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Three-dimensional observation of Brownian particles under steady shear flow by stereo microscopy
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Three-dimensional observation of Brownian particles under shear flow is performed with a stereo microscope
to examine the nature of the Brownian motion that occurs in the presence of shear flow. From the three-
dimensional trajectories of the particles, we clearly demonstrate the occurrence of anomalous diffusion in the
flow direction and the coupling of the displacements in the flow and velocity gradient directions. Furthermore, we
experimentally obtain the probability distribution function and current density, which also exhibit characteristic
features, and compare the obtained results with theoretical results derived using the Fokker-Planck equation.
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I. INTRODUCTION

The Brownian motion of particles subjected to shear flow
has long been investigated both theoretically and experimen-
tally owing to its intriguing properties of nonequilibrium sys-
tems. In the equilibrium state in the absence of macroscopic
flow, the mean square displacement (MSD) characterizing the
particle diffusion can be expressed as 2Dt with the diffusion
constant D in all directions. In the case of simple shear
flow, the MSD of a particle in the flow direction (x axis) is
modified as

〈[x(t ) − x(0) − γ̇ z(0)t]2〉 = 2Dt + 2
3 Dγ̇ 2t3, (1)

where the z axis is taken to be along the velocity gradient
and γ̇ is the shear rate. Note that the displacement due to
the shear flow along the stream line, γ̇ z(0)t , is subtracted.
This is a remarkable feature that originates from coupling
between the diffusion due to Brownian motion and the flow.
This coupling was first proposed by Taylor, who verified both
experimentally and theoretically that the diffusion constant of
a particle in a fluid flowing through a narrow tube becomes
larger than that in the equilibrium state [1]. The anomalous
diffusion under simple shear flow has been theoretically stud-
ied using the Langevin equation [2–4] and the convective
diffusion equation (Fokker-Planck equation) [2,5,6]. How-
ever, experimental verification of the anomalous diffusion
proportional to t3 in Eq. (1) remains difficult, because it
requires the measurement of both the x and z coordinates. In
a typical experimental setup, only the x and y coordinates can
be measured. This difficulty in measuring both the x and z
coordinates was overcome by introducing the variable x̃(t ) =
{[x(2t ) − x(t )] − [x(t ) − x(0)]}/√2, which contains only x
[7]. It is readily apparent that the displacement due to the shear
flow in the time interval t is canceled out in x̃(t ). The MSD
of x̃(t ) was proved to be the same as that given in Eq. (1):
〈x̃(t )2〉 = 2Dt + (2/3)Dγ̇ 2t3. The occurrence of anomalous
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diffusion was then successfully demonstrated by calculating
〈x̃(t )2〉 solely from measured values of x(t ).

Another remarkable feature of Brownian particles under
shear flow is that cross-correlation appears between the dis-
placements in the x and z directions, as demonstrated by
both theory [2,8] and simulation [9]. Ziehl et al. reported the
occurrence of cross-correlation by experimentally obtaining
the cross-correlation functions 〈x(t )z(0)〉 and 〈z(t )x(0)〉 of
a laser-trapped particle under shear flow [10]. Furthermore,
this study revealed the breaking of the time-reversal sym-
metry, i.e., 〈x(t )z(0)〉 �= 〈z(t )x(0)〉. This symmetry breaking
is caused by a nonconservative force due to the rotational
component of the shear flow. Such a nonconservative force
has also been demonstrated to play an important role in
orientational fluctuations in sheared nematic liquid crystals
[11,12]. In the case of a free particle under shear flow,
however, there is no experiment to reveal the appearance
of the cross-correlation owing to the experimental difficulty
mentioned above. In this case, there is no alternative way such
as using x̃(t ), and therefore we need to directly observe both
the x and z coordinates.

In the probability space for the particle displacement, on
the other hand, there are other testable predictions. Theoreti-
cally, the probability density was derived from the convective
diffusion equation, and anisotropic diffusion was shown to
appear under shear flow [2,5,6]. However, there has been no
experimental verification of these predictions. In addition, we
can expect to observe a rotational probability current [13]
caused by a nonconservative force. Stereo microscopy al-
lows us to observe these phenomena characteristic to sheared
Brownian motion.

In general, to measure three-dimensional (3D) microscale
flows, two techniques have mainly been used so far: stereo
micro particle tracking velocimetry (PTV) and particle image
velocimetry (PIV) [14–17]. In our case, however, the latter
is not available, as the velocity of each particle cannot be
obtained in the PIV: It gives only the velocity field by calcu-
lating the correlation function of successive images. The PTV
is the only method that can measure the trajectory of each
particle, which has information about not only the velocity
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FIG. 1. Schematic illustration of the stereo microscope and shear
flow path. Fluorescent particles illuminated with a 488-nm laser
were monitored from two distinct optical axes using two identical
video microscopes to construct three-dimensional images. The x, y,
and z axes correspond to the flow, vorticity, and velocity gradient
directions, respectively. In stereo microscopy, 3D particle position
(x, y, z) is determined by 2D particle-image positions (x1, y1) and
(x2, y2) taken with cameras 1 and 2, respectively.

field of the fluid but also the Brownian motion. Therefore,
we used microscopic PTV. In the 3D reconstruction from two
images taken by two cameras having different optical axes,
a precise calibration is necessary. In calibration a calibration
grid is usually used. However, this becomes difficult inside a
submillimeter-sized cell used in microscopic stereoscopy. So
far some calibration procedures for microstereo PTV and PIV
have been developed. Here, we present a simple procedure
without using any calibration grid.

II. EXPERIMENT

To accomplish the 3D monitoring of Brownian par-
ticles under shear flow, we employed a stereo particle-
tracking method. Two identical video microscopes with
long working distance objectives (magnification: 20×, NA:
0.28, focal length: 10 mm, working distance: 30.5 mm)
(MXG-10C, Hirox) equipped with high-sensitivity digital
cameras (ORCA-Flash 4.0 V2, Hamamatsu Photonics) were
used to simultaneously record distinct off-axial views of the
same region of interest, as depicted in Fig. 1. The crossing
angle 2θ between the optical axes was 54°, which permitted
measurement of the particle positions in the direction of
sample thickness. Fluorescent particles with a diameter of
1 μm (FluoSpheres, Invitrogen) dispersed in distilled water
were illuminated with a 488-nm laser beam with a diameter
of 0.7 mm (85-BCD-020-053, Melles Griot) and the resulting
fluorescent images were captured with a frame rate of 50 fps
after passing through a long-pass filter (BLP01-488R-25,
Semrock). In total, 8000 frames were acquired for each run
and ten runs were performed under the same conditions. Shear
flow was applied using a cone–plate rheometer (MCR 302
WESP, Anton Paar) with a glass stage for sample observation.
Measurements were done at shear rates of 1 and 2 s−1. We
show only results measured at 2 s−1 as the shear effect is more
conspicuous at higher shear rates and the results measured
at 1 s−1 were consistent with those at 2 s−1. The diameter

and cone angle of the cone plate were 25 mm and 1.134°,
respectively, and the samples were observed 2.7 mm from
the center of the upper rotating disk, where the gap was
52 μm. All measurements were performed at 25 °C. The 3D
trajectories of the particles were obtained from the two movies
taken with the two cameras, as follows.

In stereo microscopy, each camera measures the particle
displacement perpendicular to its viewing direction. In a co-
ordinate system shown in Fig. 1, the real particle displacement
(�x,�y,�z) is given by the particle-image displacements
(�x1,�y1) and (�x2,�y2):

�x = (�x1 + �x2)/2,

�y = (�y1 − �y2)/(2 sin θ ), (2)

�z = (−�y1 + �y2)/(2 cos θ ),

for a paraxial approximation, which is valid when the particle
displacements are much smaller than the distance to the
objectives, and for an ideal experimental setup. In reality,
however, a mapping function, which relates (�x,�y,�z) to
(�x1,�y1,�x2,�y2), is experimentally obtained by using a
calibration grid because precise calibration is necessary to
match particles in the two simultaneous images and obtain the
3D particle position. In the usual procedure, 3D trajectories
are reconstructed by tracking 3D particles thus obtained. Here,
we adopt an alternative procedure without using any calibra-
tion grid. We match two-dimensional (2D) trajectories instead
of particles. For small displacements, (�x1,�y1,�x2,�y2)
is a linear function of (�x,�y,�z), and therefore a
linear relation should hold among �x1,�y1,�x2, and
�y2 by eliminating �x,�y, and �z; i.e., �x1 = a�x2 +
b�y1 + c�y2. It is noted that a = 1 and b = c = 0 for
a perfect match of experimental identification of �x in
both cameras. If two 2D trajectories [�x1(t ),�y1(t )] and
[�x2(t ),�y2(t )] originate from an identical 3D trajec-
tory [�x(t ),�y(t ),�z(t )], �x1(t ) = a�x2(t ) + b�y1(t ) +
c�y2(t ) holds at all times. We selected best matches in
all the pairs of trajectories based on a least squares fit,
where we minimized the sum of squared residuals defined
as S = ∑N

i=1 [�x1(ti) − a�x2(ti ) − b�y1(ti ) − c�y2(ti )]
2/N .

Although this method is applicable only to moving particles,
it is quite useful for our purpose. The 3D displacements
were calculated by using Eq. (2) without any calibration. No
calibration means that the 3D displacements would contain
some errors. For example, an error of 1◦ in θ causes errors
of about 3% and 1% in �y and �z, respectively. Taking
into account the measurement error, we confine ourselves
to mainly investigating the qualitative properties of sheared
Brownian motion in this paper.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Generalized MSD, cross-correlation,
and asymmetric interaction

In Fig. 2, we show the 3D trajectories observed under shear
flow for a typical single run, where only 40 trajectories were
randomly selected, and the x and z directions correspond to the
flow and velocity gradient directions, respectively, and short
trajectories have been removed. The observed region was
approximately 360×80×20 μm3 in the x, y, and z directions,
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FIG. 2. Typical 3D trajectories observed using the stereo micro-
scope. The observed region is approximately 360×80×20 μm3 in
the x, y, and z directions, where z ranges from 15 to 35 μm and the
bottom glass surface is at z = 0. A simple shear flow of 1.9 s−1 is
applied in the x direction.

and especially z approximately ranged from 0 to 20 μm,
where the glass surface was at z = 0. In principle, the sizes
of the region in the y and z directions were determined by
the depth of field of the objectives, the crossing angle 2θ ,
and the availability of the matching procedure. Although there
were particles moving near the glass surface, the amount of
particles between z = 0 and 5μm was only 8% so that the
wall effect could be neglected in our experiment. It can be
clearly seen that the fluctuating particles were carried away
in the flow direction. In the previous section we referred only
to the displacements, but the particle positions are shown in
Fig. 2. They were obtained by using (x1, y1, x2, y2) instead of
(�x1,�y1,�x2,�y2) in Eq. (2), and the z = 0 surface corre-
sponding to the glass surface was determined by the velocity
field, which becomes zero at the surface and was obtained
from the trajectories as follows. Along each trajectory, we
obtained the velocities at an interval of 0.2 s. By assuming
a flow velocity field of v(r) = {γ̇ g · [r − r0]}f , where f and
g are the unit vectors in the flow and velocity gradient
directions, respectively, and γ̇ is the shear rate regarded as
an adjustable parameter, we fitted the equation to the set of
calculated velocities at various positions. The total number of
trajectories used for the least-squares fit was 1702 over ten
runs. The obtained shear rate γ̇ was 1.9 s−1, which is slightly
less than the value of 2 s−1 set using the rheometer. The
vectors f and g slightly deviated from the x and z directions,
respectively, and therefore the coordinate axes were redefined
such that the x and z axes were parallel to f and g.

Here, we define the generalized MSD:

Mαβ (t ) ≡ 〈{rα (t ) − rα (0) − vα[�r(0)]t}
× {rβ (t ) − rβ (0) − vβ[�r(0)]t}〉. (3)

It should be noted that Mαβ (t ) is a symmetric tensor in gen-
eral, Mαβ (t ) = Mβα (t ), and vα (r) = γ̇ zδαx in the present case.
The diagonal elements (usual MSDs) Mαα (t ) are theoretically
obtained as

Mxx(t ) = 〈[x(t ) − x(0) − γ̇ z(0)t]2〉= 2Dt + 2
3 Dt (γ̇ t )2, (4)

Myy(t ) = Mzz(t ) = 2Dt, (5)
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FIG. 3. Diagonal elements Mαα (t ) (a = x, y, z) for Brownian
particles with a diameter of 1 μm under shear flow at a shear rate
of 1.9 s−1 at 25 °C in distilled water. The solid lines represent the
theoretical results. Anomalous diffusion is observed in the x direction
[Mxx (t )], which can be seen more clearly in the log-log plot of
Mxx − (Myy + Mzz )/2 shown in the inset. The slope is 2.7, which
is slightly smaller than the theoretical value 3. In contrast, normal
diffusion is observed in the y and z directions.

and the off-diagonal elements (cross-correlations) are ob-
tained as [2]

Mxz(t ) = 〈[x(t ) − x(0) − γ̇ z(0)t][z(t ) − z(0)]〉= Dγ̇ t2, (6)

Mxy(t ) = Myz(t ) = 0. (7)

These results can be calculated from the following
Langevin equation:

ζ

(
drα

dt
− δxαγ̇ z

)
= Rα (t ), (8)

where ζ = 6πaη with a the particle radius and η the shear
viscosity, and the diffusion constant is given by the Einstein-
Stokes relation D = kBT/ζ . Rα is the Gaussian white noise:
〈Rα (t )〉 = 0 and 〈Rα (t )Rβ (t ′)〉 = 2ζkBT δαβδ(t − t ′). As men-
tioned above, in the flow direction the t3 term is added to the
MSD [Eq. (4)], and cross-correlation occurs between the x
and z directions, which is proportional to t2 [Eq. (6)]. This
cross-correlation originates from the coupling between x and
z, although it is asymmetric as shown by Eq. (8): x depends
on z but z is independent of x, which will be demonstrated
experimentally.

The diagonal elements Mαα (t ) are plotted in Fig. 3, where
the solid lines were obtained theoretically using Eqs. (4) and
(5). The diffusion constant in these equations was calculated
using the Einstein-Stokes relation with a = 0.5 μm and η =
0.89 mPa s at 25 °C. Normal diffusion was observed in
both the y and z directions, although the experimental MSDs
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FIG. 4. Off-diagonal elements Mαβ (t )(α �= β ) calculated using
the same data as in Fig. 3. The solid lines represent the theoretical
results. A correlation is observed between x and z [Mxz(t )], which
obeys a power law with an exponent of 1.8 slightly smaller than the
theoretical value 2 (see the inset).

were slightly lower than the theoretical values. This discrep-
ancy may be mainly attributable to the experimental error,
which was caused by using Eq. (2) without any calibration.
In the flow direction, in contrast, anomalous diffusion was
clearly observed. The inset of Fig. 3 shows a plot of Mxx −
(Myy + Mzz )/2, obeying a power law with an exponent of
2.7, which is slightly smaller than the theoretical value 3. The
discrepancy may be due to the above-mentioned experimental
error and/or another error contained in the linear flow velocity
field used in the calculation. These results are consistent with
those described in our previous report [7], in which the MSD
of x̃(t ) was considered.

The off-diagonal elements Mαβ (t )(α �= β ) are plotted in
Fig. 4. The curves for Mxy and Myz were almost zero. In
contrast, the curve for Mxz was not zero and obeys a power
law with an exponent of 1.8 (see the log-log plot shown in the
inset), which is slightly smaller than the theoretical value 2.
The reason for the discrepancy may be the same as that in Mxx.
These results clearly demonstrate the correlation between x
and z.

In the case of a trapped particle, the breakdown of the time-
reversal symmetry was demonstrated through the relation
〈x(t )z(0)〉 �= 〈z(t )x(0)〉 [10]. In the case of our unbounded
particles, however, 〈x(t )z(0)〉 and 〈z(t )x(0)〉 are ill-defined.
Instead, we consider

M̃xz(t ) ≡ 〈[x(t ) − x(0) − γ̇ z(0)t][z(2t ) − z(t )]〉, (9)

M̃zx(t ) ≡ 〈[z(t ) − z(0)][x(2t ) − x(t ) − γ̇ z(0)t]〉. (10)

These are calculated as M̃xz(t ) = 0 and M̃zx(t ) = 2Dγ̇ t2 us-
ing Eq. (8). The former is obvious because x(τ ) (0 � τ � t )
never influences z(τ ) (t � τ � 2t ), whereas z(τ ) (0 � τ � t )
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FIG. 5. Plots of M̃xz(t ) and M̃zx (t ). The solid lines represent
the theoretical results. The results for M̃xz(t ) = 0 and M̃zx (t ) �= 0
indicate the existence of an asymmetric interaction between x and
z. From the inset the slope is 1.8, which is slightly smaller than the
theoretical value 2.

influences x(τ ) (t � τ � 2t ), which originates from the
asymmetric interaction between x and z as previously dis-
cussed. This is demonstrated in Fig. 5. The curve for
M̃xz(t ) is almost zero and that for M̃zx(t ) obeys a power
law with an exponent of 1.8, which is slightly smaller
than the theoretical value 2. The reason for the discrep-
ancy may be the same as described above. Although M̃xz(t )
and M̃zx(t ) correspond to 〈x(t )z(0)〉 and 〈z(t )x(0)〉, re-
spectively, there is a crucial difference with respect to
time reversal. The time reversal of M̃xz corresponds to
〈[x(2t ) − x(t ) − γ̇ z(2t )t][z(t ) − z(0)]〉 = 0 and that of M̃zx(t )
to 〈[z(2t ) − z(t )][x(t ) − x(0) − γ̇ z(2t )t]〉 = −2Dγ̇ t2, which
are obtained by the replacements x(t ) → x(−t ), z(t ) →
z(−t ), and γ̇ → −γ̇ and by using time translation symmetry.
Therefore, M̃xz(t ) and M̃zx(t ) are not mutually transformed by
time reversal, whereas 〈x(t )z(0)〉 and 〈z(t )x(0)〉 are mutually
transformed.

B. Probability distribution function and current density

Next, we consider the Brownian motion under shear flow
in probability space. The probability density P(r, t ) obeys the
Fokker-Planck equation [2]:

∂P(r, t )

∂t
= −∇ · J(r, t ), (11)

where the probability current is given in our case as

J(r, t ) = −D∇P(r, t ) + v(r, t )P(r, t ), (12)

with

v(r, t ) = (γ̇ z, 0, 0). (13)

The first and second terms of the right-hand side
of Eq. (12) correspond to the diffusive and convective
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contributions, respectively. From Eq. (8), ζv can be regarded
as an external force, which can be decomposed into elon-
gational and rotational components, ζ (γ̇ z/2, 0, γ̇ x/2) and
ζ (γ̇ z/2, 0, −γ̇ x/2), respectively. The former is a conserva-
tive force that can be expressed in terms of a potential energy,
whereas the latter is a nonconservative force. Nonconservative
forces play important roles in nonequilibrium systems [13].

In order to experimentally obtain the probability density
at t = n�t , where �t is the sampling interval (20 ms in our
experiment) and n is an integer, we made a data set con-
sisting of points [x[(n + m)�t] − x(m�t ) − γ̇ z(m�t )n�t,
y[(n + m)�t] − y(m�t ), z[(n + m)�t] − z(m�t )] in the dis-
placement space for possible integers m in each 3D trajectory.
The density of particles is proportional to the probability
density. In Fig. 6, we plot all the points projected on the
planes perpendicular to the x, y, and z axes at three different
times, together with the corresponding projected probability
densities defined as

P̄α (rα+1, rα+2, t ) =
∫ +∞

−∞
P(r, t )drα (α = 1, 2, 3), (14)

with the following analytical solution [2,6]:

P(r, t ) = 31/2

4(πDt )3/2(γ̇ 2t2 + 12)1/2

× exp

[
−

{
3(x − γ̇ tz/2)2

Dt (γ̇ 2t2 + 12)
+ y2

4Dt
+ z2

4Dt

}]
, (15)

where the subscripts α + 1 and α + 2 indicate the values
modulo 3. In the shear plane (x − z plane) [Fig. 6(a)], the
distribution is initially almost isotropic and then anisotropi-
cally diffused outward owing to the irrotational contribution.
The experimental results are in good agreement with the
theoretical ones. In the plane perpendicular to the flow direc-
tion (y − z plane) [Fig. 6(b)], the distribution is completely
isotropic at all time points, because the diffusion constants
in the y and z directions are identical. In contrast, in the
x − y plane [Fig. 6(c)], the distribution becomes elongated in
the flow direction owing to the anomalous diffusion.

Finally, we discuss the probability current density J(r, t ),
which was obtained by counting the number of particles
passing through small areas perpendicular to the x, y, and z
axes. Figure 7 shows the projected current density on the shear
plane (x − z plane), which is defined as

(∫ +∞

−∞
Jx(r, t )dy,

∫ +∞

−∞
Jz(r, t )dy

)
, (16)

together with the theoretical results calculated from Eqs. (12),
(13), and (15). Initially, the current is radially outward owing
to the diffusive contribution, and as the convective contribu-
tion becomes larger a rotational current originating from the
nonconservative force appears. The rotational current appears
solely in the shear plane, and only radially outward currents
were observed in the other two planes.

FIG. 6. Experimental (top panels) and theoretical (bottom pan-
els) particle probability densities projected on the planes perpen-
dicular to the (a) y, (b) x, and (c) z axes. From the trajectories
in Fig. 2, displacements were obtained at an interval of t , which
correspond to points in the 3D displacement space. The projections
of the points on the above three planes yield the top panels. The
bottom panels were obtained by numerically calculating Eqs. (14)
and (15).
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FIG. 7. Experimental (top panels) and theoretical (bottom pan-
els) probability current densities projected on the shear plane (x − z
plane). The probability current density was experimentally obtained
by counting the number of particles passing through small areas
perpendicular to the x, y, and z axes. The theoretical results were
obtained by numerically calculating Eq. (16). A rotational current
originating from the macroscopic rotational fluid flow or nonconser-
vative force is observed.

IV. CONCLUSIONS

A stereo particle-tracking method was successfully ap-
plied to the 3D observation of Brownian particles under
steady shear flow. From the three-dimensional trajectories, the
macroscopic flow velocity field was determined to calculate
generalized MSDs Mαβ (t ). The Mxx(t ) and Mxz(t ) curves

demonstrated, respectively, the anomalous diffusion in the
flow direction and the correlation between the displacements
in the flow and velocity gradient directions. Furthermore, the
asymmetric interaction between x and z was confirmed by
demonstrating that M̃xz(t ) �= M̃zx(t ).

Further analyses were performed in the probability space.
We determined the probability distribution function and the
current density from the obtained trajectories and found the
results to be in good agreement with those calculated using
the Fokker-Planck equation. In particular, a characteristic ro-
tational current was observed in the current density projected
on the shear plane, which originated from the nonconservative
force or macroscopic rotational flow.

At the end of this paper, we would like to mention that
our 3D particle-tracking method is applicable also to non-
Newtonian fluids, which are expected to show intriguing
anisotropic diffusion, though we applied it to a typical New-
tonian fluid, water, here. For example, we have recently ob-
served the Brownian motion of particles dispersed in xanthan
gum solutions with a 2D particle-tracking method and found
that the diffusion in the vorticity direction (the y direction in
the present setup) increases as well as in the flow direction
(the x direction) under shear flow [18]. Application of our
3D particle-tracking method will reveal the diffusion in the
velocity gradient direction (the z direction) and deepen our
understanding of anisotropic diffusion in such non-Newtonian
fluids.
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