchet operating in the overdamped
regime with the potential energy fluctuating in sign. The same
effect was noted for adiabatic and high-temperature ratchets in

Refs. [31–33] and the occurrence of stopping points at λ � 1
(|1 + α| � 1), ε � 1 in Ref. [36].

For forced ratchets, the formula (53) shows that the ratchet
effect will be absent only when the equalities κ = 0 and
ε = 0 are fulfilled simultaneously, that is, the effect can exist
(unlike pulsating ratchets) in spatially symmetric systems
solely due to temporal asymmetry. Reducing the factor κB1 +
ε B2 to zero (that is, appearing ratchet stopping points) can
already occur in the first order of smallness in the spatial
asymmetry parameter κ . For pulsating ratchets, the factor
λ B̃1(λ) + ε C(λ) does not depend on κ , so that the appearance
of stopping points can be expected only in the second order of
smallness in κ . This explains the fact that the appearance of
stopping points is more typical for forced ratchets than for
pulsating ratchets.

As for determining the direction of the ratchet velocity
between stopping points, it is a complicated problem which
is not solvable by a symmetry analysis and usually requires
direct calculations. Only in some simple cases similar to
those considered in this section, can one introduce parameters
of the time and spatial asymmetry owing to the stepwise
functional dependence of an applied force on coordinate and
time, with different step lengths determining these parameters.
Then the structure of the dependence of the ratchet velocity
on the asymmetry parameters [given by formulas (52) and
(53)] allows one to judge about stopping point locations, the
velocity signs between them being determined from other
approaches. They suggest calculations of the average velocity
[the coefficients B̃1(λ), C(λ), B1, and B2 in Eqs. (52) and
(53)] or intuitive considerations. Such considerations were
carried out in Ref. [33] for dichotomous fluctuations of the
force of multiplicative or additive forms [given by Eq. (47)
or (49)]. For example, for the potential energy of the multi-
plicative form (a flashing ratchet) with one minimum and one
maximum on its spatial period (the simplest representative
here is a sawtooth potential) which undergoes symmetric
temporal fluctuations (ε = 0, λ �= 0) in amplitude (pulsating
amplitude) or fluctuates asymmetrically in sign (ε �= 0, λ = 0)
with the lifetime of the initial potential profile larger than
that with the opposite sign, the motion direction is determined
by the direction from the minimum to the nearest maximum
position (κ �= 0). If the same single-well potential profile is
a contribution to the energy of the additive form (a forced
ratchet), the motion direction will be opposite, that is, from
the minimum to the farthest maximum position. It is clear that
these regularities can be used in mixed cases (κ �= 0, ε �= 0)
when the motion direction follows from the competition of the
above factors.

In conclusion of this section, we note that the results
formulated here did not use the time reversal operation, and,
therefore, are valid in the general case, taking into account
inertial dynamics. The type of dependence of the average
velocity on parameters of spatial and temporal asymmetry
both for flashing ratchets pulsating in amplitude and for
rocking ratchets has been found in Ref. [33], based on the
solutions obtained within the high-temperature approximation
for stochastic dichotomous fluctuations (that is, for a particu-
lar regime of ratchet operation). In this section, the results (52)
and (53) are obtained without using these restrictions based
only on the analysis of general symmetry properties.
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VII. DISCUSSION AND CONCLUSIONS

The main results of this paper can be divided into three
categories. To the first one, we attribute the derivation of
a compact analytical representation for the average particle
velocity as a series in the inverse friction coefficient. A
solution of the Smoluchowski equation as an expansion in the
inverse friction coefficient was obtained in [33]. Then such
representation was used in [31,34–36,41] to obtain analytical
expressions for the average velocity of high-temperature (low-
energy) ratchets, in which it is sufficient to use only the first
expansion terms. In this work, due to the periodicity of an
applied force F (x, t ) in both spatial and temporal variables, a
compact exact analytical expression for the average ratchet
velocity has been obtained, which also turned out to be
convenient for an effective analysis of symmetry properties of
this expression. Therefore, the second category of the results
of this paper refers to a visual proof of hidden symmetry
of this expression [see Eq. (15)], reflecting the symmetry
of summation indices of the applied force harmonics with
respect to their numbering from left to right and from right
to left. Appendix B gives a similar proof for the particular
case of the hidden symmetry, which arises for forced ratchets
[see Eqs. (B2) and (B10)]. These proofs should be regarded as
alternative and quite simple with respect to the cumbersome
proofs of hidden symmetries found in [37].

To the third category of results, we attribute finding various
symmetry conditions imposed on the function F (x, t ) at which
either there is no ratchet effect or the average velocity is an
even (odd) functional v{F (x, t )}. In order to structure and sim-
plify the presentation of these results, in Sec. III we give the
main symmetry types of periodic functions—shift, symmetric,
and antisymmetric types, as well as the universal type, which
is important in the functioning of ratchets and combines the
first three types. This section is well illustrated by examples
of potential reliefs and applied forces corresponding to them,
as well as by piecewise linear temporal dependencies of
fluctuations of these reliefs that relate to the above symmetry
types (we chose the examples which are either actual for real
systems or models but can clearly demonstrate the features
“hidden” in each of the types). For clarity, we use a construc-
tional method to get periodic functions with the listed types
of symmetries, which applies transformations (compression,
shift, reflection) of one arbitrary pattern. In this section, we
also give proofs of some important, but not quite obvious
at first glance, properties of periodic functions [such as, for
example, (i) the sufficiency of two of the three main types of
symmetries for the appearance of the universal type, or (ii)
the fact that, for symmetric or antisymmetric functions, there
always exist two symmetry axes or two symmetry centers at a
period, shifted by half a period relative to each other].

In Sec. IV we analyze the forces F (x, t ) of an arbitrary
structure in which one of the arguments, x or t , is assumed
to be fixed, and the symmetry of dependence on the second
belongs to the main symmetry types of periodic functions
[see relations (20) and (22)]. To reveal certain properties of
the functional v{F (x, t )}, we depart from the symmetry type
of F (x, t ) and use one of the three symmetry properties,
(12), (13), and (15). The first two of them, vector and shift
symmetries, are general properties; they are not related to

solutions (6)–(9) of the Smoluchowski equation describing
the overdamped regime, and are also valid when taking into
account inertial effects. Therefore, the results obtained from
the use of arbitrary types of symmetries in the spatial variable
and the shift symmetry in the temporal variable are also of
a general nature. The results that imply performing the time
reversal operation and, therefore, use the hidden symmetry
of Cubero and Renzoni (15), turn out to be valid only in the
overdamped regime. Such a “distribution” of results by the
regimes of ratchet functioning leads to a number of interesting
properties. Among them, for example, is the absence of the
ratchet effect for an inertialess Brownian particle with a
multiplicative structure of its potential energy, the time de-
pendence of which is described by a function of the universal
symmetry type, and the removal of this symmetry restriction
by inertia effects for all ratchets except for those in which the
coordinate dependence of nanoparticle potential energy refers
to symmetric or antisymmetric functions.

The simplest realization of the universal type of symmetry
in ratchets is a symmetric dichotomous process of changing
potential energy with time at which the energy fluctuates in
sign so that in each of the states a particle remains for the same
time. If we confine ourselves to adiabatically fast fluctuations,
at which each of the average lifetimes of states, τ+ and τ−, ex-
ceeds the characteristic diffusion time τD = L2/D on a spatial
period L of potential energy changes, then the average ratchet
velocity is independent of the time asymmetry parameter
ε = (τ+ − τ−)/(τ+ + τ−) and inversely proportional only to
the sum of times τ+ and τ− [31]. Therefore, for an adiabatic
ratchet, a dichotomous process can always be only symmetric,
and since the description of a stochastic and deterministic
ratchet is the same in the adiabatic approximation, the time
dependence of potential energy can be described by a function
of time of the universal type of symmetry. This explains the
conclusion of Ref. [34], that the prohibition of the ratchet
effect at dichotomous adiabatically fast fluctuations of poten-
tial energy of an inertialess nanoparticle in sign is annulled
when switching to the inertial regime, but only if the potential
profile is not symmetric or antisymmetric. In this article,
we prove that such inertia-induced “permission” of ratchet
motion is of a general nature. The authors of Refs. [24,42]
observed the presence of the ratchet effect for an electron
flashing ratchet with the potential energy fluctuating in sign.
Since inertial effects are inherent to electron motion, this
observation is in agreement with the conclusions of this paper,
although it can also be explained by the three-dimensional
motion of electrons.

Among other interesting properties of adiabatic ratchets,
we note that the average velocity of a ratchet with a spatially
antisymmetric potential profile, undergoing adiabatically slow
changes, does not depend on the “trajectory” of this change
(type of time dependence) and is determined only by the initial
and final states (shapes) of this profile [30]. A comparative
analysis of adiabatically slow and fast regimes of motion
showed that, for them, the ratchet average velocity will be an
even and odd functional of potential energy, respectively [31].

Note that there are many ratchet systems the description
of which rejects the overdamped approximation and requires
taking into account inertial effects [1]. They are, for example,
molecular shuttles with the motion direction dependent on the
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particle mass [43], underdamped rocked ratchets which are
capable of rectifying the ac input signal more efficiently than
in the overdamped regime [44], and inertial ratchets driven
by nonlinear velocity-dependent friction forces [45]. But it is
one thing just to reveal the removal of symmetry restrictions
in case of rejection of the overdamped approximation, and
another to find the symmetry properties of inertial systems
that require an analysis of solutions of the more complicated
Kramers equation. Thus, the discussion of the symmetry prop-
erties of inertial ratchets is beyond the scope of this article.

The results of an analysis of various combinations of
possible symmetry types, in spatial and temporal variables,
of the multiplicative force F (x, t ) = g(x)σ (t ) is generalized
in Table I. Section V deals with the symmetry properties of
the additive-multiplicative force F (x, t ) = f (x) + g(x)σ (t ),
which is often chosen in describing ratchet systems. Depend-
ing on symmetry of the time dependence σ (t ), the average
velocity can be an even or an odd functional of f (x) and
g(x). The basic properties of ratchets with such F (x, t ) are
contained in relations (37), with the help of which one can
answer the question whether directional motion will arise
under various additional conditions imposed on the functions
f (x) and g(x). For example, if these two functions are chosen
a symmetric, then the ratchet effect will occur only if the
symmetry centers of f (x) and g(x) do not coincide.

The results obtained for asymmetric dichotomous fluctu-
ations of nanoparticle potential energy, widely used in the
ratchet theory, are presented in Sec. VI. A sawtooth poten-
tial profile described by functions u(x) = λw(x) in Eq. (36)
begets a stepwise form of an applied force f (x) = λg(x) for
which it is easy to introduce the spatial asymmetry param-
eter κ . This parameter is defined similar to the temporal
asymmetry parameter ε when discussing the types of time
dependencies σ (t ); this similarity makes efficient presentation
and analysis of ratchet properties, including by analogy. The
main result of Sec. VI is the conclusion that the average
velocity of pulsating and forced ratchets depends differently
on the asymmetry parameters κ and ε [see relations (52)
and (53)]. This result is consistent with the similar result
of Ref. [33], obtained, however, in the framework of the
high-temperature approximation for stochastic dichotomous
fluctuations of potential energy, as well as with the results of
Ref. [36] on the consequences of competition of spatial and
temporal asymmetry of the potential energy.

In conclusion, we note that the symmetry properties of
various ratchet systems found in this paper do not pretend to
be comprehensive. Rather, they provide the key to describing
possible regimes which arise from combinations of symmetry
properties of potential reliefs and their fluctuations in time, by
using basic symmetry transformations.
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APPENDIX A: REDUCING THE EXPRESSION (9) TO
ZERO FOR A TIME-INDEPENDENT POTENTIAL

In the absence of fluctuations F (x, t ) = f (x), Fq j = fqδ j,0,
so in relations (4)–(8) all indices jl are equal to zero, and,
taking into account the equality aq,0 = i/(Dkq), iteration
procedure (7) yields the following representation of Fourier
components of the distribution function:

ρq = L−1δq,0 − iβ

kq
(1 − δq,0)L−1

⎡
⎣ fq +

∞∑
n=2

(iβ )n−1

×
∑

q2...qn ( �=0)

fq+q2 f−q2+q3 · · · f−qn−1+qn f−qn

kq2 · · · kqn

⎤
⎦, (A1)

where β = (Dζ )−1 = (kBT )−1. On the other hand, it is ob-
vious from Eq. (2) that a stationary solution [∂ρ(x, t )/∂t =
0] of the Smoluchowski equation for a particle in a time-
independent periodic potential u(x) with a force f (x) =
−du(x)/dx means no current [J (x, t ) = 0], and the distribu-
tion function itself is equilibrium,

ρ(x) = exp [−βu(x)]

/∫ L

0
dx exp [−βu(x)]. (A2)

Therefore, the average current (the average velocity of di-
rected motion) is zero, so that from Eq. (4) at j = 0 the
equality follows: ∑

q1

fq1ρ−q1 = 0. (A3)

Substituting the Fourier component of the distribution func-
tion (A1) with q = q1 into Eq. (A3) and taking into account
that f0 = 0 and

∑
q �=0 | fq|2/q = 0 (the latter is obvious from

the replacement q → −q), we obtain the sum rule:

∑
q1...qn ( �=0)

fq1 f−q1+q2 f−q2+q3 · · · f−qn−1+qn f−qn

kq1 · · · kqn

= 0, (A4)

which is used to write Eq. (11).

APPENDIX B: HIDDEN SYMMETRY
OF FORCED RATCHETS

For forced ratchets, characterized by an additive structure
of the force

F (x, t ) = g(x) + R(t ), (B1)

the following property of hidden symmetry was given in
Ref. [11],

v{g(x) + R(t )} = v{g(−x) + R(t )}, (B2)

the quite cumbersome proof of which is given in the sup-
plemental materials to Ref. [37]. In the end of Sec. II, we
demonstrated that this property is equivalent to the oddness
of the functional v{F (x, t )} with respect to F (x, t ); that is, the
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FIG. 4. Diagrams that schematically depict summands in
Eq. (B6) (renumbered over the diagrams). The marks on the thin
horizontal lines indicate five values of numbers l of the summation
indices ql , jl , l = 1, . . . , 5. The bold solid and dashed lines (blue
and red in the online version) between the mesh points l and l + 1
correspond to g−ql +ql+1 and R− jl + jl+1 . The circles on these lines
(green in the online version) located above and under the points l
denote the contributions aql , jl .

following equality is fulfilled:

veven{g(x) + R(t )} = 0. (B3)

Taking into account Eq. (9), equality (B3) is equivalent to the
property

R(2l−1){g(x) + R(t )} = 0, l = 1, 2, · · · . (B4)

Let us demonstrate the mechanism for converting this func-
tional to zero.

The substitution of the Fourier component of force (B1),

Fp = Fq j = gqδ j,0 + Rjδq,0, (B5)

into expression (9) leads to the additional summation over
various combinations of products gq and Rj . We will go over
these combinations for a case n = 5 which is still relatively
simple, but already contains certain symmetric combinations,
the sums of which make zero contributions to the functional.
In this regard, the case n = 1 is trivial due to the properties
g0 = 0 and R0 = 0 imposed on a ratchet, and the cases n = 3
and n � 7 can be considered similarly to the case n = 5.

We will write the functional (9) with an additive force at
n = 5 in the following form:

R(5){g(x) + R(t )}
=

∑
q1...q5
j2, j3, j4

gq1 aq1,0
(
g−q1+q2δ j2,0 + Rj2δq1,q2

)
aq2, j2

× (
g−q2+q3δ j2, j3 + R− j2+ j3δq2,q3

)
aq3, j3

× (
g−q3+q4δ j3, j4 + R− j3+ j4δq3,q4

)
aq4, j4

× (
g−q4+q5δ j4,0 + R− j4δq4,q5

)
aq5,0g−q5 , (B6)

which uses the identity a0, j = 0 [see Eq. (5)]. The multiplying
of the terms in the four parentheses gives 16 contributions,
shown schematically in Fig. 4. Contribution 1 contains only
the product of gq and corresponds to the absence of fluctu-
ations, R(t ) = 0, and both forced and pulsating ratchets are
characterized by zero average velocity (see Appendix A). For
odd n values, there exists an additional symmetry, according

to which the expression (11) reverses its sign when changing
the summation variables ql → −qn+1−l (due to an odd num-
ber of factors kl ).

The summations in the other contributions, from 2 to 16,
containing both gq and Rj are considerably simplified by the
presence of delta symbols in expression (B5). They lead to
the fact that the solid lines in the diagrams (not separated
by dashed lines) correspond to the same indices jl , and
vice versa, the dashed lines (not separated by solid lines)
correspond to the same indices ql . Due to this, for example,
the contribution 2 can be written as∑

q1; j2, j3, j4

∣∣gq1

∣∣2
a2

q1,0aq1, j2 aq1, j3 aq1, j4 Rj2 R− j2+ j3 R− j3+ j4 R− j4 .

(B7)

Its conversion to zero is a result of the sign reversal at the
replacement q1 → −q1, which is a particular case of the
transformation ql → −qn+1−l with l = n = 1. The fact that
the contributions corresponding to the symmetric diagrams 3
and 4 are zero is proved in a similar way.

Diagrams 5–8 contain only one dashed line connecting
adjacent points, which corresponds to the R0 value. The equal-
ity to zero of this quantity [imposed on forced ratchets with
〈R(t )〉 = 0] causes zero contributions from diagrams 5–8.

We turn to the consideration of asymmetric diagrams 9–16.
For example, the contribution of diagram 9 is determined by
the expression

∑
q3, q4, q5; j2

a2
q3,0aq3, j2 aq4,0aq5,0gq3 g−q3+q4 g−q4+q5 g−q5

∣∣Rj2

∣∣2

= −
∑

q3, q4, q5; j2

aq3,0aq4,0aq5, j2 a2
q5,0g−q5 g−q4+q5

× g−q3+q4 gq3

∣∣Rj2

∣∣2
, (B8)

in which the equalities q1 = q2 = q3 and j3 = j4 = 0 are
already used due to the presence of the corresponding delta
symbols, and the replacement of indices q3 → −q5, q4 →
−q4, q5 → −q3 is used in writing the right side of Eq. (B8).
Expressions in the left and right sides of (B8) differ not only
by sign, but also by indices in the factors aq, j . Therefore,
the contribution of diagram 9 itself is not zero. But if we
do similar transformations with the contribution of diagram
10, which is symmetric to 9 in the index number space ql , jl ,
l = 1, . . . , 5,

∑
q1, q2, q3; j4

aq1,0aq2,0aq3, j4 a2
q3,0gq1 g−q1+q2 g−q2+q3 g−q3

∣∣Rj4

∣∣2

= −
∑

q1, q2, q3; j4

aq3,0aq2,0a2
q1,0aq1, j4 g−q3 g−q2+q3

× g−q1+q2 gq1

∣∣Rj4

∣∣2
, (B9)

and change summation variables in (B9) as q1 → q3, q2 →
q4, q3 → q5, j4 → j2, then we can verify the following: The
left side of (B9) is the right side of (B8), and the right side
of (B9) is the left side of (B8). This means that the sum
of (B8) and (B9) is equal to the same sum, taken with the
opposite sign, that is, is equal to zero. One can verify that
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the sums of the contributions of symmetric diagrams 11 and
12, 13 and 14, and 15 and 16 also vanish in exactly the same
way.

Thus, it is demonstrated that expression (B6) is equal to
zero, just like the sum of contributions with odd n. The van-
ishing of even functionals (B3) proves the symmetry property
(B2), which is a hidden symmetry, in addition to (15), valid
for forced ratchets. Note that this hidden symmetry is also
a consequence of the symmetry in numbering of summation
indices of harmonics arising in the Fourier representation of

solutions of the Smoluchowski equation with potential energy
periodic in coordinate and time. If we apply two symmetry
properties (15) and (B2) simultaneously,

v{g(x) + R(t )} =
(C-R)

v{g(−x) + R(−t )} = v{g(x) + R(−t )},
(B10)

we get an additional property of hidden symmetry of forced
ratchets, which is the invariance with respect to time reversal
in R(t ).
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