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Order-disorder transition in a two-dimensional associating lattice gas
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We study an associating lattice gas (ALG) using Monte Carlo simulation on the triangular lattice and
semianalytical solutions on Husimi lattices. In this model, the molecules have an orientational degree of freedom
and the interactions depend on the relative orientations of nearest-neighbor molecules, mimicking the formation
of hydrogen bonds. We focus on the transition between the high-density liquid (HDL) phase and the isotropic
phase in the limit of full occupancy, corresponding to chemical potential μ → ∞, which has not yet been studied
systematically. Simulations yield a continuous phase transition at τc = kBTc/γ = 0.4763(1) (where −γ is the
bond energy) between the low-temperature HDL phase, with a nonvanishing mean orientation of the molecules,
and the high-temperature isotropic phase. Results for critical exponents and the Binder cumulant indicate that the
transition belongs to the three-state Potts model universality class, even though the ALG Hamiltonian does not
have the full permutation symmetry of the Potts model. In contrast with simulation, the Husimi lattice analyses
furnish a discontinuous phase transition, characterized by a discontinuity of the nematic order parameter. The
transition temperatures (τc = 0.51403 and 0.51207 for trees built with triangles and hexagons, respectively) are
slightly higher than that found via simulation. Since the Husimi lattice studies show that the ALG phase diagram
features a discontinuous isotropic-HDL line for finite μ, three possible scenarios arise for the triangular lattice.
The first is that in the limit μ → ∞ the first-order line ends in a critical point; the second is a change in the
nature of the transition at some finite chemical potential; the third is that the entire line is one of continuous phase
transitions. Results from other ALG models and the fact that mean-field approximations show a discontinuous
phase transition for the three-state Potts model (known to possess a continuous transition) lends some weight to
the third alternative.
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I. INTRODUCTION

It is no news that water exhibits quite unusual thermody-
namic behavior, characterized by a set of anomalies, among
which the anomaly in density is the best known [1]. In recent
decades, many models were developed with the purpose of
investigating the fundamental mechanisms which lead to the
water anomalies. Among them, lattice models have attracted
much attention due to their easy implementation and low
computational cost. These models usually include soft-core
potentials to represent excluded volume effects, and orien-
tational interactions to represent hydrogen bonding between
molecules. So far, these models are only able to reproduce
some of the anomalies qualitatively. Despite this, they exhibit
rich phase diagrams that provide an ideal environment for the
study of phase transitions as well as the validation of new
computational techniques.

The first orientational lattice model for water, proposed by
Bell and Lavis (BL) [2–4], is defined on a triangular lattice
in which each site can be either vacant or occupied by a
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molecule. The molecules possess three bonding directions
with 120◦ between them, resulting in two orientational states
per molecule. The model exhibits three phases: gas, low
density liquid (LDL) and high-density liquid (HDL) [5] at
low, intermediate and high chemical potentials, respectively.
While the gas-LDL transition is known to be discontinu-
ous, characterized by a jump in density, the nature of the
liquid-liquid transition is still controversial. For example,
mean-field approximations (Bethe lattice solutions [6] and
cluster-variation methods [7]) point to a discontinuous phase
transition, whereas Monte Carlo (MC) simulations [5,8] show
a continuous transition. There is no consensus regarding the
universality class of this transition. Fiore et al. [5] assert that
it falls into the Ising universality class, while Šimėnas et al.
[8] report three-state Potts critical exponents.

Following the ideas of Bell and Lavis, Henriques and Bar-
bosa introduced a two-dimensional (2D) associating lattice
gas (ALG) [9]. In this model, also defined on a triangular
lattice, each molecule has four bonding arms and two inert
ones, the latter taking opposite directions on the lattice. Two
of the bonding arms are proton donors in hydrogen bonds,
while two are receptors, leading to 18 states per molecule.
The model [9] also exhibits gas, LDL, and HDL phases, but in
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contrast to simulation results for the BL model, the LDL and
HDL phases are separated by a discontinuous transition line
that ends at a bicritical point. There is also a gas-HDL line
of continuous transitions, which starts at the bicritical point
and seems to extend to large values of the chemical potential.
The LDL and gas phases are separated by a continuous and
a discontinuous transition line, which connect at a tricritical
point. The former line meets the LDL-HDL and gas-HDL
lines at the bicritical point [10].

Variants of the ALG model have been investigated, among
them, three-dimensional (3D) [11–13] and symmetric ver-
sions [14,15]. The 3D model [11,12] is defined on a body-
centered cubic lattice in which each molecule possesses four
bonding and four inert arms. Despite the differences in ge-
ometry and number of orientational states in relation to the
original ALG model [9], the three-phase (gas, LDL, HDL)
behavior is preserved. While a phase diagram featuring two
tricritical points was suggested by Buzanno et al. [16] based
on a cluster-variation approach, simulation results by Szortyka
et al. [12] indicate that there is in fact a tricritical and a bicrit-
ical point, similar to the 2D case [10]. In the 3D model, how-
ever, a gas-LDL coexistence line meets the continuous LDL-
HDL and gas-HDL transition lines at the bicritical point [12].

The symmetric ALG model makes no distinction between
donor and receptor bonding arms. This leads to a simplifica-
tion, since the number of states per particle is substantially
reduced. Balladares et al. [14] investigated this model on the
triangular lattice and found only two discontinuous (gas-LDL
and a LDL-HDL) transition lines in the phase diagram, each
ending at a critical point. As an aside, let us remark that
this very same scenario was reported in the former studies
of the original 2D ALG model [9] and of the 3D version
[11]. It turns out that they were incorrect, as demonstrated
in more recent analyses [10,12,16], as discussed above. In
fact, the semianalytical solution of the symmetric model [14]
on a Husimi lattice build with hexagons (which is a mean-
field approximation for the triangular lattice) unveils a phase
diagram with three coexistence lines (gas-LDL, gas-HDL and
LDL-HDL) meeting at a triple point [17]. Moreover, more
recent simulations of this model have provided evidence that
the critical points reported in Ref. [14] are actually tricritical
points [15], so that the thermodynamic behavior of this model
is closer to that of the other versions. In contrast with these
cases and with the mean-field results, however, a gas-HDL
transition has not yet been observed in simulations of the 2D
symmetric ALG, so that the existence of a continuous order-
disorder transition and its universality class remains unclear
for this model. In fact, studies of the critical exponents at the
continuous phase transitions of all versions of the ALG model
are still lacking.

Motivated by this issue, we study the phase transition in
the full-occupancy limit of the symmetric 2D ALG model
[14], using MC simulations (employing both Wang-Landau
[18,19] and Metropolis algorithms), as well as obtaining
the thermodynamic properties of the model in the core of
Husimi cacti [20]. A fully occupied lattice corresponds to
the limit of infinite chemical potential, for which only the
HDL and an isotropic, disordered phase (corresponding to
what is identified as the gas phase in previous studies of the
ALG) are expected, since the LDL phase becomes metastable

already for small values of the chemical potential [14,15,17].
Indeed, we find a single transition between the isotropic and
the ordered HDL phase, whose loci, nature, and universality
class will be addressed in detail in the following.

The remainder of this paper is organized as follows. In
Sec. II we detail the model. Simulation methods and results
are presented in Sec. III. In Sec. IV mean-field solutions of
the model on Husimi cacti are devised. Finally, in Sec. V,
we discuss our conclusions and perspectives for future work.
Some details on the Husimi lattice solutions are presented in
the Appendix.

II. MODEL

We consider the ALG introduced in Ref. [9] in its sym-
metric version [14]. The model was proposed in the context
of waterlike anomalies; despite its simplicity, it captures some
features of liquid water, such as density [9,14] and diffusion
[10] anomalies. The model is defined on a triangular lattice
(coordination number z = 6) in which each site can be either
empty or occupied by a molecule. Each molecule has six
arms, four of which are bonding arms, while the other two are
nonbonding (“inert”). In the symmetric version [14], all the
bonding arms interact in the same manner, there being no dis-
tinction between proton donors and receptors. The inert arms
do not interact and assume diametrically opposed positions,
giving rise to three orientational states, ηi with i = 1, 2 or 3. In
this work we adopt a different notation from that of Refs. [9]
and [14]. We denote the generators of the triangular lattice by
ê1, ê2, and ê3, with

ê1 = i, (1)

ê2 = +1

2
i +

√
3

2
j, (2)

and

ê3 = −1

2
i +

√
3

2
j. (3)

We use the same set of vectors to label the orientational
states. Consider, for example, state 1, with bonding arms
along ±ê2 and ±ê3. As illustrated in Fig. 1, we associate the
vector η1 = ê1 with state 1, η2 = ê2 with state 2 and η3 = ê3

with state 3. (Thus η points along one of the nonbonding
directions.)

In the ALG, interactions are restricted to nearest-neighbor
(NN) pairs, so that the separations ri − r j between interacting
pairs again fall in the set {±ê j}. A particle at site k in state
ηi has no interaction with its neighbors at sites rk ± êi since it
has no bonding arms pointing toward these sites. On the other
hand, for i �= j we have |êi · ê j | = 1/2. Thus the interaction
between a pair of particles at sites i and j, separated by r (a
unit vector in the set {±êi, i = 1, 2, 3}), can be written so:

ui j = −γ

(
4

3

)2

[1 − (ηi · r)2][1 − (η j · r)2], (4)

where −γ denotes the energy associated with a NN particle
pair with bonding arms pointed toward each other. Using this,
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FIG. 1. Definition of orientational states η1 ≡ ê1, η2 ≡ ê2, and η3 ≡ ê3, respectively. The thick black lines represent bonding arms, dashed
gray lines represent directions on the triangular lattice, and the arrows indicate the generators of triangular lattice.

the energy of the ALG model may be written:

H(η, r) =
∑
〈i, j〉

σiσ j[ε + ui j], (5)

where the summation 〈i, j〉 runs over pairs of nearest neigh-
bors, the σi = 0, 1 are occupation variables, and ε > 0 repre-
sents an orientation-independent repulsive NN interaction. In
the present work, we consider full occupancy (σi = 1,∀i), so
that the parameter ε is meaningless and γ is the only remain-
ing parameter in the Hamiltonian. Therefore, from here on we
measure energy in units of γ , and define a dimensionless tem-
perature τ = kBT/γ . We remark that when comparing our re-
sults with those in the literature for the full model [14,17], one
should keep in mind that in these papers the particular case
γ /ε = 2 was considered, and the parameter ε was used to de-
fine the reduced temperature and chemical potential. Thus, in
these studies the reduced variables are twice those used here.

At full occupancy, each particle interacts with four of its six
neighbors if all particles have the same orientational state (see
Fig. 2). Any configuration such that one or more pairs of near-
est neighbors have distinct states must have a higher energy.
Thus the ground state is threefold degenerate, with energy per
particle (in units of γ ), e = −2. By contrast, the mean energy
per particle in a configuration in which each orientation is
chosen at random, independently, is erandom = −4/3. Since the
gain in entropy per site is �s/kB = ln 3, a crude estimate for
the critical temperature is τc ≈ 2/(3 ln 3) � 0.6.

FIG. 2. A ground-state configuration of the fully occupied lat-
tice; all molecules are in the same state.

The model studied here corresponds to the limit μ → ∞
of the full model, and at low temperatures it will be in the
HDL phase. Varying the temperature, we expect to observe
a transition from the low-temperature ordered phase, with
a majority of particles in one of the orientational states, to
a high-temperature disordered one, with equal populations
among the three states. This isotropic phase corresponds to the
gas phase in the general model. As noted in the Introduction,
continuous gas-HDL phase transitions have already been ob-
served in simulations of the nonsymmetric two-dimensional
[10] and three-dimensional [12,13,16] ALG models, while a
discontinuous transition was found in the mean-field approach
for the symmetric model considered here [17]. In the 2D
case [10,17], the transition is observed for reduced chemical
potentials μ̄ ≡ μ/γ � 1. Szortika et al. [10] proposed an
order parameter

θ = 3

2

[
max (n1, n2, n3)

N
− 1

3

]
, (6)

where ni is the number of particles in state i and N is the total
number of particles. Evidently, θ = 1 when all particles are in
the same state, and θ = 0 for equally populated states.

In view of the orientation-dependent interaction and the
orientationally ordered ground state, we can interpret the tran-
sition as one between nematic and isotropic phases. Analysis
of such a transition [21] suggests an alternative definition of
the order parameter,

Q = 1

N

√
n2

1 + n2
2 + n2

3 − n1n2 − n1n3 − n2n3. (7)

Of central interest is the nature of the order-disorder tran-
sition in the model at full occupancy. (In principle, we would
expect this also to describe the transition at large, but finite μ.)
Since the ground state is threefold degenerate, it is tempting to
suppose that the transition falls in the three-state Potts class.
While this may in fact be the case, we note that the energy,
Eq. (5), does not have the symmetry of the Potts model, that is,
it is not invariant under permutations among the states. (The
ground state is permutation invariant, trivially, but due to the
orientational dependence of the interactions, an arbitrary con-
figuration is not.) A similar situation seems to happen in the
nematic transition of rigid rods on the triangular lattice [22].
Simulations suggest that the universality class of this transi-
tion is also in the three-state Potts model universality class.

In light of the above considerations, we regard it as an
open question whether the model belongs to the three-state
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Potts universality class. The simulation results reported below
provide some insight on this issue.

III. MONTE CARLO SIMULATIONS

A. Simulation details

We performed extensive MC simulations of the symmetric
ALG model [14] using both Wang-Landau (WL) simulations
[18,19] for triangular lattices with lateral sizes 24 � L �
72, and Metropolis simulations [23] for larger systems. The
simulations are performed at full occupancy (N = L2). The
WL algorithm is an entropic sampling method, designed to
estimate �(E ), the number of configurations with energy E .
Starting from �(E ) = 1,∀E , the estimates for � are gradu-
ally refined in a series of iterations. Each iteration generates
a sequence of configurations as described below. An energy
histogram, H[E ], records the number of configurations having
energy E . These simulations use a random initial configu-
ration 	 = {ηi} with energy E (	). To generate a candidate
for the next configuration in the sequence (	new), a site i is
chosen at random and its state is altered (ηi → η′

i), generating
configuration 	′. This is accepted as 	new with probability

p[	 → 	′] = min

{
1,

�[E (	′)]
�[E (	)]

}
. (8)

With complementary probability, the current configuration 	

is taken as the new configuration. The histogram and loga-
rithm of the number of states are updated so: H[E (	new)] →
H[E (	new)] + 1 and ln �[E (	new)] → ln �[E (	new)] + ln f .
The parameter f , known as the modification factor, is set
to e, the base of natural logarithms, on the first iteration.
A sequence of configurations is generated by repeating this
procedure, until the histogram is flat, i.e., there is no E such
that H (E ) is less than (or greater than) X% of the mean
value of the histogram over all energies. Following the usual
practice, we use X = 20%, that is, the 80% flatness criterion.

Once the flatness criterion is satisfied, the current iteration
ends and a new one is started with the histogram set to
zero, but with the �[E ] carried forward from the preceding
iteration. The new iteration proceeds as before except for a
smaller modification factor, taken as the square root of the
previous value (i.e., ln f → ln f /2). The usual procedure is
to end the simulation once ln f < 10−8 or equivalently after
27 iterations.

As is evident from Eq. (8), WL sampling is a kind of
Metropolis importance sampling with target probability dis-
tribution P(	) ∝ 1/�[E (	)] in place of the usual Boltz-
mann distribution, P(	) ∝ exp[−βE (	)]. Thus if iterations
extended arbitrarily long and there were no sampling noise,
the estimates for the �(E ) would converge to their true values.
For further details about the convergence (or lack thereof) of
WL sampling, see Ref. [24] and references therein.

Recent studies [25] show that it is not necessary to use
all 27 iterations of WL sampling. As the modification factor
is barely greater than unity, estimates for the �(E ) are not
significantly modified in the final few iterations. We used 27
iterations for system sizes L � 32, 22 for 32 < L < 72, and
20 for L = 72.

Using the estimates for the �(E ), the canonical average
of a given thermodynamic observable O(E ) at temperature T
can be computed via

〈O〉 ≡ 1

Z
∑

E

O(E )�(E ) exp (−βE ), (9)

where O(E ) represents the microcanonical average and Z
is the canonical partition function. Microcanonical averages
are computed as simple averages of property O over all
configurations with energy E generated in the final iteration
of the WL procedure. We compute the canonical average of
the energy E and its variance, and of order parameters θ and
Q and their second through fourth moments.

Although WL sampling yields useful results for systems
with L � 90, it is not effective for larger systems. (The time
to achieve a flat histogram becomes excessive.) We therefore
use standard Metropolis sampling [23] for system sizes L =
128 and L = 256. In these studies, we use 106 MCS for
equilibration followed by 2 × 106 MCS to generate data. In
both simulation methods, we perform an average over 60
independent realizations, starting from randomly generated
initial configurations.

In this section we report simulation results for the model
at full occupation. The critical temperature τc is obtained via
finite-size scaling [26] analysis of the susceptibilities χθ ,

χθ (τ ) = L2

τ
[〈θ2〉 − 〈θ〉2], (10)

and χQ, defined analogously, and of the specific heat c,

c(τ ) = β2

L2
[〈E2〉 − 〈E〉2]. (11)

In Eqs. (10) and (11) the terms 〈· · · 〉 represent canonical
averages, L the linear size of the system and τ the temperature.
(As already mentioned, our estimates for thermal averages
such as θ, χ , and c are averages over 60 independent real-
izations). The expected finite-size scaling forms for the order
parameter, susceptibility, and specific heat are

θ ≈ L−βθ /νF (tL1/ν ), (12)

and similarly for Q,

χ ≈ Lγ /νX (tL1/ν ), (13)

and

c ≈ c0 + Lα/νC(tL1/ν ), (14)

where β, γ , and α are critical exponents as usually defined,
and t ≡ (τ − τc)/τc is the reduced temperature. Additionally
we determined Binder’s fourth-order cumulant of the order
parameters [27],

U4,θ (T ) = 1 − 〈θ4〉
3〈θ2〉2

. (15)

U4,Q is defined analogously. At the critical point, U4 tends to a
universal value, characteristic of the universality class, system
shape, and boundary conditions employed [28].
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FIG. 3. Order parameters θ and Q versus temperature for sys-
tem sizes (upper to lower) L = 24, 32, 40, 48, 56, 64, 72, 128, and
256. Solid lines and empty circles represent, respectively, θ and Q
obtained via the WL algorithm. Black crosses represent results for
θ obtained via Metropolis sampling (L = 128 and 256); dashed lines
represent polynomial fits to the data. Lower inset: Particle fractions ρ

in the majority (upper), minority (lower), and intermediate states for
L = 32. Upper inset: Relative uncertainties for θ in WL simulations;
colors follow the main plot.

B. Determining τc

The results for the order parameters θ and Q, plotted in
Fig. 3, suggest that a continuous phase transition occurs at
some temperature in the interval 0.45 < τ < 0.5. The lower
inset shows the fraction of particles ρi in the majority, minor-
ity, and intermediate states, for system size L = 32, illustrat-

0.47 0.48 0.49 0.50τ
0

400

800

1200

χ(τ)

0.47 0.49
τ

0

5

10

15

20

σ

FIG. 4. Susceptibilities versus temperature for system sizes L =
24, 32, 40, 48, 56, 64, 72, and 128. Solid lines and empty circles rep-
resent, respectively, χθ and χQ obtained via the WL algorithm. Black
crosses represent results for χθ obtained via Metropolis simulations
(L = 128); dashed lines represent a polynomial fit to the data for
L = 128. (For better visibility, the data for L = 256 are not shown.)
Inset: Uncertainties in χθ (solid lines) and χQ (dashed lines).
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τ
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FIG. 5. Specific heat versus temperature for system sizes L =
24, 32, 40, 48, 56, 64, 72, 128, and 256. Solid lines represent re-
sults from WL simulations and black crosses results obtained via
Metropolis sampling for L = 128 and 256. Dashed lines represent
a polynomial fit to the simulation data. Inset: Uncertainties in c.

ing a continuous variation between ground state (all particles
in the same state) and nearly equal populations. Relative
uncertainties are plotted in the upper inset. As expected, they
are largest in the critical region. In all cases, the relative
uncertainty in θ is less than 3%; for system sizes other than
L = 64, it is <2%.

The susceptibilities χθ and χQ are plotted in Fig. 4. Al-
though these quantities exhibit similar behaviors, there are
slight differences in the critical region; the differences are
more evident for larger systems. The discrepancies between
the susceptibilities are related to their structures. While Q [see
Eq. (7)] takes into account the densities of all three states, θ

only involves the majority density [see Eq. (6)]. This may be
why the uncertainties (inset Fig. 4) in χQ are approximately
one-third those in χθ . For the sizes shown in Fig. 4, the
maximum relative uncertainty in χθ is about 6%. The specific
heat c, shown in Fig. 5, exhibits behavior consistent with
that of the order parameters and susceptibilities. Relative
uncertainties in c are smaller than 4% for 48 � L � 74 and
smaller than 2% for L < 48.

The Binder cumulants of the order parameters are shown
in Fig. 6. The crossings of the Binder cumulants for θ and
Q provide the estimates τ (Q)

c = 0.476(4) and τ (θ )
c = 0.476(5),

respectively.
Using our results for c, χθ , χQ, and the cumulants, we

estimate the critical temperature, τc. For c and the χ ’s, we
define a size-dependent pseudocritical temperature as the
temperature associated with the maximum value. Pseudo-
critical temperatues for the cumulants are identified as the
crossing temperatures of U4 between: (i) the smallest system
size studied, L = 24, and the others (L = 32, . . . , L = 256),
and (ii) the crossing temperatures between a given system
size L and the next system size, for example, L = 24 with
L = 32, L = 32, with L = 40, and so on. The results from
the adjacent sizes crossings are represented as U ′

4.
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FIG. 6. Binder cumulants U4,θ (solid lines) and U4,Q (circles) ver-
sus temperature for system sizes L = 24, 32, 40, 48, 56, 64, 72, 128,
and 256. Crosses: Results for U4,θ using Metropolis sampling for L =
128 and 256. Dashed lines: Sixth-order polynomial fits to the simula-
tion data. Left insets: Detail of the crossing region of U4,θ (upper) and
of U4,Q (lower). Right inset: Cumulant of the three-state Potts model
on the triangular lattice for sizes L = 24, 30, 36, 42, 48, 54, 60, 66,
and 72.

The pseudocritical temperatures are plotted versus 1/L
in Fig. 7. All six sets of pseudocritical temperatures
appear to converge to similar values as L → ∞. Of note is
the relative insensitivity to system size of the pseudocritical
temperatures derived from cumulant crossings. The crossings
between Binder cumulants of two adjacent system sizes for
the order parameter θ suffer from large uncertainties for L �
64, affecting the estimate of the pseudocritical temperature.
For this reason, we disregard this property in the calculation
of the critical temperature.

The resulting estimates for τc are listed in Table I. From the
six estimates we derive the global estimate τc = 0.4763(1).
The global estimate of τc was obtained through a weighted av-
erage with weights 1/σ 2, where σ represents the uncertainty
of each quantity.

C. Critical exponents

Extrapolating the cumulant crossings to infinite size yields
two estimates for the critical cumulant: U ∗

4,θ = 0.604(2) and
U ∗

4,Q = 0.606(1). Since there can only be one value, a more
conservative estimate is U ∗

4 = 0.605(2). It is of interest to
compare this to the critical cumulant of the two-dimensional,
three-state Potts model. The best available estimate of the lat-
ter, to our knowledge, is Ref. [29] U ∗

Potts = 0.61. (In Ref. [29],

0.00 0.01 0.02 0.03 0.04 0.05
1/L

0.476

0.480

0.484

τ̃
(X)
c

X = χθ

X = χQ

X = c

X = U4,θ

X = U4,Q

X = U4,Q

FIG. 7. Pseudocritical temperatures associated with χθ , χQ, c,
U4,θ , and U4,Q, with symbols as indicated, versus 1/L. Broken lines
are fits to the data (quadratic, except for the cumulant data, for which
linear fits are very good).

no uncertainty estimate is provided; we may assume it is
on the order of 0.01.) In efforts to improve on this estimate
we simulated the three-state Potts model on L × L triangular
lattices with periodic boundary conditions. The results for
U4,Potts, shown in Fig. 6 (upper-right insert), yield U ∗

4 =
0.612(5) for the critical cumulant. Although strictly speaking
incompatible with our estimate for the associating lattice
gas, the two estimates are rather similar, leaving open the
possibility of a common universality class for the two models.
We also performed a similar study of the three-state Potts
model on the square lattice, where we found U ∗

4 = 0.6124(8),
in full agreement with the value for triangular lattice.

We estimate the critical exponent ratios β/ν and γ /ν using
fits to the data for θ, Q, and the associated susceptibilities
versus system size (see Fig. 8).

From the linear fits shown in Fig. 8(a) and including the
effect of the uncertainty in τc we obtain βθ/ν = 0.130(3)
and βQ/ν = 0.126(1) The inset shows that the residuals are
much smaller than the uncertainties, indicating that adding
additional terms to the fitting function, in the form of correc-
tions to scaling, would not yield better estimates. The value
of this ratio for the two-dimensional, three-state Potts model
is [25,30,31] βPotts/νPotts = 2/15 = 0.1333 . . .. In the worst
case (βQ), the discrepancy is about 4%. Linear fits to ln χθ and
ln χQ as functions of ln L [see Fig. 8(b)] yield γθ/ν = 1.70(2)
and γQ/ν = 1.73(9). Our estimate for γθ differs from the
value of the three-state Potts model, γPotts/νPotts = 26/15 =
1.733 . . ., by 1.7%. Analysis of the residuals of fits to the

TABLE I. Estimates for the critical temperature. The first six columns (second line) list the estimates for τc obtained from analysis of the
quantities listed on the first line, while the seventh column contains the global estimate and its uncertainty.

c χθ χQ U4,θ U4,Q U ′
4,Q τc

0.47632(1) 0.47636(1) 0.4761(1) 0.47621(2) 0.47637(8) 0.4764(5) 0.4763(1)
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FIG. 8. (a) Order parameters θ (Q) versus system size. The
circles (stars) represent simulation data; dashed (dot-dashed) lines
are least-squares linear fits of the data. Insets show the residuals of
the fits. Graphs on the right (b) are analogous plots for the associated
susceptibilities.

susceptibilities again indicates that adding further terms to the
fitting function is not necessary.

Different from the order parameter and susceptibility, a
linear fit to ln c as a function of ln L does not yield a good
description of the data. We therefore fit the data with c =
aLα/ν + c0 with a, α/ν, and c0 as adjustable parameters. This
form is capable of fitting the simulation data, as can be seen
in Fig. 9. The inset shows that the residuals are smaller than
the uncertainties and do not exhibit a systematic tendency.
A least-squares procedure yields a = 2.4(6), α/ν = 0.38(3),
and c0 = −3 ± 1. The exponent ratio agrees to within uncer-
tainty with that of the three-state Potts model, γ /νPotts = 0.4.
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FIG. 9. Specific heat versus system size at critical temperature.
Squares: Simulation data with their respective uncertainties. Dashed
line: Fit, c = aLα/ν + c0. The inset shows the residuals, with error
bars.
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FIG. 10. The panels (a), (b), (c), (d), and (e) exhibit the
data collapse for θ, Q, χθ , χQ, and c, respectively. The symbols
©, �, ×, �, ∇, �, and � represent L = 24, 32, 40, 48, 56, 64, 72,
respectively. Filled black circles (•) represent L = 128.

Given the scaling relation α + 2β + γ = 2, we have

ν = 2

α′ + 2β ′ + γ ′ , (16)

where exponents with primes denote the corresponding ex-
ponents divided by ν, determined in the finite-size scaling
analysis discussed above.

Using the values for β ′ and γ ′ obtained using the order
parameter θ , Eq. (16) yields νθ = 0.85(5), while the values
associated with order parameter Q furnish νQ = 0.84(1), for
an average of ν = 0.85(1), close to the Potts model value,
νPotts = 5/6 = 0.833 . . ..

As a further test regarding the universality class, we per-
form a data collapse using the Potts critical exponents, as
shown in Fig. 10. The quantities θ, Q, χθ , and χQ exhibit
a good collapse using these exponents. We observe that the
specific heat exhibits the poorest collapse.

The results for the exponents α, β, γ , and ν, as well as for
the Binder cumulant strongly suggest that the phase transition
studied here belongs to the three-state Potts model universality
class. Deviations of the critical exponents from the Potts class
values may be due to the flatness criterion, limited sample
size, and restricted system sizes.

IV. MEAN-FIELD SOLUTIONS ON HUSIMI LATTICES

A. The Husimi lattice approximations

Generally, mean-field approximations of a particular model
correspond also to the solution of this model on a com-
plete graph, with properly rescaled interactions [32]. Since
solutions of a model on the core of a Cayley tree (a graph
with no loops, in which each node has the same number of
neighbors) usually correspond to the Bethe approximation of
this model on a regular lattice with the same coordination
number as the tree, Baxter suggested that these treelike lattices
be called Bethe lattices [32]. Additional correlations are taken
into account considering Husimi trees, built with clusters
(polygons or polyhedrons) rather than single sites, so that
short closed paths are present. Analysis of a model on the core
of a Husimi tree yields its behavior on a Husimi lattice [20].
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1

32

FIG. 11. Six-coordinated Husimi tree built with triangles. Two
generations of triangles are shown. The numbers indicate the three
directions of lattice edges, as defined in Fig. 1. The hatched triangles
should be removed to define a subtree.

We study the ALG model on such treelike lattices, focusing
in the limit in which each site is occupied by a molecule.
Although we could begin with the six-coordinated Bethe
lattice, one readily verifies that the ground state of the model
on this lattice, without any closed paths, is highly degenerate.
The thermodynamic behavior of the model on the Bethe lattice
is qualitatively distinct from that found on the triangular
lattice: There is no ordered phase. It is interesting to observe
that for the three-state Potts model the Bethe lattice solution
already captures the phase transition, although it is found to be
discontinuous [33,34]. This is at variance with what is known
about its behavior on two-dimensional lattices, where the
transition is continuous [30]. For three-dimensional lattices,
however, it is found to be discontinuous [30]. We therefore
study the model, in the full-occupancy limit, on a Husimi
lattice built with triangles, in which three triangles meet at
each site, as shown in Fig. 11. We also study the model on a
more elaborate Husimi lattice built with hexagons composed
of six elementary triangles (see Fig. 12). We remark that the
latter case, considering finite chemical potentials, was already
studied in Ref. [17], but the limit (1/μ → 0) of interest here
was not analyzed in that work. As explained in Ref. [17], the
use of hexagons in contrast to simple triangles as elementary
clusters is imperative for capturing the symmetries of the
ground states of the three phases of the full model (gas, LDL,
and HDL) on the Husimi lattice; in the case of full occupancy,
however, a tree of triangles (Fig. 11) already captures the
symmetries. Details on the solution of the complete model on
the hexagonal Husimi lattice can be found in Ref. [17], while
those for the Husimi lattice built with elementary triangles are
presented in the Appendix.

B. Mean-field results

Similarly to our MC simulations on the triangular lattice,
in both triangule- and hexagon-Husimi approximations, two
stable phases are found for 1/μ → 0. At high temperatures,

FIG. 12. Husimi tree built with hexagons composed by six trian-
gles. The central hexagon and the six hexagons of the first generation
are shown.

only a disordered isotropic phase is stable, for which the
densities of molecules in the three possible orientations are
equal. At low temperatures, three equivalent ordered nematic
phases are stable, in which the fraction of molecules in one
of the three orientations is larger than those in the other two
orientations. The stability of the fixed point associated with
each phase may be studied using the Jacobian of the recursion
relations for the ratios (see the Appendix). This analysis shows
that there is a temperature interval in which both fixed points
are stable, signalling that the transition between the phases
is discontinuous. Thus, to find the coexistence temperature
the free energy of the two phases should be equated. It
should be remembered that this free energy corresponds to
the model on the core of the tree; the free energy of the
whole tree is dominated by the surface [32,35]. We find a
coexistence temperature τc = 0.51403 for the triangle tree and
τc = 0.51207 for the one with hexagons.

The nematic order parameter Q is shown in Fig. 13 as a
function of the temperature for both treelike lattices. We note
that the transition temperature is reduced, and the jump in the
order parameter becomes smaller as we move from the trian-
gle tree to that with hexagons. Also, the temperature interval
in which both fixed points are stable becomes narrower (see
the Appendix). These results are consistent, as the transition
temperature on the triangular lattices estimated from the sim-
ulations is still lower and the transition is continuous.

Finally, let us discuss how the transition studied here fits
into the general phase diagram of the model for finite chemical
potential. The phase diagram of the complete model on the
hexagon-Husimi tree is shown in Fig. 14, in the τ–μ̄ plane. In
this diagram we see that the gas-HDL coexistence line, as well
as the gas and HDL spinodals, approach vertical asymptotes

022109-8



ORDER-DISORDER TRANSITION IN A TWO- … PHYSICAL REVIEW E 100, 022109 (2019)

0.48 0.49 0.50 0.51 0.52
τ

0.5

0.6

0.7

0.8

0.9

Q

FIG. 13. Nematic order parameter Q as a function of τ close
to the coexistence temperature τc. The upper curve corresponds to
the triangle-Husimi lattice. The lower curve is for the hexagon tree,
calculating Q at the central site of the central hexagon, in the limit
1/μ → 0.

and are very close to them already for μ̄ � 10, whose τ

values are very close to those cited above for the solution
in the full-occupancy case. Hence, our results for the infinite
chemical potential limit correspond to the final point of the
coexistence line between the HDL and gas phases. For finite
μ̄ the coexisting phases differ in the order parameter Q and in
the particle density ρ; the density is lower and Q vanishes in
the gas phase. In the full-occupancy limit we consider here, Q
still vanishes in the gas phase and is finite in the HDL phase,
but ρ = 1 in both phases.
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FIG. 14. Phase diagram on the hexagon-Husimi tree for finite
chemical potential in the μ̄–τ plane. The three phases (HDL, LDL,
and gas) are separated by coexistence lines (full lines in graph),
which meet at a triple point. Spinodal lines of the phases are also
shown. The red circle represents the critical temperature obtained
via MC simulations.
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FIG. 15. Discontinuity of the nematic order parameter at the gas-
HDL coexistence line as a function of the reduced chemical potential
μ̄. The insert shows the same data against 1/μ̄.

Figure 15 shows the discontinuity of the nematic order
parameter at the gas-HDL coexistence line as a function of
the reduced chemical potential μ̄. We note that �Q becomes
smaller as the chemical potential grows and reaches its min-
imum value in the limit studied here. We can imagine three
possible scenarios for this part of the phase diagram on the
triangular lattice. One possibility is that in the limit 1/μ → 0
the gas-HDL coexistence line ends at a critical point. Another
would be that the transition becomes continuous already at
some finite value of μ, and thus the coexistence line would
end at a tricritical point. Finally, the whole transition may be
continuous. In this case, if the other transition lines (LDL-
HDL and gas-LDL), which meet with the gas-HDL transition
line at a triple point on the hexagon tree (see Fig. 14), remain
discontinuous, then this point would become a critical end
point.

V. CONCLUSIONS

We investigate the isotropic-HDL phase transition of the
ALG model [9] in its symmetric version [14] on the trian-
gular lattice in the limit 1/μ → 0 (full occupation) using
Monte Carlo simulations and solutions on Husimi lattices.
Simulations yield a continuous transition at τc = 0.4763(1).
The critical temperature is estimated using finite-size scal-
ing analyses of the order parameters, their susceptibilities,
the specific heat, and the fourth-order Binder cumulants. In
addition, we derive estimates of U ∗

4 for the three-state Potts
model on the triangular lattice [U ∗

4 = 0.612(5)] and on the
square lattice [U ∗

4 = 0.6124(8)], which evidently agree to
within uncertainty. Our estimate for U4 for the three-state
Potts model is close to, but more accurate than, one reported
previously [U ∗

4 = 0.61] [29]. The critical exponents reported
in Sec. IV also support the assertion that the transition belongs
to the three-state Potts model universality class.

The mean-field calculations are performed on Husimi trees
constructed with triangles and hexagons. Both approaches
yield a discontinuous phase transition with coexistence
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temperatures somewhat higher than the simulation estimate,
viz., τc = 0.51403 (triangles) and τc = 0.51207 (hexagons).
In the second case the difference in relation to the simulation
is � 7%. We note that mean-field calculations for the three-
state Potts model in two dimensions also yield discontinuous
transitions [36], which may explain the difference found here
regarding the nature of the transition in the ALG model.

The complete (mean-field) phase diagram shows a gas-
HDL coexistence line which extends from μ̄ ≈ 1 to μ̄ → ∞,
along which a reduction of the discontinuity of the nematic
order parameter Q is observed as μ increases. The existence of
the discontinuous line gives origin to three possible scenarios
that connect the results of simulations and mean field. The first
is that at the limit 1/μ → ∞ the line ends in a critical point,
the second is a change in the order of transition at a finite
chemical potential, and the third raises the possibility of the
whole transition be continuous for the triangular lattice. We
remark that the ALG model with finite μ̄ is somewhat similar
to a diluted three-state Potts system, for which a continuous
transition is also observed [37,38]. This suggests that the
entire gas-HDL line might be continuous. Another indication
of this is the fact that it is continuous in the original 2D
ALG model [10], as well as in the 3D version [12,16]. In
future work, we intend to perform Wang-Landau sampling,
as well as transfer matrix calculations, in order to obtain
the complete phase diagram and identify which of the three
scenarios mentioned above is correct.
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APPENDIX: SOLUTION OF THE MODEL
ON HUSIMI TREES

To solve models in the core of treelike lattices, one starts by
defining partial partition functions (ppf’s) on rooted subtrees,
such as the one depicted in Fig. 11 for the lattice built with
triangles, for a fixed configuration of the root site. Considering
the operation of building a larger subtree connecting smaller
ones to a new root polygon, one finds recursion relations for
the ppf’s. As expected, these partition functions diverge as the
recursion relations are iterated indefinitely (this corresponds
to the thermodynamic limit), but ratios of these fpp’s usually
remain finite as the recursion relations are iterated. The stable
fixed points attained iterating the recursion relations for the
ratios correspond to the thermodynamic limit. The behavior
on the complete tree may be found connecting subtrees to a
central polygon. Expected values of densities at this central
polygon may then be calculated, and may be seen as approxi-
mations to the results on the triangular lattice.

In order to solve the model on the Husimi tree built with
triangles (see Fig. 11), we have to define nine ppf’s gi,η of
rooted subtrees, where the first index assumes the values 1,
2, or 3 of the direction of the edge opposite to the root site
of the triangle. On the subtree obtained removing the hatched
triangles in Fig. 11, this index is 1. The second index specifies

the orientation η of the nonbonding arms of the molecule at
the root.

The recursion relations are obtained by considering the
operation of building a subtree with an additional generation
(M + 1) by connecting two pairs of subtrees (with M gen-
erations each) to the vertices which are opposite to the root
vertex of the new root triangle. We call ji the orientation of
the molecule placed on the vertex opposite to the edge of
orientation i of the root triangle. The ppf’s of a subtree with
M + 1 generations are thus obtained through the recursion
relations:

g(M+1)
1, j1

=
3∑

j2=1

3∑
j3=1

W{ j1, j2, j3}g
(M )
1, j2

g(M )
1, j3

g(M )
2, j3

g(M )
3, j2

, (A1a)

g(M+1)
2, j2

=
3∑

j3=1

3∑
j1=1

W{ j1, j2, j3}g
(M )
2, j3

g(M )
2, j1

g(M )
3, j1

g(M )
1, j3

, (A1b)

g(M+1)
3, j3

=
3∑

j1=1

3∑
j2=1

W{ j1, j2, j3}g
(M )
3, j1

g(M )
3, j2

g(M )
1, j2

g(M )
2, j1

. (A1c)

The function W{ j1, j2, j3} is the statistical weight associ-
ated to the edges of the root triangle, defined as W =
exp[2nb( j1, j2, j3)/τ ], where nb is the number of edges of
the triangle with no nonbonding arms on them and τ is the
temperature. Thus:

nb( j1, j2, j3) = nb,1( j2, j3) + nb,2( j3, j1) + nb,3( j1, j2)

= δ j2,1δ j3,1 + δ j3,2δ j1,2 + δ j1,3δ j2,3, (A2)

where δi, j is the Kronecker δ. In this expression nb,i stands
for the number of edges in direction i with a bond on them,
assuming the values 0 or 1, so that, as expected, nb ∈ [0, 3].
Thus, the system of nine recursion relations [Eqs. (A1)]
allows us to obtain the ppf’s of subtrees with an arbitrary
number of generations of triangles and, most importantly, the
thermodynamic limit (when M → ∞). The ratios of ppf’s are
defined as

Ri, j = gi, j

gi,1 + gi,2 + gi,3
, (A3)

which converge to finite values in the thermodynamic limit;
six of them are independent, since

∑
j Ri, j = 1. Therefore, the

thermodynamic behavior of the model will be determined by
the stable fixed points of the recursion relations for the ratios
Ri, j , which are obtained from Eqs. (A1).

We find fixed points with two different symmetries. In the
isotropic fixed point the values of the nine ratios, represented
as a 3 × 3 matrix, are

R∗
iso =

⎡
⎣ x (1 − x)/2 (1 − x)/2

(1 − x)/2 x (1 − x)/2
(1 − x)/2 (1 − x)/2 x

⎤
⎦, (A4)

where the parameter x is a function of the temperature τ ,
whose exact expression can be easily found with the help of
an algebra software but is too long to be presented here. The
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three nematic fixed points are

R∗
nem,1 =

⎡
⎣x1 (1 − x1)/2 (1 − x1)/2

x2 x3 1 − x2 − x3

x2 1 − x2 − x3 x3

⎤
⎦, (A5)

R∗
nem,2 =

⎡
⎣ x3 x2 1 − x2 − x3

(1 − x1)/2 x1 (1 − x1)/2
1 − x2 − x3 x2 x3

⎤
⎦, (A6)

R∗
nem,3 =

⎡
⎣ x3 1 − x2 − x3 x2

1 − x2 − x3 x3 x2

(1 − x1)/2 (1 − x1)/2 x1

⎤
⎦. (A7)

Again the parameters xi, with i = 1, 2, 3, are functions of the
temperature. We note that the isotropic fixed point is stable at
high enough temperatures, while at lower temperatures one of
the nematic fixed points is reached. In the isotropic phase the
orientation of the nonbonding arms of the molecules has no
preferred direction, while in the nematic phase one of the three
directions is more probable than the other two. As expected
for a discontinuous transition, the isotropic and nematic fixed
points are both stable in an interval of temperatures around
the coexistence temperature. The region of stability of a given
fixed point may be found from the largest eigenvalue of the
Jacobian of the recursion relations for the ratios:

Ji, j =
(

∂R′
i

∂Rj

)
R∗

, (A8)

where R′
i and Ri denotes the ratios in generations M + 1

and M, respectively, and the derivative is calculated at the
fixed point whose stability is being considered. We find
that the isotropic fixed point is stable for τ � 0.47299,
while the nematic ones for τ � 0.51970. Hence, for τ ∈
[0.47299, 0.51970] both fixed points are stable, so that the
isotropic and nematic phases coexist in this temperature inter-
val. This signals a discontinuous transition between the phases
and, then, the coexistence temperature can be determined as
the one at which the free energy in the bulk of the tree is equal
for both phases.

Following the ansatz proposed by Gujrati [35], we assume
that the contribution to the free energy per triangle is different
for triangles located at the surface of the tree (φs) and the ones
in the bulk (φb). In a tree with M generations of triangles, the
number of triangles in the bulk is Nb = 1 + 6 + 6 × 4 + · · · +
6 × 4M−2, while the number of triangles on the surface is Ns =
4 × 4M−1. Therefore, if ϕM is the free energy of a tree with M
generations of triangles, then we find that ϕM+1 − 4ϕM = 3φb,
and since ϕM = −kBT ln YM , we have that:

φb = −1

3
kBT ln

YM+1

Y 4
M

, (A9)

where YM is the partition function on the whole tree, which can
be obtained by connecting six subtrees to the central triangle.
This procedure leads to:

YM =
3∑

j1, j2, j3=1

W{ j1, j2, j3}g
(M )
1, j2

g(M )
1, j3

g(M )
2, j1

g(M )
2, j3

g(M )
3, j1

g(M )
3, j2

. (A10)

In the thermodynamic limit M → ∞, using the recursion rela-
tions [Eqs. (A1)], the ratios [Eqs. (A3)] at the fixed points, and
this expression for the partition function [Eq. (A10)], the bulk

free energy per triangle may be obtained through Eq. (A9).
This yields the coexistence temperature τc = 0.51403. There-
fore, we indeed have a discontinuous transition between the
isotropic and nematic phases in the solution of the model on
this Husimi lattice.

To further confirm this, we calculate the order parameter Q
as defined in Eq. (7). From the partition function (A10) it is
simple to obtain the mean value of the number of molecules
with orientation i of nonbonding arms in the central triangle:

〈ni〉(M ) = 1

3Y (M )

3∑
j1, j2, j3=1

niW{ j1, j2, j3}

× g(M )
1, j2

g(M )
1, j3

g(M )
2, j1

g(M )
2, j3

g(M )
3, j1

g(M )
3, j2

, (A11)

where this number has been normalized so that 0 � 〈ni〉 �
1. If we divide the numerator and the denominator by∏3

i=1(g(M )
i,1 g(M )

i,2 g(M )
i,3 )2, then we may express this mean values in

terms of the ratios, which in the thermodynamic limit assume
their fixed point values. The result is

〈ni〉 =
∑3

j1, j2, j3=1 ni f ( j1, j2, j3, {R∗})∑3
j1, j2, j3=1 f ( j1, j2, j3, {R∗})

, (A12)

where

f ( j1, j2, j3, {R∗}) ≡ W{ j1, j2, j3}R
∗
1, j2 R∗

1, j3 R∗
2, j1 R∗

2, j3 R∗
3, j1 R∗

3, j2 .

(A13)

As expected, in the isotropic phase, one has 〈n1〉 = 〈n2〉 =
〈n3〉, so that the order parameter is Qgas = 0. On the other
hand, in the nematic HDL phase we find a nonvanishing QHDL,
whose variation with the temperature near the coexistence is
displayed in Fig. 13. At the coexistence point the discontinuity
in Q is �Q = 0.67056.

We performed similar calculations for the tree built with
hexagons (shown in Fig. 12), which are actually a particular
case of the ones presented in Ref. [17], when all lattice sites
are occupied by molecules. For brevity, we will not detail the
calculations here, and present the main results only. Since the
tree in this case is built with larger clusters, hexagons with
one central site and six sites at the border, it is expected that
such a calculation should lead to results which are closer to
those on the triangular lattice. Again, we find a discontinuous
transition, at a somewhat lower temperature, τc = 0.51207.
The discontinuity in the nematic order parameter at the coex-
istence is �Q = 0.6216, and for τ ∈ [0.48569, 0.51575] both
fixed points are stable. In this case, since there are effectively
four sites per hexagon on the treelike lattice (6/2 at the
hexagon’s border and the central one), there are more than
one way to define the order parameter at the central hexagon.
One could, for example, consider just the central site or a
mean value of the order parameter over all sites of the central
hexagon. We have done both calculations and found out that
these values are quite close. The deviation is maximum at the
coexistence temperature and the relative difference is about
0.25% there.
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[8] M. Šimėnas, A. Ibenskas, and E. E. Tornau, Phase transition
properties of the Bell-Lavis model, Phys. Rev. E 90, 042124
(2014).

[9] V. B. Henriques and M. C. Barbosa, Liquid polymorphism and
density anomaly in a lattice gas model, Phys. Rev. E 71, 031504
(2005).

[10] M. M. Szortyka, V. B. Henriques, M. Girardi, and M. C.
Barbosa, Dynamic transitions in a two dimensional associating
lattice gas model, J. Chem. Phys. 130, 184902 (2009).

[11] M. Girardi, A. L. Balladares, V. B. Henriques, and M. C.
Barbosa, Liquid polymorphism and density anomaly in a three-
dimensional associating lattice gas, J. Chem. Phys. 126, 064503
(2007).

[12] M. M. Szortyka, M. Girardi, V. B. Henriques, and M. C.
Barbosa, Dynamic transitions in a three dimensional associating
lattice gas model, J. Chem. Phys. 132, 134904 (2010).

[13] A. P. Furlan, N. G. Almarza, and M. C. Barbosa, Lattice model
for water-solute mixtures, J. Chem. Phys. 145, 144501 (2016).

[14] A. L. Balladares, V. B. Henriques, and M. C. Barbosa, Liquid
polymorphism, density anomaly and H-bond disruption in as-
sociating lattice gases, J. Phys.: Condens. Matter 19, 116105
(2007).

[15] A. P. Furlan, C. E. Fiore, and M. C. Barbosa, Influence of
disordered porous media on the anomalous properties of a
simple water model, Phys. Rev. E 92, 032404 (2015).

[16] C. Buzzano, E. De Stefanis, and M. Pretti, Cluster-variation
approximation for a network-forming lattice-fluid model,
J. Chem. Phys. 129, 024506 (2008).

[17] T. J. Oliveira, J. F. Stilck, and Marco Aurelio A. Barbosa, So-
lution of an associating lattice-gas model with density anomaly
on a husimi lattice, Phys. Rev. E 82, 051131 (2010).

[18] F. Wang and D. P. Landau, Efficient, Multiple-Range Random
Walk Algorithm to Calculate the Density of States, Phys. Rev.
Lett. 86, 2050 (2001).

[19] F. Wang and D. P. Landau, Determining the density of states
for classical statistical models: A random walk algorithm to
produce a flat histogram, Phys. Rev. E 64, 056101 (2001).

[20] K. Husimi, Note on Mayers’ theory of cluster integrals,
J. Chem. Phys. 18, 682 (1950).

[21] M. Plischke and B. Bergersen, Equilibrium Statistical Physics,
3rd ed. (Worl Scientific, Singapore, 2006).

[22] J. Kundu, R. Rajesh, D. Dhar, and J. F. Stilck, Nematic-
disordered phase transition in systems of long rigid rods on
two-dimensional lattices, Phys. Rev. E 87, 032103 (2013).

[23] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, Equation of state calculations by fast
computing machines, J. Chem. Phys. 21, 1087 (1953).

[24] R. Belardinelli, V. Pereyra, R. Dickman, and B. Lourenço, In-
trinsic convergence properties of entropic sampling algorithms,
J. Stat. Mech. (2014) P07007.

[25] A. A. Caparica, Wang-landau sampling: A criterion for halting
the simulations, Phys. Rev. E 89, 043301 (2014).

[26] M. E. Fisher and M. N. Barber, Scaling Theory for Finite-Size
Effects in the Critical Region, Phys. Rev. Lett. 28, 1516 (1972).

[27] K. Binder, Critical Properties from Monte Carlo Coarse Grain-
ing and Renormalization, Phys. Rev. Lett. 47, 693 (1981).

[28] W. Selke, The critical binder cumulant for isotropic ising
models on square and triangular lattices, J. Stat. Mech. (2007)
P04008.

[29] T. Tomé and A. Petri, Cumulants of the three-state Potts model
and of nonequilibrium models with c3v symmetry, J. Phys. A
35, 5379 (2002).

[30] F. Y. Wu, The Potts model, Rev. Mod. Phys. 54, 235 (1982).
[31] T. Nagai, Y. Okamoto, and W. Janke, Crossover scaling in

the two-dimensional three-state Potts model, Condens. Matter
Phys. 16, 23605 (2013).

[32] R. J. Baxter, Exactly Solved Models in Statistical Mechanics
(World Scientific, London, 1985).

[33] F. Peruggi, F. di Liberto, and G. Monroy, J. Phys. A: Math. Gen.
16, 811 (1983).

[34] F. di Liberto, G. Monroy, and F. Peruggi, The Potts model on
Bethe lattices, Z. Phys. B 66, 379 (1987).

[35] P. D. Gujrati, Bethe or Bethe-Like Lattice Calculations are
More Reliable than Conventional Mean-Field Calculations,
Phys. Rev. Lett. 74, 809 (1995).

[36] L. Mittag and M. J. Stephen, Mean-field theory of the many
component Potts model, J. Phys. A 7, L109 (1974).

[37] B. Nienhuis, A. N. Berker, E. K. Riedel, and M. Schick, First-
and Second-Order Phase Transitions in Potts Models: Renor-
malization Group Solutions, Phys. Rev. Lett. 43, 737 (1979).

[38] X. Qian, Y. Deng, and H. W. J. Blöte, Dilute Potts model in two
dimensions, Phys. Rev. E 72, 056132 (2005).

022109-12

http://www1.lsbu.ac.uk/water/water_structure_science.html
https://doi.org/10.1088/0305-4470/3/4/014
https://doi.org/10.1088/0305-4470/3/4/014
https://doi.org/10.1088/0305-4470/3/4/014
https://doi.org/10.1088/0305-4470/3/4/014
https://doi.org/10.1088/0305-4470/3/5/015
https://doi.org/10.1088/0305-4470/3/5/015
https://doi.org/10.1088/0305-4470/3/5/015
https://doi.org/10.1088/0305-4470/3/5/015
https://doi.org/10.1088/0022-3719/6/9/010
https://doi.org/10.1088/0022-3719/6/9/010
https://doi.org/10.1088/0022-3719/6/9/010
https://doi.org/10.1088/0022-3719/6/9/010
https://doi.org/10.1063/1.3253297
https://doi.org/10.1063/1.3253297
https://doi.org/10.1063/1.3253297
https://doi.org/10.1063/1.3253297
https://doi.org/10.1103/PhysRevE.77.051204
https://doi.org/10.1103/PhysRevE.77.051204
https://doi.org/10.1103/PhysRevE.77.051204
https://doi.org/10.1103/PhysRevE.77.051204
https://doi.org/10.1103/PhysRevLett.88.089601
https://doi.org/10.1103/PhysRevLett.88.089601
https://doi.org/10.1103/PhysRevLett.88.089601
https://doi.org/10.1103/PhysRevLett.88.089601
https://doi.org/10.1103/PhysRevE.90.042124
https://doi.org/10.1103/PhysRevE.90.042124
https://doi.org/10.1103/PhysRevE.90.042124
https://doi.org/10.1103/PhysRevE.90.042124
https://doi.org/10.1103/PhysRevE.71.031504
https://doi.org/10.1103/PhysRevE.71.031504
https://doi.org/10.1103/PhysRevE.71.031504
https://doi.org/10.1103/PhysRevE.71.031504
https://doi.org/10.1063/1.3129842
https://doi.org/10.1063/1.3129842
https://doi.org/10.1063/1.3129842
https://doi.org/10.1063/1.3129842
https://doi.org/10.1063/1.2434974
https://doi.org/10.1063/1.2434974
https://doi.org/10.1063/1.2434974
https://doi.org/10.1063/1.2434974
https://doi.org/10.1063/1.3354112
https://doi.org/10.1063/1.3354112
https://doi.org/10.1063/1.3354112
https://doi.org/10.1063/1.3354112
https://doi.org/10.1063/1.4964396
https://doi.org/10.1063/1.4964396
https://doi.org/10.1063/1.4964396
https://doi.org/10.1063/1.4964396
https://doi.org/10.1088/0953-8984/19/11/116105
https://doi.org/10.1088/0953-8984/19/11/116105
https://doi.org/10.1088/0953-8984/19/11/116105
https://doi.org/10.1088/0953-8984/19/11/116105
https://doi.org/10.1103/PhysRevE.92.032404
https://doi.org/10.1103/PhysRevE.92.032404
https://doi.org/10.1103/PhysRevE.92.032404
https://doi.org/10.1103/PhysRevE.92.032404
https://doi.org/10.1063/1.2919126
https://doi.org/10.1063/1.2919126
https://doi.org/10.1063/1.2919126
https://doi.org/10.1063/1.2919126
https://doi.org/10.1103/PhysRevE.82.051131
https://doi.org/10.1103/PhysRevE.82.051131
https://doi.org/10.1103/PhysRevE.82.051131
https://doi.org/10.1103/PhysRevE.82.051131
https://doi.org/10.1103/PhysRevLett.86.2050
https://doi.org/10.1103/PhysRevLett.86.2050
https://doi.org/10.1103/PhysRevLett.86.2050
https://doi.org/10.1103/PhysRevLett.86.2050
https://doi.org/10.1103/PhysRevE.64.056101
https://doi.org/10.1103/PhysRevE.64.056101
https://doi.org/10.1103/PhysRevE.64.056101
https://doi.org/10.1103/PhysRevE.64.056101
https://doi.org/10.1063/1.1747725
https://doi.org/10.1063/1.1747725
https://doi.org/10.1063/1.1747725
https://doi.org/10.1063/1.1747725
https://doi.org/10.1103/PhysRevE.87.032103
https://doi.org/10.1103/PhysRevE.87.032103
https://doi.org/10.1103/PhysRevE.87.032103
https://doi.org/10.1103/PhysRevE.87.032103
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1088/1742-5468/2014/07/P07007
https://doi.org/10.1088/1742-5468/2014/07/P07007
https://doi.org/10.1088/1742-5468/2014/07/P07007
https://doi.org/10.1103/PhysRevE.89.043301
https://doi.org/10.1103/PhysRevE.89.043301
https://doi.org/10.1103/PhysRevE.89.043301
https://doi.org/10.1103/PhysRevE.89.043301
https://doi.org/10.1103/PhysRevLett.28.1516
https://doi.org/10.1103/PhysRevLett.28.1516
https://doi.org/10.1103/PhysRevLett.28.1516
https://doi.org/10.1103/PhysRevLett.28.1516
https://doi.org/10.1103/PhysRevLett.47.693
https://doi.org/10.1103/PhysRevLett.47.693
https://doi.org/10.1103/PhysRevLett.47.693
https://doi.org/10.1103/PhysRevLett.47.693
https://doi.org/10.1088/1742-5468/2007/04/P04008
https://doi.org/10.1088/1742-5468/2007/04/P04008
https://doi.org/10.1088/1742-5468/2007/04/P04008
https://doi.org/10.1088/0305-4470/35/26/302
https://doi.org/10.1088/0305-4470/35/26/302
https://doi.org/10.1088/0305-4470/35/26/302
https://doi.org/10.1088/0305-4470/35/26/302
https://doi.org/10.1103/RevModPhys.54.235
https://doi.org/10.1103/RevModPhys.54.235
https://doi.org/10.1103/RevModPhys.54.235
https://doi.org/10.1103/RevModPhys.54.235
https://doi.org/10.5488/CMP.16.23605
https://doi.org/10.5488/CMP.16.23605
https://doi.org/10.5488/CMP.16.23605
https://doi.org/10.5488/CMP.16.23605
https://doi.org/10.1088/0305-4470/16/4/018
https://doi.org/10.1088/0305-4470/16/4/018
https://doi.org/10.1088/0305-4470/16/4/018
https://doi.org/10.1088/0305-4470/16/4/018
https://doi.org/10.1007/BF01305430
https://doi.org/10.1007/BF01305430
https://doi.org/10.1007/BF01305430
https://doi.org/10.1007/BF01305430
https://doi.org/10.1103/PhysRevLett.74.809
https://doi.org/10.1103/PhysRevLett.74.809
https://doi.org/10.1103/PhysRevLett.74.809
https://doi.org/10.1103/PhysRevLett.74.809
https://doi.org/10.1088/0305-4470/7/9/003
https://doi.org/10.1088/0305-4470/7/9/003
https://doi.org/10.1088/0305-4470/7/9/003
https://doi.org/10.1088/0305-4470/7/9/003
https://doi.org/10.1103/PhysRevLett.43.737
https://doi.org/10.1103/PhysRevLett.43.737
https://doi.org/10.1103/PhysRevLett.43.737
https://doi.org/10.1103/PhysRevLett.43.737
https://doi.org/10.1103/PhysRevE.72.056132
https://doi.org/10.1103/PhysRevE.72.056132
https://doi.org/10.1103/PhysRevE.72.056132
https://doi.org/10.1103/PhysRevE.72.056132

