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Effect of stochastic processes on structure formation in nanocrystalline materials
under severe plastic deformation
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Based on the nonequilibrium evolution thermodynamics, the structure refinement of metals during severe
plastic deformation is investigated. To describe the formation of stationary (limiting) submicrocrystalline or
nanocrystalline structures, a two-defect approximation, including the grain boundaries and dislocations, is used.
Introduction of the additive noise for the main parameters into the governing equations allowed us to describe the
self-consistent behavior of structural defects during the stationary structure formation. Conditions of achieving
the stationary state are investigated and possible scenarios of structure refinement modes are determined.
Obtained grain boundary density distributions help to estimate the composition of grain structure in the bulk of
metal sample quantitatively. The analysis of time evolution of the grain boundaries density shows the presence
of correlated fluctuations. The autocorrelation function, describing the frequency characteristics of the structure
refinement, is determined.
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I. INTRODUCTION

The refinement of metallic structure along with other phys-
ical processes that occur in metals during severe plastic defor-
mation (SPD) [1,2] can be described within recently devel-
oped approach of nonequilibrium evolution thermodynamics
[3–5]. The approach combines the fundamental nonequilib-
rium thermodynamics principles and the Landau evolution
equations [3–8]. It allows us to obtain the relations that
correctly describe the evolution of defect subsystems and
kinetics of the yield stress associated with it (strengthening).
Also the theory can explain the grain refinement and the
formation of stationary (limiting) submicrocrystalline (SMC)
or nanocrystalline (NC) structure.

The independent thermodynamic variables in the set of
evolution equations are the entropy and the densities of two
defect types [dislocations and grain boundaries (GBs)]. The
elastic strain tensor is a governing parameter. These variables
are sufficient to describe unequivocally many fine details
of grain structure refinement and accompanying processes.
However, the fluctuations of the main parameters are not yet
considered by the theory. These fluctuations can significantly
change the nature of system evolution in some cases. For
example, when the friction process of two atomically smooth
mica surfaces separated by an ultrathin lubricant film and
ice surface softening were investigated, the additive noise
was pivotal in construing the stick-slip regime [9–12]. Note
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that this mode has been observed experimentally, and its
description is hard within the deterministic model [6–8].

The complete description of any physical process in real
environment requires consideration of all possible internal
interactions. However, the determination of the evolution of
all separate elements of the macroscopic physical system is
often an impossible task. Therefore, some approximations
are necessary to model the physical phenomena or processes.
In this case, the approximations take into account only the
most significant influences and connections determining com-
pletely the nature of the process or phenomenon. At the
same time, the deterministic models don’t always correspond
to reality. Neglected factors can contribute not only to a
qualitative change in the behavior of the physical system, but
even lead to the formation of new states. Since the effect
of these unaccounted factors on the behavior of the system
is random (stochastic), the system can make nonequilibrium
transitions under the influence of stochasticity at any time.
From the physical point of view this means that the system
does not adapt its behavior to environment, but rather shows
an active reaction.

As is well known, qualitatively new regimes and states can
be formed as a result of self-organization processes [13,14].
Besides, only open and nonequilibrium systems, which inter-
act with environment, can be self-organized. In that regard,
the metallic structure formation at SPD occurs in strongly
nonequilibrium conditions. This is because the grains refine-
ment occurs so fast that the accompanying stresses do not have
time to relax and the heat, generated as a result of work, does
not have enough time to flow out of the system. Consequently,
the system doesn’t have the time-constant environment prop-
erties and evolves in random way. So, the process of the
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refinement of the polycrystalline sample and the formation
of a stationary state has a stochastic nature. It is obvious
that the fluctuations of the external field (external noise) are
the main reason for the emergence of self-organization in a
nonequilibrium system interacting with a thermostat. Since
the intensity of the external noise doesn’t depend on the
size of the system, its influence predominates in comparison
with the fluctuations of internal noise (fluctuations of the
main state parameters). It leads later only to wander near
the maxima of the effective internal energy [5]. It is known
that in hierarchical systems, the additive noise of lower levels
manifests itself as a multiplicative noise (it depends on the in-
dependent thermodynamic variables of the system) of higher
level, which causes the appearance of additional phases and
provides a transition between the stationary structures during
SPD [9–14].

The main purpose of this work is to study the structural
defects evolution during SPD considering the additive fluc-
tuations of the basic parameters. Such a model should allow
a more precise consideration of the refinement modes and
the accompanied self-organization processes that cannot be
achieved using deterministic approach [6–8]. Besides, the
description of the transition from one stationary structure to
another is carried out similarly to the Landau theory of equi-
librium phase transitions [15] and the nonequilibrium models
at constant values of the parameters of external influence [5].
Comparison of our model with other theories is carried out in
introduction of work [6] (see also the literature cited therein).

The paper consists of four sections and conclusions.
The Sec. II presents the basic thermodynamic relations in

terms of effective internal energy that allow to describe the
formation of stationary (limiting) structures during SPD. The
description of the resulting defect structures is carried out
using the two-defect model taking into account the density of
grain boundaries and dislocations, which define the formation
of fine grained structure and a yield stress of plastic flow. For
this purpose, the additional term in the power series expansion
for the density of internal energy is introduced to represent
self-consistent behavior.

The influence of the additive uncorrelated noise on the
behavior of refinement processes is investigated in the Sec. III.
Evolution equations of nonequilibrium variables of the system
are obtained by direct differentiation of the multidimensional
thermodynamic potential for the effective internal energy den-
sity. The equations uniquely reflect the specifics of the grain
metal structure refinement and the accompanying processes
during the SPD. Using the adiabatic approximation, that deter-
mines the nature of the evolution of the main nonequilibrium
variables, the Langevin equation is obtained and the relation
for the effective synergetic potential that allow observing
the formation of various stationary (limiting) structures is
constructed. A study of the stability loss of stationary states
of the thermodynamic system is carried out. It allows to
construct the phase diagram (PD) of metals or alloys refine-
ment modes at SPD. The diagram establishes the conditions
for the formation of stationary structures of different types
and allows to generalize possible scenarios and modes of
the behavior of the two-defect system. It allows to pinpoint
specific parameters, which significantly affect the appearance
of SMC or NC stationary (limiting) structure. It is shown

that distribution of the realization of GBs density allows to
quantitatively estimate the composition of grain structure over
the volume of metal sample. In the case of two stationary
states or phases, the stationary structure of a metal can be
determined by a mixture of grains of different sizes (at high
level of fluctuations).

The kinetics of the evolution of GBs density is investigated
in the Sec. IV. The time dependencies of GBs density are
calculated, taking into account the fluctuations of the main
parameters and demonstrating the dynamic rearrangement of
the crystalline structure of metal or alloy during SPD. It has
been found that, with sufficient intensity of fluctuations of a
stochastic source, the system can experience dynamic transi-
tions between states or phases of a material, corresponding to
the stationary (limiting) structures with different grain sizes.
Using the fast Fourier transform, a spectral analysis of the
time dependencies is also performed. It is shown that the
fluctuations spectrum in the metallic structure corresponds to
the colored noise, which reflects the presence of correlated
fluctuations in the system. Fluctuations are detected with
the spectral power density of the signal, which is inversely
proportional to the frequency and demonstrates the realiza-
tion of 1/ωα, 0 < α < 2 or “pink” noise. It is found that
the spectrum is related to the prehistory of nonequilibrium
process of metals refinement during SPD. Autocorrelation
function represents random fluctuations of GBs density and
allows to reveal the frequency characteristics of refinement. It
is exponential and demonstrates non-Markov behavior, since
autocorrelation times are present in the system under certain
conditions. The presence of weak correlation is shown. The
results reflect the real refinement conditions and can be used
for predicting the grain size or metal states (phases) during
a certain autocorrelation time. Thus, it is possible to predict
the necessary external conditions to achieve the desired stable
SMC or NC structure.

Short conclusions of our investigation are given in the last
Sec. V.

II. THERMODYNAMIC POTENTIAL IN TERMS OF
NONEQUILIBRIUM EVOLUTION THERMODYNAMICS

As is well known, the mechanical work during SPD leads
to the increasing of metal internal energy. The biggest part
of work during cold processing goes towards the formation
of structural defects and the heating of sample [5]. Two
defect types, i.e., the GBs and dislocations, have the biggest
influence on the processing flow. They establish the progress
of refinement which is responsible for the formation of a yield
stress of a metal [16,17]. Thus, the basic form of the effective
internal energy density can be represented as a polynomial of
the densities of the considered defect types:

u(hg, hD) = u0+
∑

m=g,D

(
ϕ0mhm − 1

2
ϕ1mh2

m + 1

3
ϕ2mh3

m

−1

4
ϕ3mh4

m

)
+ ϕgDhghD − ψgDh2

ghD, (1)

where the value of index m = g belongs to the GBs, while
m = D corresponds to the dislocations; hg, hD are the GBs and
dislocations densities, it is believed that the average grain size
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is approximately inversely proportional to the formed hg (i.e.,
d ∼ 1/hg); u0, ϕkm, ϕgD, ψgD are constant coefficients that
reflect the reference level of the internal energy and the energy
of defects interaction between each other and, respectively,
with defects of other structural levels (i.e., they generally char-
acterize system disequilibrium). The coefficients u0 and ϕkm

(k = 0, 1), depending on the control parameter εe
i j (elastic

strain), are defined as follows:

u0 = 1
2 M

(
εe

ii

)2 + 2μI2, (2)

ϕ0m = ϕ∗
0m + gmεe

ii + [
1
2 M̄m

(
εe

ii

)2 + 2μ̄mI2
]
, (3)

ϕ1m = ϕ∗
1m + 2emεe

ii, (4)

where M = λ + 2μ is a module of one-dimensional compres-
sion of material [18]; εe

ii, I2 ≡ (−εe
iiε

e
j j + εe

i jε
e
ji )/2 are the first

and second invariants of elastic strain tensor; positive constant
gm is responsible for the process of the structural defects
generation at tension εe

ii > 0, or for their annihilation in case
of compression εe

ii < 0; M̄m, μ̄m are elastic constants due to
the existence of the defects in metal; em reflects the process of
defects annihilation at positive value of εe

ii > 0 or generation
in case of negative value of εe

ii < 0.
It should be noted, that the expression for the density

of internal energy (1) takes into account the self-consistent
behavior of the GBs hg and dislocations hD densities (the
last term) in contrast to the assumed corresponding basic
relationship in the papers [6–8]. This allows to describe the
interaction of structural defects during the formation of sta-
tionary structures more accurately. The minus sign before this
term is selected to guarantee the regularity of the expansion. It
follows from the need to form stationary states (maxima of the
thermodynamic or synergetic potential) due to the alternating
signs of different powers of independent variables. From the
physical point of view, this reflects the Le Chatelier principle,
according to which a higher-level thermodynamic process
is aimed at compensating for effects from thermodynamic
processes of a lower level [19,20]. In addition, the introduced
term further contributes to the appearance of the multiplicative
resultant noise (a function of the independent thermodynamic
variables), which causes the emergence of additional station-
ary states. The term specifies a transition between stationary
structures [21–26].

Let us consider a simplified case. In the case of dislocations
the power expansion (1) involves the dislocation density terms
up to the second power only (herewith, ϕ2D = 0 J m3, ϕ3D =
0 J m5) [5,7]. The following set of coefficients was used in
the numerical calculations:

ϕ∗
0g = 0.4 J/m2, gg = 12 J/m2, M̄g = 2.5×105 J/m2,

μ̄g = 3×105 J/m2, ϕ∗
1g = 3×10−6 J/m, eg = 3.6×10−4 J/m,

ϕ2g = 5.6×10−13 J, ϕ3g = 3×10−20 J m, ϕ∗
0D = 5×10−9 J/m,

gD = 2×10−8 J/m, M̄D = 0 J/m, μ̄D = 1.65×10−4 J/m,

ϕ∗
1D = 10−24 J m, eD = 6×10−23 J m, ϕgD = 10−16 J,

ψgD = 10−23 J m, M = μ = 2.08×1010 Pa.

It corresponds to the phenomenological choice of constants
corresponding to the observed regularities during the SPD

treatment [2,16,27,28]. The principles of this choice and
the specific values of the coefficients are discussed in the
paper [5]. This set of constants allows for a good compliance
with the experimentally observed system behavior during
SPD.

Note that, unlike dislocations, the contribution from the
grain boundaries is taken into account up to the fourth power.
This is because the GBs are topologically more complex
defects, the third and fourth powers implicitly take into ac-
count the contribution of disclinations. Indeed, any grain is
in contact with several grains and the simultaneous neighbor-
hood of three grains is delimited by triple junction, which is
essentially a disclination [29], i.e., a zone of excess energy
from thermodynamic point of view. In the case of large grains
(small hg), the density of the triple junctions is low and their
contribution to the total energy balance is small enough. In the
case of small grains (large hg), their contribution to the total
energy balance is essential. In our procedure this contribution
is taken into account not as an individual defect, but as an
additional contribution from the third and fourth powers of the
GBs density in the expansion of the effective internal energy
Eq. (1). In fact, it is supposed that disclinations form a certain
fine substructure of the GBs.

III. THE INFLUENCE OF ADDITIVE NOISE

Since white Gaussian noise is well suited for the mathe-
matical description of physical processes, we investigate the
influence of additive noise on the process of the formation of
stationary structures. The set of evolution equations for the
state parameters is [6–8,19]

τhD

∂hD

∂t
= ϕ0D − ϕ1DhD + ϕgDhg − ψgDh2

g + N1/2
D ξD(t ), (5)

τhg

∂hg

∂t
= ϕ0g − ϕ1ghg + ϕ2gh2

g − ϕ3gh3
g + ϕgDhD

− 2ψgDhghD + N1/2
g ξg(t ), (6)

where τhm are relaxation times (inversely proportional values
to the kinetic coefficients). The stochastic addends are present
in the right parts of the equations. They simulate the noise
influence on the main parameters (internal noise) with the
intensities ND and Ng [13], which due to the influence of vari-
ous structural inhomogeneities (substance phases, impurities,
inclusions, interstitial defects, vacancies, structural defects of
other levels, thermal fluctuations, etc.) and the influence of
the external force. It is worth noting that close notations were
developed in the mesoscopic nonequilibrium thermodynamics
approach [30,31].

As is known, the SPD causes the formation of GBs of two
types. The first one is a high-angle or geometrically necessary
boundaries, which arise as a result of the various activity of
the glide system around the GBs. The second type is cell
boundaries or sub-boundaries, which are often called random
dislocation boundaries. They correspond to random intersec-
tions of dislocations in the middle of the grains [18,32]. Ac-
cumulation of dislocations during the deformation gradually
turns the cells into subgrains, which are limited by low-angle
boundaries, and later become high-angle nanograins. Thus,
the interaction of GBs with dislocations, other boundaries, and
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structural inhomogeneities leads to the appearance of internal
fluctuations and to change of the misorientation of the grain
structure. With respect to the parameter hg, it means that in
the initial state a material has both coarse differently oriented
grains and fine subgrains, which represent a static noise or
chaos. The interaction of these grains at SPD processing es-
tablishes the competitive activity and the transitions between
different structure states or phases. Considering hD, the noise
intensity ND accounts for stochastic interaction of dislocation
ensembles, which is accompanied by change of fluctuation
spectrum and existence of collective effects (for example,
the cellular structure formation [16,18,32,33]). The functions
ξi(t )(i = D, g) represent uncorrelated random Gaussian val-
ues. Their statistical moments are the following [34]:

〈ξi(t )〉 = 0, 〈ξi(t )ξ j (t
′)〉 = 2δi jδ(t − t ′), (7)

where δ(x) stands for Dirac δ function and δi j is Kronecker
δ symbol. The multiplier 2 in the second formula allows
one to uniquely determine the form of the Fokker-Planck
equation and give the expression N (hg) Eq. (10) meaning
of the diffusion coefficient. In particular, the noise intensity
(a measure of the fluctuations intensity) is included into the
function N (hg).

Using the adiabatic approximation τhg � τhD , let us assume
in Eq. (5) τhD ḣD = 0. After performing the transformations,
we obtain a nonlinear equation of the Langevin-type:

τhgḣg = F (hg) + √
N (hg) ξ (t ), (8)

where ξ (t ) is resultant Langevin force (Gaussian white noise).
The generalized force F (hg), which defines the kinetics of
deterministic system, and the effective intensity

√
N (hg) of the

fluctuations of a random variable [whose square determines
the diffusion coefficient N (hg)] are set by relationships:

F (hg) ≡ ϕ0g + ϕ0DϕgD

ϕ1D
+

(
ϕ2

gD

ϕ1D
−2

ψgDϕ0D

ϕ1D
−ϕ1g

)
hg

+
(

ϕ2g−3
ψgDϕgD

ϕ1D

)
h2

g +
(

2
ψ2

gD

ϕ1D
−ϕ3g

)
h3

g, (9)

N (hg) ≡ (ϕgD−2ψgDhg)2

ϕ2
1D

ND + Ng. (10)

The last one follows from the dispersion properties of Gaus-
sian random variables [34]. It is obvious that N (hg) depends
on the grain boundaries density hg, therefore the noise in (8)
has multiplicative character. It can lead to the nonequilibrium
phase or structural transitions and to the formation of new
system states (maxima of synergetic potential) that is hard
within deterministic approach [6–8].

Since the solution of stochastic differential equation (SDE)
with Langevin force (8), which has a normal distribution
and δ-correlated autocorrelation function, cannot be obtained
in closed form [34], only statistical characteristics of its
solutions are usually considered. It is known that there are
several forms of the Fokker-Planck equation, corresponding
to the Langevin Eq. (8) [34–36]. In presented research, we
use the Stratonovich interpretation [13]. This corresponds to
the behavior of physical systems with continuous time and
defines more real interpretation of the stochastic process hg(t )

(the stochastic process with memory is considered). Note
that numerical solution didn’t demonstrate qualitative changes
in the behavior of the system, when modeled using the Ito
approach.

The corresponding Fokker-Planck equation is defined by
the relationship

∂

∂t
p(hg, t ) = − ∂

∂hg
D(1)(hg)p(hg, t ) + ∂2

∂h2
g

D(2)(hg)p(hg, t ),

(11)
where the functions (the Kramers-Moyal coefficients) [34]

D(1)(hg) = F (hg)

τhg

+
√

N (hg)

τ 2
hg

d
√

N (hg)/τ 2
hg

dhg
, (12)

D(2)(hg) = N (hg)

τ 2
hg

(13)

are drift and diffusion coefficients in Stratonovich interpreta-
tion, respectively. Equation (11) allows us to find the proba-
bility density p(hg(t )) of the distribution of random values of
hg at any time t .

The distribution density of the solutions of Eq. (8) con-
verges over time to a stationary form. This form can be found
from Eq. (11) under the condition that ∂ p(hg, t )/∂t = 0:

p(hg) = Z−1 exp[Ue f (hg)], (14)

which is determined by the normalization constant [37]

Z =
∫ +∞

0
exp[Ue f (ĥg)]dĥg (15)

and an effective synergetic potential

Ue f (hg) = −1

2
ln[N (hg)] + τhg

∫ hg

0

F (ĥg)

N (ĥg)
dĥg, (16)

which reflects the effective energy of the system and does not
have the physical meaning of the internal energy.

It is obvious that distribution law (or the integral dis-
tribution law) of a continuous random variable hg, i.e., the
probability distribution function Fp(hg) is defined as

Fp(hg) =
∫ hg

−∞
p(hg)dhg. (17)

In Ref. [19] the stationary values for density of GBs hg

are determined with the help of the necessary condition for
the extremum existence [d p(hg)/dhg = 0] of the distribution
density Eq. (14) (or the effective synergetic potential Eq. (16),
which is equivalent). At the same time, the maxima of the
effective synergetic potential correspond to the maxima of the
distribution density, which determine the formation of steady
states (defect structures). Inversely, the minima correspond to
unstable realizations.

Study of stability loss of the stationary states of the system,
corresponding to the formation of the maxima of the effective
synergetic potential Ue f (hg) Eq. (16) [or distribution density
p(hg) Eq. (14)], allows to define the conditions of the forma-
tion of SMC or NC structures depending on both the change
of the elastic strain I2 (second invariant of the elastic strain
tensor) and the intensity of noise the ND (Fig. 1). Thus, the PD
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FIG. 1. Phase diagram of refinement regimes of polycrystalline
metals or alloys at SPD at a constant value εe

ii = −0.1 %. Regions
reflect the formation of two (A, A∗) and one (B, B∗) stationary
(limiting) structures [19].

of metals or alloys refinement modes is obtained according
to analytically found expressions for the distribution density
p[hg(t )] and effective synergetic potential Ue f (hg) (Fig. 1).

According to the figure, the phase diagram has four re-
gions of refinement regimes. Regions A, A∗ demonstrate the
possibility of the simultaneous formation of two stationary
structures and regions B, B∗ have only one stationary struc-
ture. In this case, the stationary structure with zero GBs
density corresponds to elastic strains from the regions A∗
and B∗. In other words, a zero maximum of Ue f (hg) (or the
distribution density p[hg(t )]) is formed. There is only one
possible stationary state of the system in the case of B∗. For
the case of A∗, the zero GBs density value has only the first
stationary configuration.

The distribution density p(hg) Eq. (14) of random realiza-
tions of hg during SPD and corresponding distribution law
Fp(hg) Eq. (17) (integral distribution function of a random
variable hg), at the conditions indicated by the points 1–4 in
the PD (Fig. 1), are shown in Fig. 2. Similarly to the deter-
mination of the effective synergetic potential, the distribution
density of hg in Fig. 2(a) is determined by the formation of
a specified number of modes (maxima of probability distri-
bution) [19,38]. These maxima (stable stationary states) arise
depending on the behavior of applied load at SPD, which
appears in the components of elastic strain tensor and is
determined according to the PD regions. Thus, the curve 1
corresponds to the region B of large elastic strain in the PD
(Fig. 1), where only one nonzero maximum p(hg) Eq. (14)
can be realized. In this case, the maximum corresponds
to the formation of NC stationary structure with the GBs
density hg ≈ 1.3×107 m−1 at probability p(hg) ≈ 1.7×10−7.
The curve 2 characterizes the region A and corresponds to
the formation of bimodal distribution density p(hg) Eq. (14).
Besides, under certain conditions (values of I2 and ND) the
system can simultaneously be in two metastable phases with
large SMC (the first maximum at p(hg) ≈ 5.7×10−8 and
hg ≈ 1.4×106 m−1) and smaller NC grain sizes (the second
maximum at p(hg) ≈ 1.1×10−7 and hg ≈ 1.2×107 m−1) [22].
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FIG. 2. The distribution of the GBs density in metallic structure
at SPD. Panel (a) shows the function of distribution density p(hg)
Eq. (14), while panel (b) represents the integral distribution law
Fp(hg) Eq. (17). Curves 1–4 are built for corresponding points in the
PD (Fig. 1) [38].

The probability of the formation of single stationary struc-
ture (the curve 4) in the region of small strains B∗ takes
the maximum value p(hg) ≈ 2.4×10−7 at hg = 0 m−1. It
corresponds to the formation of a coarse-grained polycrys-
tal (monocrystal, in the limit). In the region A∗ similarly
to the region A in Fig. 1, the distribution density is bi-
modal with the probability p(hg) ≈ 3.3×10−7 and p(hg) ≈
5.8×10−13 (the curve 3), but the first maximum is at zero
value hg = 0, while another reflects the formation of NC
stationary structure with GBs density of hg ≈ 1.15×107 m−1

(see inset). The curves 3 and 4 show the probability of the
formation of stationary structures in the negative range of hg,
which has no physical meaning. It is considered that the den-
sity of GBs with negative hg continues to function in a mode
hg = 0 m−1. It is obvious that, in a case presented by the curve
3, the system will spend most of its time in the first mode,
because the probability of this is equal to p(hg) ≈ 3.3×10−7.
This value is much higher than the probability of the formation
of the second maximum. However, the possibility of such a
structure formation in practice remains obscure.
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Corresponding distribution law Fp(hg) Eq. (17) of the prob-
ability of a random value hg is represented in Fig. 2(b). The
points of curves 1–4 correspond to the formation of maximum
(Om, where m = A, A∗, B∗, and Dn, where n = B, A, A∗)
and minimum (Sn, where n = A, A∗) values of distribution
density p(hg) presented in Fig. 2(a). These extrema reflect
the system states in suitable regions in the PD. The maxima
are achieved at the points, where the distribution function has
the biggest gradient or slope [look at the intervals (x0, x1) and
(x2, x3) on the curve 2]. The minimum values of p(hg) of the
curves 2, 3 in Fig. 2(a) are located near the center of shallow
areas [see intervals (x1, x2) on the curve 2 in Fig. 2(b)]. The
formation of steep areas of the curves 1–4 demonstrates the
active refinement stages of metallic polycrystalline structure
at SPD. Evolution speed of GBs density accepts the biggest
value at these stages. In addition, the dependencies of Fp(hg)
allow us to quantify the composition of grain structure of sam-
ples. It helps to evaluate the percentage of GBs density and ap-
proximate grain sizes in each interval of hg values [39]. Thus,
in a case presented by the curve 1, it is shown that GBs den-
sity is realized in the interval [0.75×107, 1.75×107], which
corresponds the approximate grain sizes d ∼ 57–133 nm.
The probability of the formation of stationary structure with
the GBs density in this interval according to properties
of distribution function is p(0.75×107 � hg < 1.75×107) =
Fp(1.75×107) − Fp(0.75×107) ≈ 0.95 (95%). The probabil-
ities that GBs density accepts the values within the intervals
[x0, x1] and [x2, x3] (see the curve 2) are p(x0 � hg < x1) =
Fp(x1) − Fp(x0) ≈ 0.22–0.07 = 0.15 (15%) and p(x2 � hg <

x3) = Fp(x3) − Fp(x2) ≈ 0.9–0.3 = 0.6 (60%). The approxi-
mate grain sizes up to 285 nm and the range d ∼ 66–125 nm
correspond to these intervals. Obviously, the probability of
the formation of an unstable configuration in the interval
[x1, x2] is p(x1 � hg < x2) = Fp(x2) − Fp(x1) ≈ 0.3–0.22 =
0.08 (8%). Since the system can simultaneously be (in differ-
ent parts of the sample) in two phases, which are determined
by a sharp slope of the curve 2, it is supposed that the sample
as a whole will be defined by stationary (limiting) structure
with a mixture of grains of different sizes [22]. That is,
the bulk of SMC grains (to 285 nm) in the material structure
is 15%, while nanosized grains (within d ∼ 66–125 nm) are
60%, respectively. The cases presented by the curves 3 and
4 in Fig. 2(b) are given for complete analysis, because they
show the formation of monocrystalline or coarse-grainy poly-
crystalline structures, which are not usually realized in metals
at SPD.

Since the real refinement of metallic polycrystalline struc-
ture at SPD has a stochastic character and is subjected to
the influence of state parameter fluctuations (the effect of
internal noise), a stationary structure is formed with different
proportion of bulk crystallites [22]. As a result, different
mechanisms of plastic deformation are at work in the material.
In the paper [18] an important role was assigned during SPD
to the grain size distribution of ultra-fine-grained copper. It
allowed to determine in-grain (subgrain) and grain-boundary
processes in detail.

Thus, the PD, shown in Fig. 1, reflects the real conditions
for the refinement of the polycrystalline structure at SPD,
since it takes into account not only the influence of the
external field, in the form of εe

ii and I2 invariants of the elastic

strain tensor, but also internal mesoscopic fluctuations of ND

that can directly and critically affect the nature of the system
evolution.

IV. TIME DEPENDENCIES OF GRAIN
BOUNDARIES DENSITY

Let us investigate the kinetics of GBs density hg, taking
into account fluctuations of the main parameters ND, g. The
Langevin equation with multiplicative noise can be written in
the stochastic differential form,

τhgdhg = F (hg)dt + √
N (hg) dW (t ), (18)

where dW (t ) = W (t + dt ) − W (t ) ≡ ξ (t )dt is the Wiener
process, which has the properties of “white noise” [13,34,40]

〈dW (t )〉 = 0, 〈(dW (t ))2〉 = 2dt . (19)

Rewriting Eq. (18) more generally,

dhg = D(1)(hg)dt +
√

D(2)(hg) dW (t ). (20)

Thus, the diffuse process is determined by the drift
D(1)(hg) and diffusion D(2)(hg) coefficients that, within
the Stratonovich (S-form) approach, satisfy the definitions
Eqs. (12) and (13) [34].

Note that these coefficients provide the implementation
of a single procedure for stochastic integration within the
Ito calculus [13,34,41]. In this case, the representation of
stochastic processes satisfies the Markov condition [that is,
it demonstrates the independence of the increments dW (t ) =
W (t + dt ) − W (t )]. Thus, the stochastic integral is defined
as the Riemann-type integral that corresponds to the usual
rules of mathematical analysis [13,34]. It is noteworthy that
the presented forms of the calculus are interrelated and allow
to make the mutual transformation [13,40,41]. If the original
SDE (18) is given in the Stratonovich interpretation, then,
taking into account the properties of Eq. (19), we can al-
ways go to the equivalent SDE in the Ito interpretation [42],
subtracting the expression g(hg)dg(hg)/dhg, where g(hg) =√

N (hg)/τ 2
hg

[see drift coefficient determination Eq. (12)].
In turn, the reverse transition is performed by addition of
g(hg)dg(hg)/dhg. Thus, the original and equivalent forms of
SDE have a single solution.

A numerical solution of Eq. (20) is found using the Euler
method. Applying the discrete approximation of the differen-
tial of the random variable dW (t ) = √�tWi, we obtain an
iterative procedure for integrating Eq. (20),

hgi+1 = hgi + D(1)(hgi )�t +
√

D(2)(hgi )�t Wi. (21)

Using the definition of coefficients Eqs. (12), (13) and
Eqs. (9), (10), we can compute the time evolution of the GBs
density hg.

The SDE (20) solution is found over the time interval
t ∈ [0, T ] for a certain number of iterations N (the number
of discrete points on the time dependence). Accordingly, the
time step is �t = T/N . The force Wi satisfies the following
requirements:

〈Wi〉 = 0, 〈WiWi′ 〉 = 0,
〈
W 2

i

〉 = 2, (22)

which correspond to the moments of white noise Eq. (19).
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FIG. 3. Time dependencies hg(t ) of the refinement modes in
the regions (A, B) of the PD with the parameters Ng = 1 J2 s m−4,
εii = −0.1 %, N = 106, T = 5×103 s, �t = 0.005 s. Panels (a) and
(b) correspond to the points 1, 2 in the Fig. 1.

Evaluation of the random force, corresponding to the prop-
erties of white noise, is carried out using the Box-Muller
model [43],

Wi = μ
√

−2 ln r1 cos(2πr2), rn ∈ (0, 1], (23)

where, according to the second moment in Eq. (22), the
variance is μ = √

2 and Wi is an absolutely random number
that has properties Eq. (22). The pseudo-random numbers r1

and r2 have a uniform distribution and are repeated after a
certain period.

Figure 3 shows the time series hg(t ), obtained by numerical
solution of Eq. (20). They determine the refinement modes
of metallic structure during SPD according to regions (A, B)
in the PD. The insets demonstrate the numerical probability
distributions of the GBs density, which are found during the
analysis of the obtained dependencies.

The presence of two stable stationary structures in the
regions A and A∗ means that in a large sample under the same
SPD treatment, both these stationary structures can be formed
simultaneously in different areas of the sample with the
probability, displayed in the inset to Fig. 3(b). Moreover,
due to the fluctuation nature of the process, these areas can
randomly transit from one stationary state to another and vice
versa. It should be noted that the formation of two-mode

grain size distributions during SPD is actually observed in
experiments [44–47]. In addition, one of the authors proposed
a theory of the formation of a two-mode grain size distribu-
tion, based on a three-defect model (without taking in account
fluctuation phenomena) [48]. In this model, small and large
grains were formally considered as different types of defects.
In addition, a simpler model, accounting for two defects and
fluctuation phenomena, was considered in Ref. [49].

By definition, the maxima of the effective synergetic
potential Eq. (16) and the probability density function p(hg)
Eq. (14) correspond to the formation of stable stationary states
(stationary structures). Thus, in the course of the numerical
solution of the SDE (20), due to the action of a stochastic
source, the system (that is, the grain boundaries density hg)
can generate large fluctuations around the stationary values
and can transfer between these stable states with enough
noise intensity. From Fig. 3 it can be seen that in the case of
large elastic strains and fluctuations in the dislocation density
with an intensity ND determined in region B (see Fig. 1), the
GBs density carries out intensive fluctuations around a single
stationary state. This state corresponds to the average grain
size d ∼ 76 nm. Accordingly, the NC structure is formed in
the sample with grain sizes within the specified value. The
elastic strain and intensity ND from the region A (see Fig. 1)
lead to the realization of random fluctuations around two
stationary states. These states are determined by the size of
the grains d ∼ 714 nm and d ∼ 83 nm. Since the noise has
a multiplicative nature, the noise-induced structural transfor-
mations occur constantly in the material during SPD. The
stationary structure, which forms with time, has both SMC
and NC grain sizes. Note that distributions of GBs density
[see inset in Figs. 3(a) and 3(b)], which are built as a result of
numerical analysis, completely coincide with the analytical
dependencies p(hg) Eq. (14) in Fig. 2(a) (curves 1, 2).

From the physical point of view, fluctuations of the main
parameters of the system state initiate the emergence of
self-organizing processes that provide generation of new
noise-induced states (phases) and contribute to change of
the system properties during processing. It is known that
structural transformations at SPD are characterized by some
cyclicity. In particular, the stepwise structural transitions and
corresponding changes in the properties of the sample are
often observed in practice [3,16,21,23,24]. As was found in
Ref. [50], during the refinement of metal sample, the process
of plastic deformation has a recursive character, after the
activation of dynamic recrystallization or amorphization. That
is, the secondary refinement processes are generated in the
arisen recrystallized grains or within the amorphous phase.
Thus, the defects are accumulated under the stresses, which is
accompanied by consequent transformations in the structure.
In general, the structural transformations during SPD depend
on factors such as: the temperature of processing, intensity
and rate of deformation, concentration of impurities and struc-
tural defects of various levels, the dislocations ability to the
diffusion rearrangement (the Peierls barrier), and the energy
difference between the crystalline and amorphous states of the
metal sample [3,51,52].

A spectral analysis of the time dependencies of the GBs
densities hg(t ) is performed and presented in Figs. 4(a)
and 4(b). In particular, let us test them for the presence of
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FIG. 4. The spectral density of the signal Sp(ω) for the refine-
ment modes B (a) and A (b), which are shown in Fig. 3 at the sam-
pling rate ωn = 1/�t Hz and the specified number 220 of frequency
bands (Fourier lines). White lines are defined by equations Sp(ω) ∝
1/ω0.87 (a) and Sp(ω) ∝ 1/ω0.85 (b). Amplitude Sp is measured in
conventional units.

harmonic components, which can arise due to the influence of
a stochastic source (the effects of additive uncorrelated noise).
The spectrum can be obtained using the Fourier transform [43]

Sp = 1

T

∫ T

0
f (t ) exp(−iωt )dt, (24)

where T is function f (t ) period, ω = 2π/T is frequency.
In this paragraph let us briefly introduce the discrete

Fourier transform algorithm. To convert the problem into a
discrete form the discrete instants of time tn = n�t are intro-
duced, where �t is the sampling period. Further, the discrete
values of the function at these instants of time xn = f (n�t )
are calculated or selected. In this case, the full period of the
function is given by the product of the total number of points
and the sampling period T = N�t . Accordingly, the sampling
rate of the signal takes on a value ω = 2π/T = 2π/(N�t ).
Thus, performing mathematical transformations of expres-
sion (24), the definition of a discrete Fourier transform is
obtained for a one-dimensional array xn of length N ,

Sp = 1

N

N−1∑
n=0

xn exp

(−2π ink

N

)
, (25)

where k = 0, ..., N − 1 is the index of discrete Fourier trans-
form in the frequency region [43].

So, let us analyze the time dependencies of the GBs density
shown in Fig. 3. For calculation, we use the function fft()
(Fast Fourier transform) in the MATLAB software environment.
This function is based on the algorithm of the fast Fourier
transform [43], which corresponds to the discrete transform,
described above. It computes the spectrum of evolution hg(t ),
according to the relation Eq. (25). As a result, the function
Eq. (25) returns a vector of complex numbers. Since the
whole spectrum is equivalent to a positive part with a doubled
amplitude, we reject negative frequencies (mirror image that
does not contain information). Then performing normaliza-
tion, we obtain the corresponding spectral dependencies of
signal power Sp(ω) (Fig. 4).

The preliminary analysis of Sp(ω) in Fig. 4 shows that
time dependencies hg(t ) do not have the selected (signifi-
cant) frequencies of their regular (periodic) components, since
the maximum amplitudes in the signal spectrum are absent.
The obtained dependencies are constructed at the sampling
frequency ωn = 1/�t Hz and in accordance with a certain
number 220 of frequency bands (Fourier lines). Let us remind
that corresponding time series in Fig. 3 are obtained by an
iterative procedure Eq. (21) at N = 106, T = 5×103 s, �t =
0.005 s and reflect the refinement modes according to the
regions (A, B) in the PD (Fig. 1).

It can be seen from Fig. 4 that the power of the sig-
nals spectrum Sp(ω) is almost identical irrespective of the
refinement mode selection at SPD (the values of the con-
trol parameters in accordance with Fig. 1). Moreover, these
dependencies decrease uniformly on a double logarithmic
scale with an increase in the fluctuations frequency of the
structural components in the metal sample. This means that
fluctuations ND have a high energy at low frequencies ω.
In turn, the white lines, that approximate spectral dependen-
cies using equations Sp(ω) = 1.14×104/ω0.87 [see Fig. 4(a)]
and Sp(ω) = 1.36×104/ω0.85 [see Fig. 4(b)], also indicate
a downward trend with increase of frequency. Only in the
case shown in Fig. 4(b), we see that Sp(ω) ≈ const at low
frequencies (at ω < 0.5 Hz), but the dependence decreases
monotonically further. Thus, it is obvious that the spectrum
(power) of fluctuations of the evolution variables will be
determined by a single form (inversely proportional to the
frequency) for all refinement modes of a metal sample under
SPD. Therefore, different correlation times exist in the studied
model.

It is known that most of the physical, biological and
economic systems with phase transitions have stochastic (fluc-
tuation) processes with power spectrum, which is inversely
proportional to the frequency and is called 1/ω noise, flicker
noise or fractal-like (fractional) noise [40,53,54]. In particular,
similar behavior occurs in many existing dynamical systems
that have a source of “white” noise and are characterized by
nonequilibrium transitions [53,55,56]. Besides, such pattern
is observed during the so-called jerky plastic flow studied
with the aid of the analysis of statistical distributions, fractal
dimensions, and so on [57,58]. Moreover, the Fourier spectral
analysis allowed to reveal 1/ω noise even during macroscop-
ically smooth plastic deformation [59].

Thus, spectrums roll-off is due to the fact that in the initial
Langevin Eq. (8) nonlinear terms, that reflect interactions of
nonequilibrium state parameters (structural defects of various
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types), interfere with the realization of high frequencies. As
a result, there is a transition from white noise ξ (t ), which
characterizes most physical systems, to a colored one with a
non-zero correlation time. In particular, the obtained values
of the power exponent of fractional expressions (α = 0.85
and α = 0.87), which approximate the dependencies in Fig. 4,
indicate that the system has a “pink” noise.

In general, “pink” noise has a power spectral density given
by expression Sp(ω) ∝ 1/ωα , where 0 < α < 2. This noise
is very common in nature and takes an intermediate place
between “white”, which has a spectrum of Sp(ω) ∝ 1/ω0, and
“brown” or “red” noise with signal power that is inversely pro-
portional to the square of the frequency (Sp(ω) ∝ 1/ω2) [40,
53–56]. In addition, it is known that “pink” noise reflects a
process with memory like “brown” noise, that is, prehistory
of the evolution of a random process is taken into account.
While “white” noise has no memory.

Thus, the fluctuations spectrum in the metallic structure
reflects the behavior of 1/ωα or “pink” noise, which demon-
strates the presence of correlated fluctuations in the system.

Let’s carry out an additional analysis of the random fluctua-
tions of the GBs density hg by constructing an autocorrelation
function (ACF), which is determined for random processes
by [60]

R(τ ) = E{X (t )X ∗(t − τ )}, (26)

where X (t ) is the random process function (signal), E is
the operator of mathematical expectation, the asterisk symbol
denotes a complex conjugate value. It is known that ACF is
used to analyze the complex oscillations. It is a useful char-
acteristic of time dependencies, since it allows to study the
existence of periodic components in the evolution and obtain
their frequency characteristics. From the extreme values of
obtained correlograms one can determine the corresponding
correlation times in dynamical system. It is assumed that the
autocorrelation dependence is periodic, if the initial function
is periodic [60]. For a discrete time series with known math-
ematical expectation γ and variance μ, ACF is calculated as
follows [60]

Ac f (τ ) = 1

Nμ2

N−τ∑
t=1

(xt − γ )(xt−τ − γ ), (27)

where N is a length of time series, τ is a lag or delay
time.

Figure 5 shows autocorrelations of two functions depend-
ing on the time shift value τ . These dependencies are cal-
culated from Eq. (27). Note that calculations of ACF are
performed using the autocorr() function in the MATLAB soft-
ware environment. The case, depicted in Fig. 5(a), shows
a correlogram that is obtained as a result of numerical
simulation of “white” noise. The dependencies displayed in
Figs. 5(b) and 5(c) are constructed for the corresponding time
dependencies of the evolution of GBs density in Fig. 3. It
should be noted that to calculate ACFs in Figs. 5(b) and 5(c),
time series obtained at N = 106, T = 5×104 s, �t = 0.05 s
were used. This allowed us to evaluate more accurately the
behavior of the dynamical system.

The figures show that ACFs decrease exponentially to
zero (see inset) and exhibit insignificant damped oscillations
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FIG. 5. Autocorrelation functions Ac f (τ ) Eq. (27) of time de-
pendencies. Panel (a) corresponds to the numerical representation
of “white” noise. The correlations, as shown in panels (b) and (c),
are constructed for the time dependencies of the GBs density under
the conditions indicated in Fig. 3 and values N = 106, T = 5×104 s,
�t = 0.05 s. Lines with circles are defined by equalities Ac f (τ ) =
0.967 exp(−0.172τ ) (b) and Ac f (τ ) = 0.844 exp(−0.001τ ) (c).

around the established value [12,61–63]. Thus, the periodicity
in the obtained dependencies is not observed. Hence, the
evolution of GBs density and autocorrelation in the system
are formed randomly. But, as we can see, ACFs take on a
stable value over time, which means the stationarity of time
dependencies.

It can be seen from figures that ACFs assume the maximum
value at τ = 0 (that is, the correlation time is zero) in all cases.
This meets the definition of an absolutely random process
(that is, “white noise”), which has the Dirac function as ACF.
However, comparing the results obtained in Figs. 5(b) and 5(c)
(see inset) with the numerical approximation of δ-function
in Fig. 5(a), it is apparent that investigated system has an
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autocorrelation within a certain time interval. Thus, the set
of Eqs. (8)–(10) is characterized by a non-Markov behavior.
This pattern takes place due to the presence of colored noise
with nonzero correlation time.

It is known that colored noise ζ (t ) is described by the
Ornstein-Uhlenbeck process [34], which is defined by

τ
dζ (t )

dt
= −ζ (t ) + ξ (t ), (28)

where ξ (t ) is the representation of white noise with intensity
σ 2 = 1 and moments

〈ξ (t )〉 = 0, 〈ξ (t )ξ (t ′)〉 = σ 2δ(t − t ′). (29)

In this case, the correlation function of the process ζ (t ) has
the form

〈ζ (t )ζ (t ′)〉 = σ 2

2τ
exp

(
−|t − t ′|

τ

)
, (30)

where τ is autocorrelation time.
Approximation of the dependencies in Figs. 5(b)

and 5(c) (see lines with circles in insets) gives equations
like Ac f (τ ) = 0.967 exp(−0.172τ ) (case b) and Ac f (τ ) =
0.844 exp(−0.001τ ) (case c), that determine the form of
ACFs. Thus, the evolution of the GBs density hg depicted in
Fig. 3 has an autocorrelation time τ ≡ 1/0.172 = 5.81 s and
τ ≡ 1/0.001 = 1000 s. These values mean that the course of
the evolution of the GBs density will more likely retain the
tendency of a process during a certain period of time τ . It is
known that correlation can have both a positive, if the trend of
the process remains, and a negative effect, when reverse pro-
cesses take place (for example, the alternation of increasing
and decreasing dependence). Obviously, the relationship of
the future with the history of the process is more pronounced,
when the value of the autocorrelation time τ increases.
Physically, we can forecast what size of grains in the sample
will be at the next instant of time. That is, the appearance of
predictable results of processing by SPD takes place.

In the case that meets the evolution of the GBs density in
Fig. 5(c), it is supposed that autocorrelation time τ ≡ 1000 s
is an “effective,” since the system performs constant structural
transformations. These transformations are expressed in the
realization of dynamic transitions between two stationary
structures (phases) with certain grain sizes. It is assumed
that, under defined conditions and for a certain period τ ,
the system (metallic crystal structure) most likely (predomi-
nantly) functions in determined stationary state. According to
the obtained distributions of GBs density (see Fig. 2) in the
Sec. III, it means that stationary structure of a metal sample
is determined by different proportion of bulk crystallites of
certain size. Thus, it is possible to induce the formation of a
preferred phase or stable structural state with an appropriate
grain sizes in the stationary structure at subsequent times.

So, the analysis of ACFs has revealed that during the
structure refinement of metals, a memory of the history of
previous hg or of generally stable states in the sample structure
exists up to a certain point in time τ . Hence, it is possible to
conclude that the magnitude of autocorrelation time affects
the deviation of GBs density from the mean value. Conse-
quently, the grain sizes, in the established stationary (limiting)
structure, can assume different values under the same process-

ing conditions. In this regard, it is believed that the larger τ

in the studied system (the crystal structure), the more time
is required to process the metal sample to obtain the desired
result. Thus, the results of our study can be useful from the
technical point of view at setting the treatment conditions to
achieve the desired outcome, that is, stable stationary structure
with SMC or NC grain sizes.

V. CONCLUSIONS

Based on the nonequilibrium evolution thermodynamics,
the refinement of metallic structure during severe plastic
deformation is investigated. It is given information about
the main modes of ordinary and intensive plasticity. The
modeling of defect formation is carried out within two-defect
model taking into account the noise. The grain boundaries and
dislocations are considered as the main structural defects since
they play an important role in the formation of fine-grained
structures and yield stress of plastic flow.

Modification of the power series expansion for the density
of effective internal energy allowed us to describe more
accurately the self-consistent behavior of structural defects
in the process of the formation of stationary (limiting) sub-
microcrystalline or nanocrystalline structures. The influence
of additive uncorrelated noise of the main parameters is
taken into account in the evolution equations. We assume
that fluctuations of the main parameters reflect a stochastic
interaction with other unaccounted structural inhomogeneities
(phases of matter, impurities, inclusions, vacancies, structural
defects of other levels, thermal fluctuations, etc.), which are
always present in real metallic structures.

The investigation of the formation of system stationary
states at elastic strain εe

ii = −0.1 % demonstrates the possible
scenarios and modes of the refinement of polycrystalline
structure. The distribution of grain boundaries density allows
to estimate quantitatively the composition of grain structure
over the volume of metal sample. Thus, one stationary struc-
ture with a probability of 95% and grain sizes within d ∼ 57–
133 nm can be formed under certain processing conditions.
The stationary structure is determined by a mixture of grains
of different sizes, subject to the simultaneous formation of two
stationary states or phases. The bulk of submicrocrystalline
grains with sizes up to 285 nm is 15%, while the nanocrys-
talline grains with sizes within d ∼ 66–125 nm is 60% of the
volume in metal sample. In addition, calculated time depen-
dencies of the grain boundaries density demonstrate the pro-
cess of rearrangement of the metallic crystal structure during
severe plastic deformation. Thus, in the case of a single sta-
tionary state, the nanocrystalline structure with average grain
size d ∼ 76 nm is formed in a metal sample. Random transi-
tions between two stationary states allow to form a fragmented
structure with crystallites sizes d ∼ 714 nm and d ∼ 83 nm
simultaneously. Moreover, the numerical calculation of the
grain boundaries distribution corresponds well to the obtained
here analytical dependencies. This result confirms the con-
sistency between the Fokker-Planck equation and performed
iteration procedure. Thus, the conducted study reproduces the
real situation for severe plastic deformation and demonstrates
the possible regimes and scenarios of metallic polycrystalline
structure refinement.
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The analysis of the time dependencies of grain boundaries
density was carried out using a fast Fourier transform. Fluctu-
ations are detected with the spectral power density, which is
inversely proportional to the frequency and demonstrates the
realization of 1/ωα or “pink” noise. It showed the presence of
correlated fluctuations in the system. It was found that the be-
havior of the spectrum is related to the prehistory of nonequi-
librium process of metals structure refinement during severe
plastic deformation. Research of autocorrelation function of
hg random fluctuations has allowed to reveal the frequency
characteristics of refinement. Our results can be used for
predicting the grain sizes or system states (phases) in metallic

structure during a certain correlation time τ . Moreover, it
is possible to establish the necessary processing conditions
to achieve the desired result (stable stationary structure with
submicrocrystalline and/or nanocrystalline grain sizes).
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