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Directed negative-weight percolation
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We consider the negative-weight percolation model on directed graphs. In particular, we study the model on
a two-dimensional, weighted, periodic, centered square lattice. Bond weights are taken from a distribution that
allows for both positive and negative values. For a given realization of the disorder, a minimally weighted directed
loop and path configuration is determined by performing a nontrivial transformation of the original lattice into
a minimum-weight perfect matching problem. For this problem, fast polynomial-time algorithms are available,
thus we could study large systems with high accuracy. Depending on the fraction of negatively and positively
weighted bonds on the lattice, a continuous phase transition is identified and its characterizing critical exponents
are estimated by means of a finite-size scaling analysis. We observe a strong change of the universality class
with respect to standard directed percolation as well as with respect to undirected negative-weight percolation.
Furthermore, the relation to directed polymers in random media is illustrated.
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I. INTRODUCTION

The study of phase transitions is one of the main areas
in statistical physics [1]. In particular one is interested in
universal properties, which are independent of microscopic
details, but depend on symmetry properties of the underlying
model only. This allows one, for second-order phase tran-
sitions, to group systems or models in universality classes,
which are characterized by a set of critical exponents and
their functional relations, i.e., scaling laws. One of the most
basic and intensively studied universality classes is that of
standard percolation [2,3], where a certain fraction p of sites
or bonds is occupied. Thus, one addresses the basic question
of connectivity, such that within numerical studies, one has
to obtain connected clusters of occupied sites. Beyond a
critical value pc, the percolation threshold, a system-spanning
cluster emerges. Beyond its fundamental importance, often
other phase transitions can be understood, after a suitable
transformation, in terms of percolation, e.g., the percolation
of Fortuin-Kasteleyn clusters [4] in the Ising model.

In standard percolation, bonds do not carry any weight,
thus, one can assume all weights being one, i.e., they are
positive. Recently, a bond percolation model called “negative-
weight percolation” (NWP) was introduced [5], where ran-
dom weights are attached to bonds, and, in particular, weights
of either sign are allowed. For NWP, one is interested in a
collection of loops and possibly paths which exploit the neg-
ative bonds as much as possible, such that the global weight
is minimized. As an interpretation of the NWP problem, one
can imagine an agent that takes a trip on a graph along the
path. Whenever he travels along a positively weighted bond,
the agent has to pay some resource according to the positive
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value. However, he will harvest some resource, if he travels
along a negatively weighted bond. Therefore, the optimal
loop and path configuration obtained in the context of the
NWP problem provides the optimal route of the agent (path),
possibly in competition with other agents (loops), to gain as
many resources as possible. Only paths or loops which lead
to a larger amount of harvested resources as compared to the
paid resources will occur. Algorithmically, this means special
global optimization polynomial-time “matching” algorithms
have to be applied, see Sec. II. This is in contrast to standard
percolation, where the clusters can be constructed by a local
algorithm. Note that the algorithm in its basic implementation
yields a collection of loops globally minimizing the weight.
But by suitably “decorating” the lattice, also the creation of
one or several paths can be enforced, which is useful to study
percolation phenomena.

It has been shown that for standard NWP two distinct
phases can be identified depending on a disorder parameter ρ,
which controls the amount of negative weights: (i) for small ρ

all geometric objects are rather small and straight-lined, which
reflects a self-affine scaling; (ii) for large ρ the geometric
objects scale self-similar and can wind around the lattice,
i.e., percolate. In Ref. [5] the disorder-driven phase transition
is investigated by means of finite-size scaling analyses and
it turns out that the critical exponents are universal in 2D
(different lattice geometries and disorder distribution are stud-
ied). The NWP model exhibits a new type of behavior giving
rise to a different universality class compared to standard
percolation, maybe not unexpectedly due to the global nature
of the model. Further studies regarding isotropic NWP address
the influence of dilution on the critical properties [6], the
upper critical dimension (du = 6) [7], another upper critical
dimension (dDPL

u = 3) for densely packed loops far above
the critical point [8], the mean-field behavior on a random
graph with fixed connectivity [9], Schramm-Loewner evolu-
tion properties of paths on 2D lattices [10], and loop-length
distributions in several dimensions [11].
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In standard percolation, there is no directional informa-
tion in the connectivity pattern. Thus, not surprisingly, the
critical exponents describing this phase transition differ from
those that describe the phase transition in directed percolation
(DP) [12], which is a variant of standard percolation, where
bonds carry a direction leading to an anisotropic behavior.
Note that this directionality can be interpreted as time di-
rection, making DP relevant for the description of nonequi-
librium processes. Because of the anisotropic nature of the
cluster building process in DP, correlations are not governed
by one but two correlation lengths: ξ‖ and ξ⊥. In DP the
percolation threshold separates one phase (p < pc), where
all cluster building processes stop eventually, so just finite
clusters can occur, from another phase (p > pc), in which
clusters can survive each time step and, as a consequence, can
grow infinitely large.

So far the above mention NWP model has been investi-
gated only on nondirected lattices or graphs. Thus, as com-
pared to the change which occurs when moving from standard
to directed percolation, it is valid to ask whether the directed
variant of NWP, which is introduced and studied in this work,
gives again rise to a new type of behavior.

While DP is defined as a local growth process, the path-
like clusters in NWP emerge due to global optimization.
This is also true for directed polymers in random media
(DPRM) [13], but unlike NWP, DPRM does not feature
a phase transition, since all paths are system spanning by
construction. In directed NWP, as we will see below, the
paths may differ in length. Also the appearance of negatively
weighted loops that cannot be crossed by the path influence
its shape, since the loops block regions of the underlying
lattice, which become inaccessible to the path. Furthermore,
in directed NWP (in contrast to DPRM) the path can span
the system several times, allows it to pick up many negative
weights. As a consequence, it can be affected by itself. For
those reasons the path in directed NWP cannot be consid-
ered as optimal on its own and its scaling behavior might
differ from DPRM. Nevertheless, it will be outlined in this
article that NWP and DPRM are partially related to each
other.

In this article we study by computer simulations [14] the
disorder-driven, geometric phase transition at ρc and deter-
mine its characterizing critical exponents. The remainder of
this article is organized as follows. In Sec. II, we introduce the
model in more detail and explain the algorithm. In Sec. III, we
describe the finite-size scaling technique that has been used to
estimate the critical exponents numerically and present our
results. We close with a summary in Sec. IV.

II. MODEL AND ALGORITHM

The underlying graph G = (V, E ), V denoting the set of
nodes and E the set of bonds (often called edges in graph
theory), at hand is a two-dimensional, directed square lattice.
For our geometry, the bonds (i, j) point either to the bottom
left or bottom right [cf. Fig. 2(a)]. The lattice boundaries are
periodic meaning the lattice can be considered as placed on a
torus in a topological sense. Each bond e ∈ E carries a weight
ωe that is taken, like in previous studies [5–7] (but somehow
arbitrary, due to universality), from a “Gauss-like” distribution

(a) (b)

FIG. 1. (a) A realization of the disorder on a 7 × 6 lattice. The
weight of the bonds is −1 (black) or +1 (gray). (b) The correspond-
ing solution of the directed NWP problem (thick), exhibiting one
path and two loops.

characterized by a tunable disorder parameter ρ:

P(ω) = (1 − ρ)δ(ω − 1) + ρ exp(−ω2)/
√

2π, 0 � ρ � 1.

(1)

Thus, the proportion of negative and positive weights can be
tuned by a disorder parameter ρ. The shape of the lattice is
rectangular in all simulations, with different side lengths L‖
and L⊥, so the number of nodes is N = |V | = L‖ · L⊥. Due to
the construction of the underlying periodic lattice, L‖ has to
be even, and L⊥ has to be odd. Bond directions are arranged
as can be seen in Fig. 2(a). According to this illustration, L‖
describes the number of rows and 2L⊥ the number of columns
of the lattice.

Given a realization of the disorder, an optimal configura-
tion consisting of an arbitrary number of loops, i.e., closed
paths, and one additional path (possibly with zero length)
is computed. Mathematically, paths and loops are subsets of
bonds. Here we chose to study the model in the way such
that each configuration must fulfill following requirements: (i)
One endpoint of the path is pinned at the top middle. However,
it is also allowed that no path occurs. (ii) The loops and the
path are not allowed to cross or even touch each other. (iii)
The configurational energy,

E =
∑

L∈C
ωL, (2)

has to be minimized. Here ωL denotes the sum
∑

e∈L ωe

of all bond weights belonging to loop or path L. Note that
Eq. (1) provides real numbers, so the optimal configuration is
unique for each realization of the disorder. Since the number
of loops is not specified and even the path might not appear
(zero length), also an empty configuration might be valid. This
would be the case, e.g., if all bonds carried a positive weight.
Loops and also the path can solely appear, if their weight is
negative, otherwise E would not be minimal, since an empty
configuration has E = 0. Furthermore, since all bonds point
either to the left or right bottom, loops can appear only, if they
span the lattice in vertical direction. Therefore, their smallest
length is L‖. Figure 1(a) shows a realization of the disorder
on a 7 × 6 lattice, in which the weight of the black bonds
is −1 and of the gray ones +1. The corresponding optimal
configuration (represented by thick bonds) is illustrated in
Fig. 1(b). It consists of two loops and one path and its
configurational energy is E = −8.

To find the optimal configuration, common shortest path
algorithms cannot be used, since they are not able to handle
negatively weighted bonds in a proper way. Note that it is
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FIG. 2. Illustration of the algorithmic procedure for a periodic
lattice of size L‖ = 3 and L⊥ = 4. For the sake of clarity, the
procedure is just depicted for a directed lattice that does not contain
a finite path. In Sec. II it is described how the construction of the
auxiliary graph must be altered to force a path in the lattice that starts
at the top middle and terminates at any node. (a) Original lattice with
weighted, directed bonds. (b) Auxiliary graph with proper weight
assignment. The thick bonds carry the weight as the respective bonds
in the original graph. The weights of all other bonds are zero.
(c) Illustration of the MWPM: black bonds are matched and gray
ones are unmatched. For the sake of clarity, bond weights are not
depicted. (d) Reconstruction to the original lattice taking the MWPM
result into account.

tempting to think that one could shift all weights to positive
values by adding a constant to all weights, but this actually
changes the behavior, as it was detailed before [5]. To obtain
the minimum-energy configuration, we transform the original
graph to an appropriate auxiliary graph. The basic approach
how to set up these auxiliary graphs to calculate shortest paths
in graphs involving negative weight is established in computer
science [15]. Nevertheless, since this auxiliary graph is differ-
ent from the undirected NWP case, and for the convenience
of the reader, we present the transformation in detail in
the following. The main step is, having the auxiliary graph,
to determine a minimum-weight perfect matching (MWPM)
[16–18]. The MWPM provides all information to reconstruct
the original graph exhibiting the correct loop and path config-
uration. Figure 2 is an illustration of the algorithmic procedure
for a given realization of the disorder for a periodic lattice
of size L‖ = 3 and L⊥ = 4. For reasons of clarity, only loops
but no path can occur here. Furthermore, for simplicity only
bond weights +1 and −1 are used in the example in contrast
to Eq. (1). Guided by Fig. 2, we give a concise description
how the algorithm works. Afterwards, we explain how the
algorithm must be altered to enable the appearance of a
path.

(1) The transformation to the auxiliary graph G′ = (V ′, E ′)
is illustrated in Fig. 3 for two nodes. All labels in the figure
will be used in the following description. First, all nodes
u ∈ V are duplicated to u1 and u2, i.e., u1, u2 ∈ V ′. These
duplicated nodes are connected in G′ by a new undirected

(b)(a)

FIG. 3. The mapping procedure to the auxiliary graph shown for
two nodes of the original graph.

bond {u1, u2} with weight zero. Subsequently, for all bonds
(u, v) ∈ E (directed from u to v) two additional nodes n1, n2

and three bonds {u2, n1}, {n1, n2}, and {n2, v1} are added to
G′, forming a path connecting u2 to v1 via n1 and n2. The
weight ω of bond (u2, v1) is assigned either to {u2, n1} or
{n2, v1} (the choice does not change the final result). The other
two bonds get a weight of zero. The resulting auxiliary graph
is shown in Fig. 3 for two nodes and in Fig. 2(b) for a 3 × 4
lattice.

(2) A MWPM is determined on the auxiliary graph via
exact combinatorial optimization algorithms [19]. A matching
M of a graph is a subset of bonds M ⊂ E , such that no two
edges are incident to the same node, i.e., no edges “touch.”
The nodes connected by a bond in M are called matched.
A perfect matching is a matching of cardinality N/2, i.e.,
each node is connected in M to another node. Finally, the
weight of a matching is the sum of the weights of the bonds
in the matching. Thus, a minimum (perfect) matching is the
minimum-one among all (perfect) matchings. It is possible
in polynomial time to obtain a MWPM. The algorithm we
use exhibits a worst-case complexity O(N3). For the given
example, the MWPM is illustrated in Fig. 2. Bonds that belong
to the MWPM are represented bold and black.

(3) After determining the MWPM, the original graph can
be reconstructed. We will now explain how this works, and
this will explain why the auxiliary graph is constructed as
it is. We consider a bond that links two additional nodes (in
Fig. 3 these nodes are n1 and n2). There are two cases: either
{n1, n2} does not belong to the MWPM, or it does. In the first
case, since the matching is perfect, n1 must be matched to
u2 and n2 must be matched to v1 since for both nodes no
other possible matching partners are available. Thus, through
these two edges in the MWPM, the weight ω appears in the
MWPM’s weight. In fact, this pair {u2, n1} and {n2, v1} of
matched bonds with weight ω corresponds to the bond (u, v)
(with weight ω) to be part of the path. The path has, in general,
to continue; i.e., it must lead into u and go out of v. That this
will happen automatically becomes clear from the following
observation: Since u2 is already matched, the bond {u2, u1}
will not be part of the MWPM. Therefore, u1 in turn has to
be matched to one of its other neighbors, which are nodes of
“n-type,” say n′

2. Thus, through the definition of a matching,
n′

2 cannot be matched to n′
1, hence, n′

1 must be matched to
one node of “2-type,” call it w2. Hence, one has again a
pair {w2, n′

1} and {n′
2, u1} of bonds, which corresponds to the

original edge (w, u) of G and is part of the path. Thus, the fact
that the path leaves node u via (u, v) forces with the properties
of a MWPM that the path must enter node u by some edge
(w, u). In the same way, the path must leave v. This is exactly
the defining property of an ongoing path.
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In the second case, when {n1, n2} belongs to the MWPM,
it will add zero weight. Furthermore, the bonds {u2, n1} and
{n2, v1} cannot be part of the MWPM, since each node is
matched to exactly one other node. Therefore, the bond (u, v)
will not be part of a path. Furthermore, this means for u2 (and
similarly for v1) that it can be either matched to another n-type
node (which means that a path leaves u through another bond)
or that it is matched to u2 (no path runs through u at all).
In particular, the MWPM could contain only bonds of type
{n1, n2} and of type {u1, u2}. This has total weight zero and
corresponds to no paths at all.

Principally, the auxiliary graph can be altered to allow the
loops and path to intersect each other. For this purpose the
original nodes have to be quadrupled and further additional
bonds have to be added. It has been shown in Ref. [5] in
regard to undirected lattices that such an alteration does not
change the universality class. Therefore, this modification has
not been considered by us.

As the algorithm has been presented, due to the property
that all nodes have to matched to another node in the auxiliary
graph, each node in the original graph will be incident to zero
or two bonds belonging to a path. Thus, only closed paths, i.e.,
loops can appear so far. To enable a path, the auxiliary graph
must be expanded. After constructing the auxiliary graph as
described above, the white duplicate of the original node in
the top middle gets connected to the black duplicates of all
other original nodes with a bond carrying zero weight. This
means technically the path is also a loop, but the “returning”
part of the loop is “hidden” with respect to the original lattice,
such that it appears as a path. Therefore, for the current
auxiliary lattice, exactly one path is possible, which starts
in the top middle node and may end in any other node
(returning hiddenly). Such an auxiliary graph is not planar
and contains many additional bonds, therefore, we do not
depict this additional specification in the illustration Fig. 2.
Note finally that due to the global nature of the optimization
problem, it is not possible to restrict the number of loops.
Thus, the path we are interested in here, may always occur
together with some loops. But in the percolation transition
region they are usually well separated, so we assume that they
do not influence each other much. This is also supported by
our comparison with some scaling behavior of DPRM, which
is always only one path.

III. RESULTS

The NWP model exhibits a geometrical continuous phase
transition. For a small amount of negative weights, the path
would appear rather short and loops would not appear at all,
if the system size were chosen sufficiently large. This can
be seen in Fig. 4, where optimal configurations for different
values of ρ on a lattice of size L‖ = 32 and L⊥ = 33 are
shown. For small values of ρ, the path is rather short because
otherwise its total weight cannot be minimum, and the forma-
tion of loops is suppressed, because each possible loop has
length O(L‖) and thus would also collect too many positively
weighted bonds. This is clearly different in the undirected
variant of the model, where also small loops will appear, even
if ρ is small [5]. However, if ρ is large, then the path might
grow very long and even multiple loops will occur. The two

FIG. 4. Illustration of minimum-weight configurations consist-
ing of loops (gray) and one path (black) in a directed, two-
dimensional, centered square lattice of side length L‖ = 32 and L⊥ =
33 with periodic boundary conditions. The path is forced to start at
the top middle of the lattice. For small values of ρ, there does not
appear a loop and also the path does not span the lattice. At ρ = ρc

one percolating loop occurs. For large values of ρ, there are many
spanning loops and also the path percolates.

regions, in which lattice-spanning, i.e., percolating, loops or
paths will or, respectively, will not occur, are separated by a
certain value of ρ = ρc, the critical point. In the thermody-
namic limit there are no lattice-spanning objects in the lattice
for ρ < ρc, and one or several ones for ρ > ρc.

In this section we determine the critical point and estimate
the critical exponents that characterize the phase transition
by means of a finite-size scaling analysis. A common scaling
assumption [3] that is typically used for undirected models
cannot be applied here. Due to the anisotropic nature of the
underlying lattice, there are two different correlation lengths
that have a different asymptotic behavior,

ξ‖ ∼ |ρ − ρc|−ν‖ , ξ⊥ ∼ |ρ − ρc|−ν⊥ , (3)

in the thermodynamic limit, with ν‖ and ν⊥ being the critical
exponents describing the power-law divergence of the corre-
lation lengths. For investigating finite-size scaling in systems
with anisotropic critical behavior it is required to fix the
generalized aspect ratio L‖/Lθ

⊥ with anisotropy exponent θ =
ν‖/ν⊥ [20,21]. To find out the proper value of θ , we consider
ξ⊥ ∼ ξ

1/θ

‖ . For L⊥ → ∞ and finite L‖ the correlation length
ξ‖ is limited by L‖ when approaching the critical point [20],
resulting in

ξ⊥(L‖, L⊥ → ∞) ∼ L1/θ

‖ . (4)

Therefore, we take ξ⊥(L‖, L⊥ → ∞) as the lateral extension
of the path. This means that for each value of L‖ we vary L⊥
and extrapolate the value of ξ⊥ for L⊥ → ∞ [main plot of
Fig. 5(b)]. Then we can determine θ = 1.59(2) according to
Eq. (4), see inset of Fig. 5(b).

The main simulations were performed for fixed generalized
aspect ratio L‖/Lθ

⊥. It is expected [21] that cluster-related
quantities y(ρ, L‖, L⊥) can be rescaled according to

y(ρ, L‖, L⊥) = L−λ/ν‖
‖ f‖[(ρ − ρc)L1/ν‖

‖ ] (5)

≡ L−λ/ν⊥
⊥ f⊥[(ρ − ρc)L1/ν⊥

⊥ ], (6)

where f‖[·] and f⊥[·] are unknown scaling functions and
λ represents a critical exponent that describes the asymp-
totic behavior of y(ρ, L‖, L⊥) in the thermodynamic limit
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FIG. 5. (a) Sketch of ξ‖, ξ⊥, and xend. (b) Correlation length
ξ⊥(L‖, L⊥) as a function of L⊥ at L‖ = 256. The inset provides
θ = 1.59(2) (reduced χ 2 = 1.7) according to Eq. (4).

[y ∼ (ρ − ρc)λ]. The following is described in regard to
Eq. (5) but also apply for Eq. (6) in an analogous manner.
Since the scaling function f‖[·] does not depend on the system
size implicitly, the critical exponents can be found by measur-
ing y(ρ, L‖, L⊥) for different values of L‖ (as a consequence
L⊥ is given, since L‖/Lθ

⊥ is fixed) and ρ in the vicinity of
the critical point. If ρc, ν‖ and λ are chosen properly, then all
data points of y(ρ, L‖, L⊥)Lλ/ν‖

‖ will “collapse” on one single

curve by plotting against (ρ − ρc)L1/ν‖
‖ . The data collapse

gives evidence that the correct values of the constants have
been found. Note that Eq. (5) shows the scaling behavior
for systems that are sufficiently large only [22]. All data
collapses in this article are made with a computer-assisted
scaling analysis [23].

We have monitored several observables in the vicinity of
the expected value of the critical point (p ∈ [0.374, 0.395]).
Since we could use fast optimization algorithms, we could
study large system sizes in the range L‖ = 256 to L‖ = 724
with good statistics: The data have been obtained by av-
eraging over 30 000 (L‖ = 256), 20 000 (L‖ = 362), 15 000
(L‖ = 512) and 10 000 (L‖ = 724) realizations of the disor-
der. Figure 6 shows the percolation probability Pperc(ρ) as a
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FIG. 6. Percolation probability Pperc(ρ ) as a function of ρ in the
vicinity of the critical point (inset). The data is collapsed to one curve
by using the scaling assumption Eq. (5) (main plot).
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FIG. 7. Average number of spanning loops 〈N〉 as a function of
ρ in the vicinity of the critical point (inset). The data is collapsed to
one curve by using the scaling assumption Eq. (5) (main plot).

function of the disorder parameter ρ as well as the rescaled
data collapse. Since the percolation probability is constant
in both phases [Pperc(ρ) = 0 for ρ < ρc and Pperc(ρ) = 1 for
ρ > ρc], λ = 0 is set in Eq. (5). The estimates ρc = 0.3815(2)
and ν‖ = 1.5(1) provide the best data collapse with quality
S = 0.7, which denotes the mean-square distance of the data
points to the unknown scaling function in units of the standard
error [23]. Using Eq. (6) we have found ρc = 0.3815(2) and
ν⊥ = 0.9(2). All figures that correspond to Eq. (6) are very
similar to their counterparts of Eq. (5) and, therefore, are not
shown.

We have also measured the average number of lattice-
spanning objects 〈N〉; see Fig. 7. Note that, in contrast to stan-
dard percolation, more than one object can percolate. By using
the data collapse approach, we have found ρc = 0.3816(1)
and ν‖ = 1.52(3) with quality S = 2.6. An analysis according
to Eq. (6) provides ρc = 0.3816(1) and ν⊥ = 0.95(4) with
quality S = 2.7.

Another quantity that has been under scrutiny is the order
parameter

Pnode = 〈l〉
L‖ L⊥

, (7)

which is the probability that a bond belongs to either a
percolating loop or percolating path. The total number of all
bonds that belong to the percolating objects is given by l . The
asymptotic behavior of the order parameter is governed by an
additional critical exponent β, the percolation strength [24].
For determining β we fixed ρc = 0.3816, ν‖ = 1.52 and ν⊥ =
0.95, which we have measured before. As evident from Fig. 8,
we have found β = 0.95(1) with quality S = 2.4. A data
collapse according to Eq. (6) provides the exact same estimate
β = 0.95(1) with quality S = 2.9.

Next, we consider the associated finite-size susceptibility

χ = 1

L‖ L⊥
(〈l2〉 − 〈l〉2), (8)

whose asymptotic behavior is guided by the critical exponent
γ . As can be seen from Fig. 9, the best data collapse is
provided by γ = 0.54(3) with quality S = 3.2. Using Eq. (6)
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of the critical point (inset). The data is collapsed to one curve by
using the scaling assumption Eq. (5) (main plot).

we have found the same estimate γ = 0.54(3) with quality
S = 3.5. Again, ρc = 0.3816, ν‖ = 1.52, and ν⊥ = 0.95 have
been fixed.

Right at the critical point, we studied the distribution of
path-lengths excluding the lattice-spanning ones. As evident
from Fig. 10, the distribution is in good agreement with a
power law decay nl ∼ l−τ with τ = 0.750(2).

NWP is defined as a global optimization problem (cf.
Sec. II) to find the minimally weighted configuration con-
sisting of loops plus one path. Since in the directed polymer
problem [13] minimally weighted paths are also selected by
global optimization in a random media, these two models
might be related. The DPRM can be described as follows: A
weighted square lattice, in which all bonds carry a positive
weight, gets cut along its diagonal and then it is oriented as
a triangle, whose right angle is up. Then all bonds become
directed and point either to bottom right or bottom left. On
such a lattice, for a given realization of the disorder, one looks
for the minimally weighted path that goes from the apex to
the base. It has been shown in Ref. [25] that ζ ◦ = 2/3, where
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FIG. 9. Fluctuations of the order parameter χL (ρ ) over ρ in the
vicinity of the critical point (inset). The data is collapsed to one curve
by using the scaling assumption Eq. (5) (main plot).
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FIG. 10. (a) Distribution of the path lengths l at the critical point
excluding those which percolate. 1 000 000 realizations of the disor-
der have been considered. For the fit (reduced χ 2 = 2.4) path lengths
from l = 2 to 100 have been taken into account only. (b) Plot shows
power-laws as a function of L‖ for ξ‖ (linear, reduced χ 2 = 2.8),
ξ⊥ (exponent 1/θ , reduced χ 2 = 2.0), xend (exponent ζ = 0.63(1),
reduced χ 2 = 1.8) and σE (ω = 0.34(1), reduced χ 2 = 3.5). Merely
system sizes from L‖ = 181 to 724 have been considered for the
power-law regression curves. The measurements are taken at the
estimated value of the critical point ρc = 0.3816.

ζ ◦ is the roughness exponent defined by D ∼ t ζ ◦
. D describes

the mean distance between the base center and the endpoint
of the path and t is the size of the triangle, i.e., the length of
the path. Furthermore, it is also shown in Ref. [25] that ω◦ =
1/3, which is defined by σE ∼ tω◦

. σE denotes the standard
deviation of the weight of the optimal path. A relation between
these two exponents is given by the scaling relation ω◦ =
2ζ ◦ − 1 [25]. There are some differences between the optimal
path in DPRM and the path that appears in directed NWP.
First of all, directed NWP includes the disorder parameter
ρ that allows to investigate a percolation transition, which
is completely absent for DPRM, since all paths are system
spanning by construction. There are also smaller technical
differences: For the directed NWP, one looks for an optimal
configuration of loops plus one path. The loops, which cannot
be crossed by the path, have to be negatively weighted as
well and, therefore, block several negatively weighted bonds
that cannot be picked up by the path. Thus, this path can not
be considered as optimal on its own. Furthermore, while the
lengths of the paths in DPRM are always equal, the lengths of
the paths in NWP differ considerably.

Nevertheless, in spite of those differences, directed NWP
and DPRM might exhibit some scaling which is comparable.
To compare both models, we identify D ↔ xend, where xend

is the distance between the endpoint of the path and the line
of predominant direction [cf. Fig. 5(a)] and t ↔ ξ‖. Since
we have monitored the energy values of the paths we can
determine also the width σE of the energy distribution (which
is not important for the percolation transition as studied
above). Then we fit for the NWP model to the functions
xend ∼ ξ

ζ

‖ and σE ∼ ξ ω
‖ , respectively, while making use of

ξ‖ ∼ L‖ at the critical point. As evident from Fig. 10(b),
xend scales with ζ = 0.63(1) and σE with ω = 0.34(1), which
are in reasonably good agreement with the exponents of the
DPRM model (ζ ◦ = 2/3, ω◦ = 1/3). This agreement is not
unnatural, since both models describe some optimal paths in
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disordered lattices. Also it shows that the loops which exists
in addition to the path in our model, do probably not affect the
behavior much, as can be also guessed from the inspection of
Fig. 4. Nevertheless, we cannot compare the other exponents
we have measured, like β, which describes the typical path
lengths, or τ which describes the distribution of path lengths,
because these quantities are meaningless for DPRM. Thus,
directed NWP exhibits a richer behavior than DPRM although
some similarities exist.

IV. SUMMARY AND DISCUSSION

In this work we have studied the directed variant of the
negative-weight percolation model. This model defined as a
global optimization problem. The model can be studied nu-
merically efficiently, since a mapping to the minimum-weight
perfect matching problem exist, such that fast polynomial-
time optimization algorithms can be applied. Thus, large
systems can be studied numerically with good statistics giving
rise to high-quality results. The model exhibits a continuous
phase transition, that is characterized by the appearance of
loops and a path where at least one of them is large, i.e.,
system-spanning. We have studied this percolation transition
by extended numerical simulations and their analysis based on
a finite-size scaling method. By investigating several cluster-
related observables we found estimates for the percolation
threshold, which we summarized here as ρc = 0.3816(1),
several critical exponents ν‖ = 1.52(3), ν⊥ = 0.95(4), β =
0.95(1), γ = 0.54(3) and an exponent that describes the
power-law decay of the path-length distribution τ = 0.750(2).
For the values of the correlation lengths, we have taken the

estimates which yielded the smallest statistical error bars
(from the data collapse of the average number 〈N〉 of per-
colating loops). These exponents are in good agreement with
the scaling relation 2β = ν‖ + ν⊥ − γ [26], where the left and
right sides evaluate to 1.90(2) and 1.93(10), respectively. Fur-
thermore, the values we have found show that directed NWP is
in a different universality class than standard DP, where [12],
e.g., ν‖ = 1.295(6), ν⊥ = 0.733(8), β = 0.583(3).

Additionally, we have shown that the directed negative-
weight percolation model is related to directed polymers in
random media (DPRM), although the DPRM does not exhibit
a percolation transition (except when diluting the system
where just the standard percolation transition appears), thus
a less richer behavior than directed NWP.

Clearly, for further studies, it would be interesting to study
directed NWP in higher dimensions. Also it could be valuable
to verify if the upper critical dimension is four, as for standard
directed percolation.
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