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Fractional Gaussian noise (FGN) with the Hurst exponent H is an important tool to model various phenomena
in biophysical systems, like subdiffusion in a single protein molecule. Considering that there also exists a
confined structure which can be modeled as a channel in these systems, transport and escape driven by FGN
in a deformable channel are investigated in this paper. By calculating the mean velocity, and the mean first
passage time (MFPT) for crossing the nearest bottleneck and the probability distribution of the final position,
effects of FGN and channel structure on the system dynamics are illustrated. Our results indicate that FGN has
a complex influence mechanism under different combinations of H and the noise intensity. For a persistence
case (H > 0.5), the mean velocity decreases but MFPT increases with the increase of the noise intensity and
H . While for an antipersistence case (H < 0.5), when H is small, the relationships among the mean velocity,
MFPT and the noise intensity are exactly the opposite to persistence cases. When H has a large value, the mean
velocity tends to first decrease and then increase. Moreover, effects of the bottleneck and channel asymmetry
are investigated. It is shown that a small H and a large channel width can lead to a large mean velocity and
fast crossing. Besides, a channel asymmetry can affect the system dynamics by inducing asymmetric structure
and adjusting the width of bottleneck. However, the effect of the bottleneck is the main factor. Therefore, a
combination of channel with wide bottleneck and FGN in an antipersistence regime is the optimal choice to
promote the transport and escape. These results provide a basis for the explanation of molecular activity in living
organisms and the design of particle mixture separators.
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I. INTRODUCTION

Many processes from chemistry to biology can be mod-
eled as dynamical systems influenced by noise. Typically,
noise is often assumed as Gaussian white noise. Under this
assumption, a system has a normal diffusion which satisfies a
linear time dependence relationship between its mean-square
displacement (MSD) and time, i.e., 〈x2(t )〉 ∝ t , where 〈x2(t )〉
means the MSD, ∝ is a linear relationship. Besides, in sev-
eral systems ranging from biology to soft matter, there also
exist other types of anomal diffusion obeying the relation-
ship 〈x2(t )〉 ∝ t2H , H �= 0.5, where H called Hurst exponent.
Examples are motion in crowded biological cell environment
like the cytoplasm and plasma membrane in living cells
[1–4], active motion in biological cells [5], diffusion of lipids
in bilayers [6] and lipid granule motion at longer times [7],
subdiffusive motion of bacterial chromosomal loci [8], the
tracer spreading and diffusion in living cells [9,10], single
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particle tracking in micellar solutions [11], and also the dif-
fusion of a single-file [12] and a viscoelastic medium with
a broad range of coupling strengths [13]. In these cases,
fractional Gaussian noise (FGN) with the Hurst exponent H
becomes a more prominent model to characterize the noise.
FGN was found by Kolomogorov first and then reintroduced
by Mandelbrot and Van Ness [14]. After that, more and more
studies focused on FGN and obtained a variety of results.
Basing on the properties of FGN, Wood, Lowen, and others
proposed various methods to generate the corresponding ran-
dom numbers [15–19]. Kou et al. explained the subdiffusion
of a single protein molecule successfully by introducing FGN
into a generalized Langevin equation [20–22]. Pei and Xu
studied the averaging principles for some kinds of stochastic
differential equations with Markov switching processes driven
by fractional Brownian motion (FBM), which is the formally
integration of FGN, and proved the existence and uniqueness
of solutions [23–25]. Deng and Zhu investigated linear and
nonlinear oscillators under FGN with H ∈ (0.5, 1) [26]. In ad-
dition, the first passage time in an open wedge domain or ab-
sorbing boundaries, Kramer’s-like escape in linear Langevin
equation with a harmonic potential and stochastic resonance
in a bistable potential are investigated in some degree [27–31].
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With the deepening of relevant studies on microscale,
confined structures are gradually found in systems obeying
anomal diffusion. Examples are transport of particles in bi-
ological cells, ion channels and reactions in porous media
[32–34]. It has been confirmed that confinement has nonneg-
ligible effects on system behaviors [35]. For this condition,
results in an opening environment without boundary confine-
ment are not sufficient. Therefore, transport and diffusion
in a confined environment become more appropriate and
attractive. To investigate the effect of confinement, Jacobs
et al. proposed a theoretical analysis method to systems
with periodic channels from the diffusion equation and Gibbs
entropy respectively, and gave a Fick-Jacobs (FJ) equation to
characterize the probability density evolution of particles in
a confined environment [36–39]. After this, scholars began
to study systems consisting of confined spaces from various
aspects. Some studies focused on the influences of force and
noise in the presence of a confined channel. For example,
Palmeri found the inhibitory effect of noise on the effective
diffusion in a channel, which opened the door to directed
transport in molecular motors [40]. Wu found the multiple
inversion of the moving direction caused by a transverse ac
force [41]. Others mainly studied behaviors of particles with
various radius and shapes. For instance, Riefler et al. found
that particles with a large radius have a small current [42]. Li
et al. studied the transport of particles with different sizes in an
asymmetric channel, and developed a new method to separate
particles by directing them to opposite directions [43]. These
results are important for the design and realization of fine
separation. Some investigations referred on the geometry of
confinement. Ao studied the rectification of Brownian mo-
tion in left-right and upside-down asymmetric channels [44].
Wang studied the biased transport in a corrugated channel
with a constant width but a varying centerline [45]. Ding et al.
turned their focus to time changing boundaries [46], which
promote a better interpretation for life activities in living
organisms. Researches on other channels, like a pulsation
channel, are also gradually unfolding [47]. However, all these
studies viewed the system noise as independent Gaussian
white noise. Only a few articles concerned the correlation
and large jump of noise in actual systems. For example, Ai
studied the rectified transport in a periodic channel driven
by FBM and Lévy flight without any external forces, and
found a directed transport induced by the spectral distribution
of FBM and the nonthermal character of Lévy noise [48].
Xu investigated effects of Gaussian colored noise, and dis-
covered the enhancement of the suitable noise correlation
time [49].

In this paper, we mainly study influences of FGN and the
structure of a deformable channel on three indexes, including
the mean velocity, the distribution of the final position and
the first passage time for crossing the nearest bottleneck.
The paper is arranged as follows. The motion equation of
particles, the deformable channel, a detailed introduction
about FGN, and definitions of the three indexes are pre-
sented in Sec. II. Effects of the Hurst exponent and the
noise density of FGN on the three indexes are investigated
in Sec. III. Influences of a deformable channel mainly con-
sisting of the bottleneck and asymmetry, are discussed in
Sec. IV.

II. MODEL DESCRIPTION

We consider the transport and escape of particles in a de-
formable channel under the influence of FGN. In this section,
a detailed description to the model discussed here and the
three main factors to be concerned about, namely, the dynam-
ical equation of particles (Sec. II A), FGN (Sec. II B), and the
deformable channel (Sec. II C), are presented. The dynamical
equation of particles in a free environment can be described
by a Langevin equation. The deformable channel, denoted
by w(x), possesses a periodically varying cross section and
reflecting boundaries.

A. Langevin equation

Under the assumption of overdamped conditions, the
Langevin equation obeys

dx(t )

dt
= F +

√
DξH

x (t ), (1)

dy(t )

dt
=

√
DξH

y (t ), (2)

where [x(t ), y(t )] determines the position of the particles at
time t . F is a constant external force along the axial direction
of the deformable channel. In our study, it is set to be 1. ξH

x (t )
and ξH

y (t ) are two independent FGN with the same noise
intensity D in x and y axis, respectively. Generally, ξH

x (t ) and
ξH

y (t ) can be seen as the formally derivation of a FBM, which
is denoted as BH (t ). Relationships and properties of BH (t ),
ξH

x (t ), and ξH
y (t ) are given in Sec. II B.

B. FBM and FGN

For the FBM BH (t ), by virtual of a long memory, it has be-
come a powerful tool to study practical phenomena in systems
like biology, physics and soft matter since being proposed
by Kolomogorov. When BH (t ) is standard, it is a stationary
Gaussian process with zero-initial value, zero-mean, Hurst
exponent H , and autocorrelation function

〈BH (t )BH (s)〉 = 1
2 [t2H + s2H − |t − s|2H ]. (3)

When H = 0.5, correlation function becomes into
〈BH (t )BH (s)〉 = min(t, s), and BH (t ) corresponds to a
normal unit Brownian motion. For H �= 0.5, BH (t ) has two
important properties, self-similarity and stationary increment,
which are very useful in the analytical and numerical research
on systems driven by FBM. For self-similarity, it means

{BH (ct )} ⇐⇒ cH {BH (t )}, (4)

where “ ⇐⇒ ” means that processes in the two sides have
the same probability density distribution, c is an arbitrary
constant. The stationary increment satisfies

{BH (t + �t ) − BH (t )} ⇐⇒ {BH (s + �t ) − BH (s)},
∀�t, t, s > 0, (5)

where �t is the time difference that can be any constant
value. This property Eq. (5) means that the distribution of the
increment only depends on �t , regardless of the start time.
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FIG. 1. Samples of FBM and spectral density S( f ) for different
H . (a) Sample of FBM for H = 0.3; (b) sample of FBM for H =
0.7; (c) S( f ) for antipersistence cases H = 0.3 and 0.4; (d) S( f ) for
persistence cases H = 0.6 and 0.7.

As is well known, FGN can be viewed as the formally
derivation of FBM. Thus, taking ξH

x (t ) as an example, it can
be rewritten as

ξH
x (t ) = dBH (t )

dt
= BH (t + �t ) − BH (t )

�t
. (6)

Then, according to Eqs. (3) and (6), one can obtain the
autocorrelation function r(t ) of ξH

x (t ), satisfying

r(t − s) = 〈
ξH

x (t )ξH
x (s)

〉
= 1

2 [(t − s) + �t]2H + 1
2 |(t − s) − �t |2H

− |t − s|2H , ∀ t > s. (7)

From the perspective of a discrete integer time, r(t ) can be
changed into

r( j − i) = 〈
ξH

x (i)ξH
x ( j)

〉
= 1

2 [( j − i) + 1]2H + 1
2 |( j − i) − 1|2H

− | j − i|2H , ∀ j > i, (8)

where i and j are positive integers. In the long-time limit, the
autocorrelation function Eq. (7) decays as

r(t ) = 〈
ξH

x (t )ξH
x (0)

〉 ∼ 2H (2H − 1)t2H−2. (9)

When 0 < H < 0.5, the process is called antipersistence case.
In this situation, the prefactor 2H − 1 in Eq. (9) is negative.
Hence, the two adjacent steps in a FGN sample are negatively
correlated, which means that the direction of one step is
opposite to its previous step. Thus, as a sum of FGN sample,
the corresponding FBM is more random [see H = 0.3 in
Fig. 1(a)]. When 0.5 < H < 1, the process is the persistence
case. Then, the prefactor in Eq. (9) is positive. The direction
at two adjacent moments tend to be the same, resulting into

a smoother FBM sample [see H = 0.7 in Fig. 1(b)]. By
performing a Fourier transform on the correlation function
Eq. (7), the spectral density S( f ) of ξH

x (t ) can be obtained
as

S( f ) = 2sin(πH )�(2H +1)(1 − cos f )[| f |−2H−1+B( f , H )],

(10)

where B( f ,H )=∑∞
j=1{(2π j+ f )−2H−1+(2π j− f )−2H−1}, and

f is the frequency. From the spectrum Eq. (10), we can
get a more intuitive comprehension to the sample path of
FGN, as shown in Figs. 1(c) and 1(d). For H < 0.5 [see
Fig. 1(c)], when f increases, S( f ) also increases, which means
that the high-frequency components in the FGN sample are
larger than the low-frequency ones. Besides, at the same f
value, the high-frequency components decrease for increasing
H . While for H > 0.5 [see Fig. 1(d)], with the increase of
f , S( f ) decreases, which means that there are more lower
frequency components in the FGN sample. For a fixed f ,
the larger H , the bigger S( f ), and the more low-frequency
components [50].

Considering the self-similarity and stationary increment of
FBM, a simulation of the Langevin Eqs. (1) and (2) can be
realized through the following discrete form:

x(i + 1) = x(i) + Fdt +
√

D(dt )HξH
x (i),

y(i + 1) = y(i) +
√

D(dt )HξH
y (i), (11)

where dt is the time step, ξH
x (i) and ξH

y (i) are FGN random
numbers, and [x(i), y(i)] is the position of the particle at the
ith step. The methods used in this paper to generate ξH

x (i) and
ξH

y (i) are from references [16,17]. Detailed steps are given in
the Appendix.

C. Deformable channel

Compared with a free environment, the existence of a chan-
nel changes the available spaces for the system, intervenes
and regulates the motion trajectory of particles reaching the
channel boundary. Thus, one can say that the channel geom-
etry is an important factor to regulate particle transport and
escape. To explore the effect mechanism, this paper chooses a
deformable channel w(x), which is expressed by the following
function:

w(x) = ±a

[
sin(2πx) + �

4
sin(4πx)

]
± b. (12)

Here, � and b are parameters to determine the shape of the
channel. For �, it affects the symmetry of w(x). When � = 0,
w(x) is symmetric, whereas a nonzero � generates an asym-
metric channel (see the left panel in Fig. 2). To clearly explain
the relationship between the asymmetry of w(x) and �, two
symbols Ll and Lr are introduced. Ll represents the length
between one maximum of w(x) and its adjacent minimum
in the left side. Lr is defined as the length to the adjacent
minimum in the right side. When � < 0, Ll > Lr . The left
side of w(x) is flat and the right side is steep. When � > 0,
Ll < Lr . The left side of w(x) is steep and the right side is flat.
Besides, as � changes, the minimum width of the channel
also varies. Generally, the part with the minimum width in
the channel can be regarded as a bottleneck. Correspondingly,
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FIG. 2. Schematic diagram of the deformable channel w(x) for
different parameters.

the value of the minimum part is the width of the channel
bottleneck. The schematic diagram of Fig. 2(a) indicates that
the bottleneck for � �= 0 is narrower than that for � = 0. As
|�| increases, the width of the bottleneck becomes smaller
and smaller. In addition, b also contributes to the width of the
bottleneck, which is shown in the right figure. Equation (12)
demonstrates that b equals to the distance of the vertical
movement along the y axis. For fixed � and a, the width
changes with b. A large b leads to a larger width. In this
paper, b is called the width parameter and � the asymmetry
parameter.

When there is no w(x), particles can move in its adjacent
surrounding. However, when w(x) exists, the behavior is
different. Walls of w(x) will restrict the particles within its
inside. To clarify the influence of the channel walls on the
transport, an elastic reflection boundary condition is added to
the walls. Under this condition, when the particles arrive the
walls of w(x), a collision process between them occurs, as
shown in Fig. 3. Assume that the position [x(i), y(i)] (square
point 1 in Fig. 3) of the particle is inside the w(x), and the po-
sition [x′(i + 1), y′(i + 1)] (circle point 2 in Fig. 3) calculated
according to Eq. (11) at the next step located outside the w(x).
The line between points 1 and 2 is the original trajectory, and
the tangent of w(x) at the intersection P (diamond point in
Fig. 3) is the reflecting surface. In the collision process, the
particles will perform a reflecting trajectory from point P to
point 3, which is symmetric with the line between points P
and 2. The length of the reflection trajectory is equal to the
distance between points P and 2. Point 3 with position [x(i +
1), y(i + 1)] is the position after the collision which is actually

3
(x(i+1),y(i+1))

1
(x(i),y(i))

                       2
(x'(i+1),y'(i+1))

P

FIG. 3. Schematic diagram of the collision process between par-
ticles and walls of w(x) under the elastic reflection condition.

used in our study. In summary, the reflection boundary of w(x)
changes the original trajectory of the particles, controls the
direction and distance of the reflection, and thus affects the
actual displacement of the particle in each dt .

To illustrate the influence mechanisms of FGN and the
deformable channel on the system behaviors, three indexes are
mainly calculated in this paper. The first one is mean velocity
v, defined as

v = lim
t→∞

1

N

N∑
n=1

xn(t ) − xn(t0)

t − t0
, (13)

where t0 is the initial time, N is the realized sample number,
xn(t ) means the particle position of the nth realization at
time t .

The second index is the mean first passage time (MFPT).
Roughly speaking, it refers to the time the particles cost
to reach a specified location from its initial position. Here,
the MFPT we considered means that particles starting from
the initial position xn(t0) moving until crossing the nearest
channel bottleneck. The corresponding expression is written
as

1

N

N∑
n=1

[inf{t > 0 | xn(t ) � xr or xn(t ) � xl ,

xn(s) ∈ (xl , xr ),∀s < t}],
where inf is the infimum. xr and xl represent the positions of
the nearest bottleneck in the right and left sides, respectively.
For systems driven by FGN, like transport in a harmonic or
symmetric truncated potential, there exist analytical results
between MFPT and H [28,29]. However, due to the space
confinement induced by w(x) in our model, these analytical
results are not suitable. Therefore, numerical results about the
MFPT are given.

The third index is the density distribution Pst of the final
position {xn(t )}1�n�N as t tends to infinity. Here, the symbols

PA = min{xn(t )}1�n�N , PB = max{xn(t )}1�n�N ,

are first introduced. Then, Pst can be approximated as

Pst (m) =
∑N

n=1 χ{xn(t )∈Par(m)}
Nd

, m = 1, 2, . . . , M, (14)

where M is the number of partitions of the interval [PA, PB]
which is set to be 20. d is the class interval, satisfying

d = PB − PA

M
.

Par(m) is the mth interval in the partition with form [PA +
(m − 1)d, PA + md ). χ is the indicator function.

III. INFLUENCES OF NOISE

Noise is an important factor to adjust dynamical behaviors
in random systems. When noise is modeled as FGN, most
results focus on the effects of FGN under open areas. In
this section, the influence mechanisms of FGN parameters
D and H in a confinement are mainly calculated. In the
calculation process, the time step is dt = 10−3. The realized
sample numbers are N = 104 and the total integration number
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FIG. 4. Influences of D on the mean velocity v for different H .

is more than 106 in each sample. Other system parameters are
� = 0, a = 1, b = 1.02.

A. Influences of noise intensity D

At first, the influences of D on v are investigated. It was
proved that under a Gaussian white noise, which also corre-
sponds to our result in H = 0.5, an increase of D contributes
to a decrease of v because of the increased collisions between
particles and channel walls. However, in the antipersistence
case, an increasing intensity D leads to novel changes of v. As
illustrated in Fig. 4(a), for H = 0.3, as D increasing, v also
increases and gradually exceeds the result in H = 0.5. That
is, a large noise intensity in H = 0.3 promotes the particle
transport. However, when H changes from 0.3 to 0.5, this
promoting effect disappears at small D. When D increases to a
certain threshold, this promoting effect appears again, but very
weak. Specifically, for H = 0.4, an increase of D ∈ [0.2, 0.5)
leads to a rapid decrease of v, which is always smaller than
the case H = 0.5. As D continues to increase from 0.5, it
becomes to enlarge v and larger than for H = 0.5 at D � 0.9.
For the case H = 0.45, the promoting mechanism disappears
within a wide range of D. v keeps smaller than for H = 0.5
at any D < 1.1. Thus, the threshold of D that inhibit a particle
transport increases as H is increasing. While in the persistence
case, the influence mechanism is simper than for H < 0.5, as
shown in Fig. 4(b). A larger D leads to a smaller v. Noise with
large intensity prevents a particle transport monotonically. In
addition, as D increases from 0.2 to 1, v drops rapidly, i.e.,
the inhibitory effect of D on the particle transport is obvious.
When D increases from 1, the decline rate of v is so small that
the inhibitory effect can be ignored.

Here, a supplementary explanation to the results in Fig. 4
is given. When D approaches 0, v in Figs. 4(a) and 4(b)
does not approach 0. The reasons for this phenomenon are
as follows. Three factors that affect v are discussed in our
model, i.e., the boundary of w(x), FGN and the external
force F . For the boundary of w(x), it is elastically reflective.
This means that the particles reaching the boundary will be
intercepted, returning to the inside of w(x) and continuing to
move. So, it can be ruled out that the particles are absorbed
by the boundary. For FGN, D determines the density of the
excitation. The larger the D, the larger the displacement of the
particles in each step. For F , it is fixed as F = 1, which means
that it will always push the particles to move to the right.
Therefore, when these three factors work together, even if
D ∼ 0, F will promote the transport, ensure that the particles
are not absorbed, and lead to a nonzero v.
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FIG. 5. Pst of the final positions of particles for different D.

According to the definition Eq. (13), for each trajectory,
its velocity is determined by the differences between the
initial and the final position at an infinity time interval. In our
calculation, the initial position xn(0) of all samples is kept the
same. Therefore, it can be considered that v is only related to
the final position of the particles. For a more thorough analysis
about the influence mechanism of D on v, Pst under different
D is studied and plotted in Fig. 5.

Figures 5(a) and 5(b) show Pst in antipersistence cases. As
presented for every H and D, the corresponding Pst shows
a bell-shape with a maximum. Meanwhile, under different
H , with the increase of D, the peak of Pst shifts in differ-
ent directions and distances. For H = 0.3, as D changes in
[0.5, 0.75, 1, 1.25, 1.5], Pst moves to right at a constant speed
and the shifting distance of the peak caused by each increase
of D keeps almost the same. This means a linear relationship
between D and v in Fig. 4(a). While for H = 0.4, the shifting
direction changes as D varying from 0.2 to 1.5. When D =
0.2, most particles locate in the position around 200. When
D = 0.5, particles cannot move a long distance, but just arrive
at the position around 130. This results into a huge left
directed shift for the peak of Pst and contributes to the sharp
decrease of v at the same time. When D continues to increase
from 0.5, the peak of Pst shifts to the right monotonically.
And per shifting the distance is no more than 20. Therefore,
the corresponding v increases slowly. In summary, Figs. 5(a)
and 5(b) explain and verify the phenomena in Fig. 4(a).
Figures 5(c) and 5(d) are Pst in persistence cases. As shown,
when H = 0.6, the peak of Pst shifts from 250 to 150 as D is
changing from 0.2 to 0.5. Then, when D continues to increase,
the peak still shifts to the left. But each shifting distance is
getting smaller, and eventually disappears. Similarly, when
H = 0.7, Pst presents a similar trend. These results verify the
conclusions in Fig. 4(b).

The narrow escape is an important and interesting question
in nonequilibrium systems, like transistors, fine separation
and the protein valves of biological membranes [51]. Particle
transports through a narrow bottleneck can be seen as a narrow
escape, too. In Fig. 6(a), influences of D on the MFPT is
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FIG. 6. (a) Relations between the MFPT and D for different
H . (b) The single trajectory of particles when escaping from the
bottleneck for D = 0.25 and 1.

investigated. Relationships between them are different for
various values of H . For H = 0.3, an increase of D results into
a decrease of MFPT. This means that, the noise intensity has
a promoting effect on crossing the bottleneck. To illustrate the
influences of D more clearly, single trajectories for H = 0.3
under different D are given in Fig. 6(b). In both cases D = 1
and D = 0.25, it is clear that the particles have to travel
the space between the two bottlenecks in one cell before
escaping from one side or the other. However, when D = 1,
the displacement at each single step in the trajectory is larger,
while for D = 0.25 the displacement is smaller. Under this
case, the time a particle takes to escape for D = 0.2 is longer
than for D = 1. This verifies the phenomenon in Fig. 6(a) that
the MFPT decreases as D increases for H = 0.3. Meanwhile,
from the definitions of v and MFPT, one can guess that the
relation between D and MFPT is opposite to D and v. As
shown in case H = 0.7, MFPT is becoming bigger as D is
increasing, while the corresponding v will become small. In
actual systems, basing on results obtained in this section,
appropriate parameters can be selected to satisfy the require-
ments. For example, in a fine separation, a rapid separation in
a short time can greatly save costs, so a combination of “small
H , large D” or “small D, large H” should be selected. Table I
summarizes the main findings of this part.

B. Influences of Hurst exponent H

For FBM/FGN, the Hurst exponent H is an important pa-
rameter. It determines the self-similarity, correlation function,
and spectral density. Any changes of H can lead to interesting
statistical properties for samples of FBM/FGN and then affect
the transport properties of stochastic dynamic systems driven
by FGN eventually. This has been reflected in Sec. III A. In
Fig. 4(a), there are some intersections between curves, which
are indicating complex influence mechanisms of H . In this

TABLE I. Summary of the influence of increased D on v, Pst , and
MFPT for different H .

v The peak of Pst MFPT

H = 0.3 Increase Move to the right Decrease
H = 0.4 Increase first, Move to the right first,

then decrease then to the left
H � 0.5 Decrease Move to the left Increase
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FIG. 7. (a) Influences of H on v for different D. (b) Influences of
H on MFPT for different D. (c) The single trajectory of particles
when escaping from the bottleneck for D = 0.25, H = 0.3 and
0.7. (d) The single trajectory of particles when escaping from the
bottleneck for D = 1, H = 0.3 and 0.7.

section, the influence mechanism of H on v, Pst, and MFPT
are analyzed in detail.

At first, relationships between H and v are calculated, as
shown in Fig. 7(a). First, for cases H > 0.5, the smaller H , the
larger v is, and the larger H , the smaller v is. This result can
be explained by means of S( f ). As shown in Sec. II B, in the
persistence case, there are more low-frequency components
in FGN, which can result in a long excitation time. Particles
will get enough energy from this long time to move large
distances substantially, and the number of collisions with
channel walls increase. Thus, v decreases. However, H is not
the only factor determining v. Especially for cases H < 0.5,
the influence mechanism of H on v is also affected by D.
When D = 1, the impact mechanism is relatively simple and
monotonously decreasing. In this case, although the high-
frequency component in FGN is large and the excitation time
is short, but D is sufficiently large, most particles can still
have enough energy to move long distances in w(x), and thus
more collisions happen which can lead to a decrease of v.
Moreover, with the increase of H , the excitaion time is longer
and collisions become more frequently. Therefore, v is smaller
as H is increasing. However, when D = 0.25, the influence
mechanism of H on v is complicated. It tends to decrease
first, then increase to a maximum at H = 0.5, and finally
decrease. The result at D = 0.4 exhibits a similar change
behavior as D = 0.25, but the change magnitude is smaller.
That is, FGN tends to promote particle transport at a very
small H . When H continues to increase, the promoting effect
gradually weakens and disappears, eventually transforms into
the inhibitory effect. The interpretation of this phenomenon
is as follows. For the part that v is decreasing, the influence
mechanism of H is the same as for D = 1. But there are only
some particles having enough energy to successfully move
along w(x), which leads to a small v. For the part that v is
increasing, it is mainly because the increase of the excitation
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time induces more particles to get enough energy to move
in the right direction. In addition, similar to Fig. 4, due to
the existence of F and w(x) with a reflection condition, v in
Fig. 7(a) does not approach 0 as H tends to 0.

In Fig. 7(b), relationships between H and MFPT are dis-
cussed under D = 0.25 and 1. First, let us look at the results
for H � 0.5. As H is increasing from 0.5, MFPT in both D
values appear to increase monotonically. The larger H , the
longer time it takes to cross the nearest bottleneck. That is,
H has an inhibitory effect on the crossing behavior. Besides,
from the slope of curves, it can be seen that the inhibition
gradually becomes stronger. Second, our results at H < 0.5
show that the influence mechanism of H on MFPT is affected
by D at the same time. When D = 0.25, MFPT increases first
and then decreases. The MFPT for H < 0.2 is smaller than for
H = 0.5. Thus, in this case, the impact of H on MFPT is as
follows. H first promotes the crossing, but as it increases, this
promoting effect is weakened. When H increases to a certain
extent (approximately equal to 0.18 here), the promoting
effect disappears, H begins to inhibit the crossing, and the
inhibitory effect becomes stronger in a certain H range. When
H increases to 0.3, the inhibition begins to weaken. However,
when D = 1, H always prevents the crossing. In addition, the
slope of MFPT demonstrates that the inhibitory effect is first
enhanced and then weakened.

Here, the single trajectory for different D is also given in
Figs. 7(c) and 7(d) to explain the effect of H on the MFPT.
Figure 7(c) shows the influence of H for D = 0.25. When
H = 0.7, the trajectory remains between its initial position
and the bottleneck in the right side, and the direction of the
movement is always to the right, thereby the particle can
reach the bottleneck and escape in a very short time. However,
when H = 0.3, the trajectory fills the space, and the moving
direction constantly changes. Thus compared to H = 0.7, the
time the particle spends inside of w(x) and the time it takes to
reach one bottleneck is longer for H = 0.3. This is consistent
with the result in Fig. 7(b). Figure 7(d) shows the trajectory for
D = 1. Similar to Fig. 6(a), the displacement at each time step
for H = 0.3 is larger than for H = 0.7. Therefore, the time
required for H = 0.3 to escape is shorter than for H = 0.7.

Figure 8 shows the distribution of the final position
{xn(t )}1�n�N for different H . Figures 8(a) and 8(b) are distri-
bution probabilities at D = 0.25. In Fig. 8(a), when H changes
from 0.1 to 0.4, the peak of Pst shifts to left and then turns
to right. A left shifted distance leads to a decrease of v and
inversely a right directed shift means an increase of v. This
explains the phenomenon shown in Fig. 7(a). In Fig. 8(b), an
increase of H contributes to a left directed shift of the peak,
which equaling to the decrease of v. Meanwhile, distances of
left directed shift keep the same for every increase of H . So,
for H > 0.5 in Fig. 7(a), v is approximately proportional to
H . Figures 8(c) and 8(d) are distributions under D = 1. When
H increases, the peak of Pst turns to move in the left direction,
which explains the monotonically decreasing behavior of v in
Fig. 7(a). Another interesting phenomenon shown in Fig. 8 is
that, when H increases between (0,1), the shape of Pst changes
from chunky to thin and finally becomes chunky again. In
other words, when H is large enough to 1 or small enough
to 0, the positions of the particles at the final state are more
dispersed, and when the intermediate value of H is taken,
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FIG. 8. Influences of H on the Pst .

the distributions of the particles at the final state are more
concentrated. Table II summarizes the main findings of this
part.

IV. INFLUENCES OF DEFORMABLE CHANNEL

By means of increasingly sophisticated growth methods,
a cross section of a channel can be modulated along its
axis and this enables one to organize channels fabricated
from asymmetric unit cells and diverse geometries [52]. As a
result, studies about the transport in such confined structures
are essential. In this section, transport properties and escape
under different channel structures in the presence of FGN
are studied, mainly including effects of channel bottleneck
(Sec. IV A) and channel asymmetry (Sec. IV B).

A. Influences of the width parameter b

According to Sec. II C, there are two factors to regulate the
width of the bottleneck, b and �. The parameter b regulates
the width by controlling the vertical movement of the channel
boundary in the y axis and only affects the width. In this part,
effects of changes in b are analyzed. � is set to be zero.

Figure 9 shows relationships between v, MFPT and b. In
Figures 9(a) and 9(b), regardless of the values of H and D, v

will increase as b is increasing. For this, it can be considered
that, although H affects the particle transport, the influence of

TABLE II. Summary of the influence of increased H on v, Pst

and MFPT for different D.

v The peak of Pst MFPT

D=0.25 Decrease first, Move to the left, Increase first,
then increase, and then right, and then decrease, and
finally decrease finally left finally increase

D=0.4 Decrease first, Move to the left,
then increase, and then right, and
finally decrease finally left

D=1 Decrease Move to the left Increase

022114-7



RUOXING MEI, YONG XU, AND JÜRGEN KURTHS PHYSICAL REVIEW E 100, 022114 (2019)

b
1 1.2 1.4

V

0.2

0.4

0.6

0.8
(a) H=0.4

D=0.25
D=1

b
1 1.2 1.4

V

0.1

0.2

0.3

0.4

0.5
(b) H=0.6

D=0.25
D=1

b
1 1.2 1.4

M
F

P
T

5

10

15

20

25
(c) H=0.4

D=0.25
D=1

b
1 1.2 1.4

M
F

P
T

5

10

15

20

25

30
(d) H=0.6

D=0.25
D=1

FIG. 9. Influences of b on v and MFPT for different H .

b on the particle movement is the dominant factor. The larger
b, the larger the width of the bottleneck is. The available space
near the bottleneck for particles is larger, and the difficulty
to pass through its vicinity becomes smaller. Thus, particles
can travel a long distance in the channel and thus have a
large v. Therefore, for particles, any combination of H and
a large b can cause a large transport distance in the channel.
Meanwhile, influences of H cannot be ignored. It can be
clearly seen that v is larger at H = 0.4 than at H = 0.6. That
is, in the combination of (H, b), the smaller H , the longer
particles move. Influences of b on the MFPT is presented in
Fig. 9(c). Similar to the former section, it is opposite to the
relationship between v and b. With the increase of b, MFPT
for particles to successfully cross the nearest bottleneck is
decreasing. When b is increasing to a very large value, lim-
iting to infinity, the confined space composed of two channel
boundaries and the width of the bottleneck are infinite. Then it
can be approximately considered that the transport of particles
is no longer affected by w(x). Therefore, for systems with
confinement, the existence of w(x) prevent the transporting
and crossing behaviors. The inhibitory effect weakens as b is
increasing. In addition, our results for b = 1.4 and 1.5 indicate
that when b reaches a certain threshold, the obstruction effect
is basically unchanged and can be neglected.

For a better understanding of the influence mechanism of
b, the distribution Pst of final position is given in Fig. 10. Our
results show that as b is increasing, the peak of Pst always
shifts to the right. That is, for a larger b, most of the particles
locate in a far position, and contribute to a larger v. Besides,
comparing Figs. 10(a) and 10(c), under the same b and D,
the peak of Pst also depends on H . When b = 1.02, the peak
for H = 0.4 locates at 170 and at 210 for H = 0.6. At this
time, larger H results into larger v, while for b = 1.08, 1.2 and
1.5, the peak position for H = 0.4 is bigger. That is, for cases
with wide bottleneck, FGN with small H does more benefit
to the transport. Meanwhile, results in Figs. 10(b) and 10(d)
demonstrate that the final position of particles for H = 0.4
is always farther than for H = 0.6. Therefore, properties of
Pst verify the conclusion that a combination of larger b and
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FIG. 10. Influences of b on the Pst .

smaller H is a prominent choice. Table III summarizes the
main findings of this part.

B. Influences of the asymmetric parameter �

Channels under different � in Fig. 2(a) show that, when
� changes from 0 to nonzero, w(x) varies from symmetric to
asymmetric and the bottleneck becomes narrow. Thus, when
� varies, both the bottleneck and the channel asymmetry af-
fect the particle movement simultaneously. Here, the influence
mechanism of these two aspects induced by changing of � is
analyzed.

Figure 11 plots v-� curves for different H . Our results
indicate that v for H = 0.4 is larger than for 0.5. This confirms
the conclusion that v increases as H decreases. As men-
tioned before, when � �= 0, w(x) is asymmetric. According
to Ref. [48], the asymmetry of the confinement can induce
a directed transport of particles and produce a net velocity.
Here, on the one hand, the channel asymmetry caused by |�|
leads to an increase of v. On the other hand, according to the
conclusion in Sec. IV B, the decrease of the bottleneck width
induced by |�| suppresses the increase of v. The results in
Fig. 11 indicate that, as |�| increases, v decreases. Therefore,
in the process of increasing |�|, the inhibitory effect induced
by the narrow bottleneck is always the main factor. Besides,
� in this figure is symmetric around 0. Under this value, if
H = 0.5 and no external force acting on the particles, the
symmetric structure of � can be reflected in v, i.e., the v − �

curve is symmetric around � = 0. Then when an external
force is added, like f = 1 in this paper, it will break the
original symmetry and the v − � curve becomes asymmetric,
as shown in the dotted line. However, when the excitation
changes from white noise to FGN, this asymmetry is not
maintained (see the solid line in Fig. 11).

TABLE III. Summary of the influence of increased b on v, Pst ,
and MFPT.

v The peak of Pst MFPT

b Increase Move to the left Decrease
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FIG. 11. Influences of � on v for different H at D = 1, b = 1.2.

V. CONCLUSION

Herein, we study the transport and escape in systems
confined by a deformable channel under the excitation of
FGN. Both FGN and channel geometry play a key role in
particle transport in such a system. The coherence of FGN
and confinement may give rise to complex transport features.
Some interesting phenomena are found in our research by
calculating the mean velocity, the first passage time and the
distribution of the final position as a function of system
parameters, like the Hurst exponent, noise intensity of FGN
or channel geometry.

At first, influence mechanisms of FGN parameters, in-
cluding the Hurst exponent and noise intensity, are studied
in detail. For any channel structure, a small Hurst index
induces a more efficient transport and escape. For the persis-
tence case, the mean velocity decreases monotonically as the
noise intensity is increasing, which is explained by analyzing
the distribution of the final position for particles. Obviously,
the first passage time to crossing the nearest bottleneck de-
creases. For the antipersistence case, the Hurst index and noise
intensity regulate the transport in the channel together. For
example, when the Hurst exponent is around 0.3, the mean
velocity is proportional to the noise intensity. However, when
the Hurst exponent is changing from 0.3 to 0.5, and the noise
intensity is increasing, the mean velocity will decrease first
and then increase. Thus, under appropriate parameters, FGN
can not only promote the system transport behaviors, but also
prevent the motion.

Meanwhile, effects of channel shapes, consisting of width
and symmetric parameter, are studied too. For any Hurst
exponent, both the reduction of the width parameter and the
increase of the asymmetry parameter can lead to a decrease
in the width of the bottleneck, resulting in a decrease of the
mean velocity and an increase of the first passage time. Thus,
compared to the free environment, the existence of channel
and its bottleneck hinders the transport and escape of particles.
In addition, the increase of the asymmetry parameter can also
destroy the symmetric balance in the channel, and thereby
facilitating the transport. However, this influence is secondary,
and the effect of the reduction in the width of the bottleneck is
the main mechanism. On this basis, it is meaningful to select
appropriate model parameters to design an equipment basing
on the purpose and interpret phenomena in actual systems.

Although this paper mainly focuses on the average velocity
and the first passage time in the deformable channel, the
mean square displacement and the autocorrelation function of
velocity and displacement are also important parameters to
characterize the transport of particles. Therefore, these indi-
cators should also be considered when studying the transport
in channels, which is a future work.
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APPENDIX

Here, a detailed description of generating FGN random
numbers are given. For different H values, we choose a
corresponding suitable method.

For the antipersistent case 0 < H < 0.5, a fast and accurate
algorithm provided by Lowen and Bardet [17,18] is used. The
algorithm consists of the following steps:

(1) Defining a function R(i) with period 2L,

R(i) =
{(

1 − (
i
L

)2H)
/2, 0 � i � L

R(2L − i), L < i < 2L
,

where H is the Hurst exponent satisfying 0 < H < 0.5, and L
is the needed sample length.

(2) Performing a discrete Fourier transformation of {R(i)},
R(k) = F{R(i)}.

(3) Generating another series {X (k)} satisfying

X (k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, k = 0√
R(k)

2 (G1(k) + iG2(k)), 1 � k � L − 1√
R(k)ν, k = L

X ∗(2L − k), L < k < 2L

,

where ν, G1, and G2 are i.i.d. standard Gaussian random
numbers and ∗ represents the complex conjugate operation.

(4) Computing the inverse Fourier transformation of
{X (k)}, denote as X ,

X (i) = F−1{X (k)}.
(5) Sample values of the FBM process {BH (i)} is the

proportion to the difference of {X (i)}, i.e.,

BH (i) =
√

2L[X (i) − X (0)].

The FGN sample random number is obtained by differentiat-
ing the sample series {BH (i)} in step (5).

For the persistent case 0.5 < H < 1, a circulant matrix em-
bedding method by using the fast Fourier transform provided
by Wood and Chan [16] is used here. The concrete simulation
procedure is as follows.

(1) Choose an integer I = 2p � 2(L − 1). According to the
correlation function Eq. (8) of FGN, define a R-dimensional
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vector V with the form

V =
[

r(0), r(1), . . . , r

(
I

2
− 1

)
, r

(
I

2

)
,

r

(
I

2
− 1

)
, . . . , r(1)

]
.

(2) Computing the fast Fourier transform of the vector V ,
denoted as U ,

U = [u(1), u(2), . . . , u(I )] = F{V }.

(3) Generating a I-dimensional random complex vector Z ,
satisfying

Z = G1 + iG2,

where G1 and G2 are two independent Gaussian random
numbers with zero mean and unit variance.

(4) Reassigning the vector U in step (3), as follows:

U = [u(1), u(2), . . . , u(I )] =
√

UZ.

(5) Performing a Fourier transform on U and extract the
real part of the first L numbers of the transformed sequence,
one obtains a L-pointed FGN sample path with the autocorre-
lation function Eq. (8).
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