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Tensor renormalization group study of hard-disk models on a triangular lattice
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High accuracy and performance of the tensor renormalization group (TRG) method have been demonstrated
for the model of hard disks on a triangular lattice. We considered a sequence of models with disk diameter
ranging from a to 2

√
3a, where a is the lattice constant. Practically, these models are good for approximate

description of thermodynamics properties of molecular layers on crystal surfaces. Theoretically, it is interesting
to analyze if and how this sequence converges to the continuous model of hard disks. The dependencies of the
density and heat capacity on the chemical potential were calculated with TRG and transfer-matrix (TM) methods.
We benchmarked accuracy and performance of the TRG method comparing it with TM method and with exact
result for the model with nearest-neighbor exclusions (1NN). The TRG method demonstrates good convergence
and turns out to be superior over TM with regard to considered models. Critical values of chemical potential
(μc) have been computed for all models. For the model with next-nearest-neighbor exclusions (2NN) the TRG
and TM produce consistent results (μc = 1.75587 and μc = 1.75398 correspondingly) that are also close to
earlier Monte Carlo estimation by Zhang and Deng. We found that 3NN and 5NN models shows the first-order
phase transition, with close values of μc (μc = 4.4488 for 3NN and 4.4 < μc < 4.5 for 5NN). The 4NN model
demonstrates continuous yet rapid phase transition with 2.65 < μc < 2.7.
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I. INTRODUCTION

Theoretical investigations of two-dimensional (2D) con-
densed systems, such as adsorption layers, often rely on
lattice models of various complexity [1–12]. Phase diagrams
of complicated lattice models demonstrate a large number
of phases with a large unit cell and narrow region of ex-
istence. Due to these features, an application of the tradi-
tional methods of statistical physics for studying such models
usually face a number of predictable challenges [7,8,13–16].
Using the standard metropolis Monte Carlo method, it is
difficult to achieve an equilibrium state, especially in the
phase-transition regions due to the critical slowdown and
degeneracy of phases. However, it is worth mentioning that
advanced Monte Carlo techniques like cluster algorithms,
expanded ensemble, and replica exchange methods can be
rather efficient in locating the critical points and revealing the
type and the universality of the phase transitions [17,18]. The
transfer-matrix technique as well as cluster methods has seri-
ous limitations on the period of considered phases, since the
requirements for computing power grow exponentially with
the system size reaching prohibitive values in some cases [19].
On the other hand, the narrow region of the phases existence
requires a high accuracy in determining their boundaries. For
the reasons listed above, reliable thermodynamic analysis of
the adsorption layers and analysis of their phase behavior is
complicated.

Recently, the tensor renormalization group (TRG) method
was formulated by Levin and Nave [20]. It overcomes the
main limitation of the transfer-matrix method allowing us to
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investigate the systems of virtually infinite size. The main idea
of the TRG method is close to the density matrix renormal-
ization group method [21], which has shown high efficiency
in the study of highly correlated quantum systems in one di-
mension. However, some challenges arose in generalization to
higher dimensions. The TRG method is based on an iterative
contraction of a tensor network with the subsequent singular
value decomposition of the tensor and its reduction. Tensor
network algorithms are especially effective for the strongly
correlated systems and are widely used in the investigation
of quantum models [22–24]. Various modifications of this
approach with growing accuracy and performance regularly
appear in literature [25–30].

In this paper, we investigated the capabilities of the TRG
method for studying the thermodynamic of hard-core lattice
models. These models qualitatively describe a behavior of
adsorption layers with isotropic repulsion between adsorbed
complexes. The relatively strong repulsions become pro-
hibitive at a certain distance and low-enough temperatures.
Thus, phase transitions in many adsorption systems in fact
are extensions of phase transitions in hard-core models to
finite-temperature range. We have considered the sequence
of hard-disks models with different sizes. This set of models
is interesting because the discreteness of the disk position
on the surface decreases with increasing the disk size and,
in the limit of infinitely large disk, a transition to the con-
tinuous model is expected. As an example, we refer to the
porphyrins adsorption on the gold surface [31–33]. Structure
of the resulting dense phase is determined only by geometry
of the adsorbed molecules and the interactions between them.
To a certain extent, this sequence is a transition from the
Langmuir adsorption lattice model to continuous models of
hard segments (Volmer model) or hard disks.
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FIG. 1. Schematic representation of the studied models: (a) The sequence of the neighbor exclusions and (b) corresponding sequence of
hard disks.

It turned out that this sequence of models exhibit two types
of phase transitions—continuous and discontinuous ones.
Similar behavior was earlier observed for square lattice [8].
Thereby we took the opportunity to benchmark performance
and accuracy of the novel TRG method against proven hard
tasks—detection of phase transition type and calculation of
critical parameters for both continuous and discontinuous
transitions.

II. MODELS

Here we describe the considered sequence of models on a
triangular lattice. Models of hard disks on square lattice has
been investigated in numerous studies [7,8,13,14,34–37] and
remarkable nonobvious features of phase behavior have been
revealed. In contrast, the same models on triangular lattice are
much less studied [15,16,38]. Most likely it is due to higher
complexity of calculations in that case. Besides theoretical
interest, triangular lattice is a model of many practically
important surfaces: Pt(111), Au(111), Cu(111), Zn(0001), etc.

The models considered in the work differ only in the size
of hard disks. We have studied models with a disk diameter
0 < d < 2

√
3a, and, hereinafter, a is the lattice parameter.

Lattice sites can be in two states: ni = 0 if the site is free
and ni = 1 if the hard-disk center is located in this site. These
models can be conveniently described in terms of the neigh-
bor exclusions, when there is an infinitely strong repulsion
between occupied sites at some distance from each other.
According to this terminology, the considered models can be
classified by the number of the coordination sphere: from
1NN to 5NN. We will investigate in detail only the models
with restrictions up to the third neighbor. Figure 1 presents
the regions corresponding to the infinitely strong repulsions
in models from 1NN to 3NN and the respective hard disks.
Thus, if we take into account the neighbor exclusions, then
the thermodynamic Hamiltonian for all models can be defined
as follows:

βHeff = −μ
∑

i

ni, (1)

where μ is the chemical potential; i runs over all lattice site;
β = 1/(kBT ), where kB is Boltzmann constant; and T is the

absolute temperature. For simplicity, we suppose β equal to
1 and further give all the values in a dimensionless form. In
addition, periodic boundary conditions were implemented in
all the models.

The simplest case is the model with d < a, when the size
of the adsorbed molecules is small compared to the distance
between neighboring sites. Thus, there are no restrictions on
the states of neighboring sites. This model is the well-known
Langmuir adsorption model (LM). Phase behavior of such a
system is not affected by the lattice geometry. As the chemical
potential of the gas phase (pressure) increases, the number
of molecules on the surface gradually grows, and when the
chemical potential reaches a certain value, the close-packed
phase �1 with a density of ϕ�1 = 1 is formed. It is worthwhile
to note that the LM is known to have no phase transition at
nonzero temperatures. The value ϕ is calculated as the ratio of
the number of adsorbed molecules to the total number of sites
in the system. Figure 2 shows the structure of the close-packed
phase in the LM model.

If the size of molecules exceeds the distance between
nearest-neighbor sites (d > a), then the nearest-neighbor
(1NN), next-nearest-neighbor (2NN), and other neighboring
can be prohibited in the model. Special attention should be
paid to the 1NN model, which is also called the hard hexagon

FIG. 2. Structure of the close-packed phases formed in the con-
sidered models.
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model. The exact solution was proposed for it in 1980 [40,41].
This allows us to compare the accuracy of the obtained results.
In all considered models only the lattice gas phase (ϕ = 0) is
present at low values of the chemical potential. At high values,
the structure becomes as dense as possible for a particular
model. According to the ground-state analysis, the observed
phases have the following densities: ϕ�2 = 1/3 in the 1NN
model, ϕ�3 = 1/4 in the 2NN model, ϕ�4 = 1/7 in the 3NN
model, ϕ�5 = 1/9 in the 4NN model, and ϕ�6 = 1/12 in the
5NN model. The close-packed structures for the first four
models are shown in Fig. 2. The extreme case of the consid-
ered sequence of lattice models is a continuous model of hard
disks. Recall that two phase transitions occur in the continu-
ous model of hard disks with increase of the layer density: the
first-order transition from the surface liquid to the “hexatic
phase” and the continuous phase transition from the “hex-
atic phase” to the crystal [42]. In order to compare
the data obtained for the different models in the considered
set, we introduce another definition of the density: the ratio
between the amount of adsorbed molecules and the capacity
of the monolayer ρ = ϕ/ϕmax. The monolayer capacity corre-
sponds to the maximum possible amount of the molecules in
the monolayer.

III. TENSOR RENORMALIZATION GROUP
AND TRANSFER-MATRIX METHODS

To study the considered models we need to calculate their
partition function. It allows us to obtain the desired thermody-
namic properties using the following equations:

Z =
∑

i

eβHi , β� = −ln(Z ), (2)

ϕ = −
(

∂�

∂μ

)
T

, S = −
(

∂�

∂T

)
μ

, CV = T

(
∂S

∂T

)
μ

, (3)

where Z is the partition function, i is a number of microstates
of the system, � is the grand canonical potential, S is entropy,
and CV is heat capacity. The finite-difference formulas were
used for numerical differentiation. The differentiation step
was 10−4 kB for T and kBT for μ.

Baxter proposed to calculate the partition function through
a contraction of a tensor network consisting of a fourth-rank
tensor. Each tensor describe the interactions between the four
nearest lattice sites. This approach is called the interaction-
round-a-face (IRF) model [43]. The transformation of a lattice
model into a tensor network is schematically shown in Fig. 3.
Black dots denote identity tensors (main diagonal elements
are 1s and all others are 0’s). The term COPY-dot was coined
for these tensors in Ref. [44]. W is an interaction-round-a-face
tensor, which contains information about interactions of four
neighboring sites. The trace of the obtained tensor network is
a partition function Z = tTr(⊗N

i=1T ).
In original paper [20] Levin and Nave proposed to use the

TRG method for triangular, square, and honeycomb lattices
with the nearest-neighbor interactions with specific schemes
of tensor network contraction. Later TRG was adopted to
various models: the classical dimers model [45], the lattice
boson model [46], the O(3) model [47], and the XY model
[48]. In contrast with above-mentioned models the hard-disks

FIG. 3. Transformation of a lattice model to regular tensor
network.

models include long-range interactions. It forbids straightfor-
ward usage of simple tensor network for triangular lattice.

Therefore here we have employed the Baxter’s IRF ap-
proach to build tensor networks of square lattice topology
for all xNN models. Long-range interactions have been taken
into account via considering several neighboring sites of an
original lattice as a single site. So in the refined lattice only
interactions between nearest and next-nearest neighbors are
presented. These interactions can be included in IRF four-
legged tensor. It is important to note that this construction
can be universally applied to any 2D lattice with arbitrary
crystalline symmetry. It means that TRG method potentially
can be applied to a wide range of physical objects in a
routine way. Although specific tensor network representations
can be more efficient for particular lattices and interaction
Hamiltonians, simple and universal construction is crucial for
wide adoption of the method.

In the considered set of the hard-core lattice models in-
finitely strong repulsions are arose between occupied sites
(where ni = 1) at a certain distance. Eliminating these ex-
cluded configurations significantly saves the computational
resources. For example, merging the nearest-neighbor sites in
the 1NN model results in a site with three states but not four.
It follows from the fact that pair configuration, where both
nearest-neighbor sites are occupied, is excluded.

Unfortunately, direct calculation of partition function for
systems of large size is impossible. In this regard, various
approximate methods are utilized. Here we used the TRG
algorithm as implemented in the SUSMOST [49]. The idea of
the approach is to reduce singular value spectrum of the tensor
to a specified number D (Fig. 4). When the D decreases, it
obviously leads to a growth of the computational error. It is
difficult to estimate the accuracy of the calculations with this
approach. However, the computational experiments on some
models show that results converge to exact values when the D
increases [20,26].

The transfer-matrix method used earlier for studying lat-
tice models of hard disks can also be implemented in the
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FIG. 4. Schematic representation of the TRG algorithm.

tensor form. The main concept of the method is to find
the largest eigenvalue of a certain matrix that describes the
interactions between M sites (rings on a semi-infinite cylin-
der). The resulting eigenvalue corresponds to the partition
function of a system with size M × ∞. Since numerical
algorithms allow us to find the eigenvalue of a matrix with
a predetermined accuracy, the value of the calculation er-
ror is always known in advance. The main problem of the
method is the exponential growth of the calculation time with
increasing M.

Algorithms for finding the largest eigenvalue are usu-
ally associated with a vector-matrix multiplication. It can
also be represented in the tensor form for the general
case (Fig. 5). Here the multidimensional tensor X acts as

FIG. 5. Tensor representation of the transfer-matrix technique.

FIG. 6. Results of the TM calculations for the 1NN model:
(a) Baxter’s exact and calculated adsorption isotherms and (b) MAE
of �M (μ) as function of M.

the left vector in a sequential contraction procedure. The
transfer-matrix is represented as a set of W tensors. This
approach allows us to store in memory only vector X and
tensor W , which significantly reduces the amount of required
RAM.

The multiplication by the right vector is carried out in a
similar way. The eigenvalue was calculated using the restarted
Arnoldi method. The tensors contractions were implemented
as a linear operator, which was further used to find the
eigenvalue using the SciPy library.

IV. RESULTS

A. 1NN model

First, we consider the results obtained by the TM method
for the 1NN model. The adsorption isotherms were calculated
for the systems of various sizes M = 2–24. The upper limit of
the parameter M = 24 was caused by the available computing
resources. The exact Baxter isotherm and isotherm calculated
by the TM method are shown in Fig. 6(a).

We additionally compared a value of the grand thermody-
namic potential with the exact solution [Fig. 6(b)]. The mean
absolute error (MAE) σ of the M function was calculated by
comparing with Baxter’s exact solution and defined as follows
[40,41]:

σ (M ) =
∑

μ |�M (μ) − �exact (μ)|
N

, (4)

where N is the number of points along the curve.
As seen, the behavior of the system strongly depends on the

size of the semi-infinite lattice. The fact is the unit cell size of
the �2 phase equals 3. To obtain a correct result the value of
the parameter M must be a multiple of 3, that is, the smallest
linear size of the phase unit cell. If several phases are formed
in the system, then it is necessary to choose M multiple
of the smallest unit cell among all the phases observed in
the system. Therefore, it is necessary to analyze the ground
state of the model before the TM calculations. As follows
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FIG. 7. Results of the TRG calculation for the 1NN model: (a) Baxter’s exact and calculated adsorption isotherms and (b) the accuracy
estimations of the TM and TRG calculations of the grand thermodynamic potential. The points t1 and t2 indicate the values of the parameters M
and D corresponding to approximately the same computational times. For M = 12 and D = 17, t1 = 15 s, for M = 18 and D = 38, t2 = 30 min
on an eight-CPU computer.

from Fig. 6(b), the accuracy of the TM calculations increases
significantly, when taking into account only M multiple of
3. Thus, reliable results of the TM calculations require the
maximum possible values of the M parameter and taking into
account the multiplicity of the unit cells.

The corresponding isotherms were computed using the
TRG method at various values of D = 2–46 [Fig. 7(a)]. The
accuracy of the TRG calculations was estimated at D = 2–
75 [Fig. 7(b)]. There are t1 and t2 points in Fig. 7(b) that
provide a comparison of the time required for the calculations
using TM and TRG algorithms. It can be seen that the TRG
method is superior in accuracy to the TM method at a lower
computational cost.

Similarly to the TM method, the increase of the D param-
eter (the number of kept singular values) leads to the growth
of the calculation accuracy. It is seen that even at D >= 8
the difference is inconspicuous. Note that the TRG method
does not require us to take into account the multiplicity of the
parameter D to the sizes of the unit cells. This allows us to
investigate the system without a preliminary analysis of the
ground state. The convergence of the results was estimated by
the mean absolute deviation 	 between the data obtained at
different values of D:

	(D, r) =
∑

μ |�D(μ) − �(D−r)(μ)|
N

. (5)

All calculations for this model were carried out at D <=
81. It should be mentioned that an additional reduction (by√

D) was applied for each dimension of the tensor. This
approach can substantially reduce the calculation time in some
cases.

As can be seen in the isotherm plots, a continuous phase
transition occurs in the system. According to the exact solu-
tion of Baxter [40,41], the phase-transition point in this system

is μc = ln( 11+5
√

5
2 ) = 2.406059. We have evaluated it from

position of the heat capacity peak [Fig. 8(a)].
As demonstrated in Fig. 8, in the TM calculations the heat

capacity peak shifts toward the exact solution with M growth.
In TRG calculations displacements of the heat capacity peak
is negligible at D > 45. For example, the phase transition
at D = 81 appears at the chemical potential μc = 2.405992
(error 6.7 × 10−5), but TM at M = 24 gives μc = 2.399604
(error 6.455 × 10−3).

As is known, the formation of an ordered structure can be
estimated by the stable minimum of the system entropy in a
certain range of the variable parameter values. Figure 8(b)
shows the entropy dependence on the chemical potential

FIG. 8. Heat capacity and entropy of the 1NN model.
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FIG. 9. Results of the TM and TRG calculations for 2NN model:
(a) The adsorption isotherms and (b) the convergence of the grand
thermodynamic potential.

for the 1NN model. As can be seen, the entropy minima
clearly possesses the regions of the stable lattice gas and a
two-dimensional crystal. Note that the zero entropy and heat
capacity in the indicated phases is a consequence of the fact
that the considered model is a lattice model.

B. 2NN model

Here we consider a model with next-nearest-neighbors
exclusions (2NN). Since the linear size of the unit cell of
the close-packed phase equals 2, all TM calculations were
carried out only for even M. Figure 9 shows the adsorption
isotherms and our estimations of the calculation convergence.
As can be seen in Fig. 9(a), the phase behaviors of this and
previous models are similar. There is a continuous phase
transition from the LG to the close-packed �2 phase. As in
the case of 1NN model, a gradual change in the shape of
the obtained isotherm is noticeable as the size of the system
increases. Since there is no exact solution for the considered
model, the convergence was estimated only by 	(M, 2) and
	(D, 1) parameters [Fig. 9(b)]. The maximum value of the D
parameter that we used is 100, and the corresponding error is
	(D = 100, r = 1) < 10−8.

The phase-transition point was determined relying on the
position of the heat capacity peak [Fig. 10(a)]. To the best of
our knowledge, the most accurate estimation of μc to today
was computed by Zhang and Deng [16] with the Monte Carlo
method to be 1.75682(2). Figure 10(b) shows the difference
of the calculated μc with this estimation for different values
of M and D parameters utilized in the TM and TRG methods,
respectively. From the values of t1 and t2, one can see that
for the same computation time the TRG method gives a much
more accurate result. The resulting value of the critical chem-
ical potential obtained by the TRG method is μc = 1.75587 at
D = 100. The TM at M = 20 gives the value μc = 1.75398.
It should be noted that both computation methods show the
single continuous phase transition from a disordered phase
with low density to the close-packed structure. This is also

FIG. 10. Heat capacity vs. chemical potential in the 2NN model.
Inset (b) illustrates the difference of the calculated μc with previous
result [16]. The points t1 and t2 indicate the values of the parameters
M and D corresponding to approximately the same computational
times.

consistent with Monte Carlo simulations by Zhang and Deng
[16].

C. 3NN model

The similar study was performed for the 3NN model. The
TM calculations were conduced only for M = 14 and 21,
since the unit cell size of the close-packed structure is 7 × 7.
The calculated isotherms and heat capacity are presented in
Fig. 11(a).

The phase transition determined by the TM technique prac-
tically does not change with increasing of M and coincides
with μc = 4.4488 obtained by the TRG method for D = 121.
Absence of the scaling behavior indicates the first-order phase
transition, setting the 3NN model apart from those considered
earlier. Thus, 1NN-3NN models on triangular and square
lattices behave in the qualitatively same way [7].

D. 4NN and 5NN models

For the 4NN and 5NN models the adsorption isotherms
were computed only with the TRG method (Fig. 12). As
shown, there is a continuous phase transition in the 4NN
model and presumably the first-order phase transition in the
5NN model. For the 4NN model μc has been estimated to be
between 2.65 and 2.7. For the 5NN model μc is from 4.4 to
4.5. It is interesting to note that μc for 5NN is close to μc for
3NN.

It is remarkable that a continuous phase transition was
initially assumed for the 4NN model on a square lattice [7].
However, it was found that two different phase transitions
occur [8]. In the case of a triangular lattice we observed
a single continuous, yet rapid, phase transition. Coverage
changes rather fast in the vicinity of μc, so we had to conduct
computations with very small step by μ to conclude about
type of the transition. In order to determine the presence of a
second phase transition, additional studies are required. Here
we can only claim that at least one phase transition occurs
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FIG. 11. Density (a) and heat capacity (b) dependence on chemical potential in the 3NN model.

in this system. In the 5NN model we observed the first-
order phase transition that corresponds to the square-lattice
case [7].

Figure 12 also shows the adsorption isotherms calcu-
lated with Langmuir, Volmer, and the continuous hard-disk
models. One can see that the phase transitions in the con-
sidered models occur in the region between the Langmuir
model and the continuous models. A further increase in the
disk size is expected to gradually shift the phase-transition
point toward higher μ values. Further study of the 4NN
and 5NN models, as well as more complex models, is
planned in the future, since this requires calculations for D >

150 and/or the use of modified versions of tensor network
algorithms.

FIG. 12. The adsorption isotherms of all considered models com-
pared with the Langmuir, Volmer, and continuous hard-disk models
[39].

V. CONCLUSION

In this paper we have studied the thermodynamic charac-
teristics of the hard-disk models on a triangular lattice, using
transfer-matrix and tensor renormalization group methods.
The models differ by the diameter of the disks from a to
2
√

3a, where a is the lattice constant. We have proposed a
universal construction of the uniform square tensor network
for the TRG method. It simplifies the implementation of
tensor-network algorithms for lattices of different symmetry.
Using the TRG and TM methods we have calculated heat
capacity and layer density as functions of chemical poten-
tial. Superiority of TRG over TM in terms of accuracy and
performance was observed for the considered models. An
important virtue of the TRG method is the intrinsic infinity
of the simulated system, which makes it unnecessary to do a
ground-state analysis beforehand.

Critical values of chemical potential have been computed
for all considered models. For the 1NN model both the TRG
and TM methods exhibited good accuracy compared with the
exact solution. For the 2NN model, TRG and TM produced
consistent estimations of μc. To the best of our knowledge,
estimations of μc for the 3NN, 4NN, and 5NN models have
been computed for the first time here. The 3NN and 5NN
models shows the first-order phase transition, and the 4NN
model shows a continuous yet rapid phase transition. Gen-
erally, types of phase transitions in the considered sequence
of models are similar to ones of corresponding models on
square lattice. Obtained adsorption isotherms of the consid-
ered models in the vicinity of phase transitions appeared to
be intermediate between Langmuir and continuous Volmer
and hard-disks isotherms, which is consistent with general
theoretical reasoning.
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[1] A. Ibenskas, M. Šimėnas, and E. E. Tornau, Numerical en-
gineering of molecular self-assemblies in a binary system of
trimesic and benzenetribenzoic acids, J. Phys. Chem. C 120,
6669 (2016).
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in 2d assemblies comprising functional tripod molecules with
reduced symmetry, J. Phys. Chem. C 121, 25104 (2017).
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