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Bulk-boundary correspondence is the emergence of features at the boundary of a material that are dependent
on and yet distinct from the properties of the bulk of the material. The diverse applications of this idea in
topological insulators as well as high energy physics prove its universality. However, whether a form of bulk-
boundary correspondence holds also in soft matter such as gels, polymers, lipids, and other biomaterials is
thus far unknown. Aerosil-dispersed liquid crystal gels provide a good testing ground to explore the relation
between the controlled variations of the aerosil density within the liquid crystal bulk and the surface topography
of the sample. Here we report on a direct observation of such a correspondence where the controlled strength of
random disorder created by aerosil dispersion in the bulk liquid crystal is correlated with the fractal dimension
of the surface. We obtained the surface topography of our gel samples with different quenched random disorder
strengths by using atomic force microscope techniques, and computed the fractal dimension for each sample. We
found that an increase of the aerosil gel density in the bulk corresponds to an increase in the fractal dimension
at the surface. From our results emerges a method to acquire the bulk properties of soft matter such as density,
randomness, and phase merely from the fractal dimension of the surface.
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The connection between a material’s bulk and its boundary
has been one of the guiding principles in several branches of
physics in the last decade. The main idea is that the boundary
of the system would feature excitations that do not occur in the
bulk, yet the physics on the boundary is still determined by the
properties of the bulk. For example, in topological insulators,
the index theorem relates the Chern number quantifying the
topology of the insulating bulk to the spectrum of the edge
states at the boundary [1–4]. The holographic principle in
high energy physics, also known as gauge-gravity duality, is
another example of the bulk-boundary correspondence where
the spectrum of the strongly interacting gauge theory in four
space-time dimensions is connected to the weakly interacting
theory on the three-dimensional boundary via duality [5,6].

Here we report on a test of whether bulk-boundary cor-
respondence holds in soft condensed matter systems [7,8],
particularly in aerosil-dispersed liquid crystals [Fig. 1(a)].
We prepared liquid crystal+aerosil (LC+aerosil) gel mixtures
with varying amounts of aerosil within, and observed that the
aerosil gel density ρs = mSiO2/VLC in the bulk is correlated
with the fractal dimension of the surface. This experimental
verification of the bulk-boundary correspondence in soft mat-
ter is the main goal of this study.

Liquid crystals (LCs) are not only utilized in screens and
TVs, but also used to study phase transitions [9]. Since they
possess a rich spectrum of different phases with different
types of phase transitions, they stand out as particular model
systems where not only structural but also magnetic phase
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transitions can be imitated. Pure and doped LCs can mimic
complex many-body systems such as quantum magnets in
random background fields. Having two order parameters, am-
plitude ψ and phase α, make LCs unique materials that closely
resemble superconductors [9]. There is a strong mapping be-
tween different LC phases and the phases of the nematic spin
order of the antiferromagnetic modulations in Fe-As–based
metals and superconductors. Thus, LCs are used to simulate
and better understand certain solid-state materials [10].

Aerosil nanoparticles dispersed in LC hosts lead to a
random network of locally pinned LC molecules, thus they
can be used to study the controlled random disorder effects
and the associated phase transitions [11–23]. The electrostatic
interaction between the aerosil surface and the polar end of
the LC molecules creates pinning forces that perturb the order
in the nematic and smectic LC layers [Fig. 1(b)]. Since the
position of the aerosil nanoparticles are random in the LC
bulk, the resultant random perturbation of LC order becomes
quenched, a situation which is known as quenched random
disorder [12,15,22].

With heat-capacity measurements and x-ray scattering ex-
periments, the quenched random disorder effects on the phase
transition characteristics for several LCs were studied within
nematic and smectic phases.

Aerosil dispersion within LCs not only creates quenched
random disorder in the bulk, but also causes topographical
changes on the material’s surface. For example, increasing
aerosil gel density within the sample makes its surface rougher
[24,25]. Physical systems where the structural randomness
can be controlled, hereby varying the aerosil gel density ρs,
also appear in solid-state physics. One example that has been
examined in random-field experiments is MnZnF2. MnZnF2
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FIG. 1. Aerosil and liquid crystal (LC) mixture. Top: A 3D car-
toon of dispersed aerosil nanoparticles in LCs. Bottom: The hydroxyl
groups covering the surface of aerosils, which are 7 nm in diameter,
electrostatically interact with 8CB LC molecules. This disturbs the
nematic or smectic order. Since the aerosil nanoparticles form a
random network, the LC phase perturbation becomes random as well.

is a diluted quantum antiferromagnet where its magnetic
properties can be explained by the three-dimensional (3D)
random-field Ising model. Here the long-range order of the
antiferromagnetic interactions is disrupted by the doped non-
magnetic Zn ions, and the remaining short-range antiferro-
magnetic phase can be controlled by an external field [26].

Random pinning of aerosil particles in the bulk changes
the surface while they introduce short-range modulations in
the nematic and smectic phases in the bulk structure [24,25].
Therefore the randomness in the bulk reflects itself as a
self-affine, fractal surface on the boundary. In order to test
this relation between the bulk and surface, we prepared
seven LC+aerosil (8CB+SiO2) gel mixtures with ρs = 0.051,
0.078, 0.104, 0.22, 0.347, 0.49 and 0.647 g/cm3. Here 8CB
is the abbreviation for octylcyanobiphenyl LC. Since aerosil
nanoparticles disrupt the ordered state of LCs, the strength
of quenched random disorder in the bulk of 8CB LCs can
be controlled by adjusting the aerosil gel density ρs. This
parameter has also been used to characterize the LC+aerosil
gel samples [11–22,25].

We scanned the surfaces of our samples with an
atomic force microscope (AFM) and obtained surface height

profiles with nanometer precision into 256×256 matrices
[25]. From the surface data, we first compute the surface
fractal dimension DF of each sample and then investigate
if DF’s are correlated with ρs’s, which are known for each
sample.

I. METHODS

In this study, we used 8CB LCs (Frinton Laboratories)
without purification process as they have been used in previ-
ous x-ray and heat capacity experiments [14,16,17]. Our hy-
drophilic aerosils (Evonik Corporation) were type 300 silica
nanoparticles which were ∼7 nm in diameter. The Brunauer-
Emmet-Teller surface area for these nanoparticles is listed by
the producer as 300 m2 g−1. Before mixing with 8CB LC,
the aerosil was dried at elevated temperatures of T ∼ 500 K
under a vacuum of ∼10−2 atm for more than a week. The
LC+aerosil mixtures were prepared according to stoichiomet-
ric ratios using the density equation ρs = maerosil/VLC. This
value can be obtained from ρ−1

s = ρ−1 − ρ−1
aerosil where ρaerosil

is 2.2 g/cm3. Here ρ is the ratio of the aerosil mass to the
total volume of the sample, and ρs is the aerosil gel density.
This parameter is used to define the strength of the disorder
effects created by aerosil dispersion in LC [14,18–20,25]. The
aerosil nanoparticles were mixed with high-purity ethanol.
Each sample was sonicated at ∼300 K for 30 min. These
liquid mixtures were then placed on a hot plate for the gelation
process. The temperature was held in the vicinity of 8CB’s
isotropic phase temperature ∼310 ± 0.5 K so that all samples
were dried in the isotropic phase.

The gelation process takes several days depending on the
amount of aerosil mass in the mixture. The gel samples
prepared with the low concentration of ρs � 0.347 g/cm3

were placed on Si wafers using a spatula which was held
at ∼310 K, the same as the drying process temperature.
The samples on the Si wafers were then relaxed again at
the drying temperature on the hot plate for ∼24 h. For the
two highest ρs concentrations in Table I, the drying process
produced small cracks on the sample surfaces. These samples
were transferred to the Si surface using warm tweezers held

TABLE I. Aerosil gel densities and fractal dimensions of the
samples. Aerosil gel density ρs, weight percentage wt %, fractal
dimensions obtained from the box counting, coarse-graining and
power spectral density techniques, and the order parameter β are
given. Here the aerosil gel density ρs is given by ρs = maerosil/VLC

in units of g/cm3, and it also quantifies the strength of disorder
in the bulk. The weight percentage wt % can likewise be used to
quantify the disorder strength. The values of β are known from x-ray
scattering experiments [14,16].

ρs wt % Dbox
F DCG

F DPSD
F β

0.051 4.9 2.02(2) 0.59(5) 2.12(4) 0.22(2)
0.078 7.3 1.99(5) 0.66(4) 2.24(3) 0.23(2)
0.104 9.5 2.04(2) 0.69(2) 2.44(4) 0.26(2)
0.22 18 2.10(4) 0.70(2) 2.39(8) 0.31(2)
0.347 26 2.29(6) 0.72(2) 2.72(3) 0.28(4)
0.49 33 2.25(8) 0.73(2) 2.88(3) 0.39(3)
0.647 39.5 2.23(8) 0.75(1) 2.85(5) 0.41(3)
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FIG. 2. Fractal dimension analysis of LC+aerosil gel surfaces. (a) Box counting, (b) coarse-graining, and (c) power spectral density
calculations and associated power-law fits are shown in log-log plots. There are seven sets of data within each plot which correspond to our
seven samples with different aerosil gel densities ρs.

again at ∼307 K. The samples were carefully held at the
drying temperature during the transfer and they were relaxed
after the transfer process lest the LC+aerosil gel network be
externally disturbed or thermally stressed. Thus, high-quality
8CB+aerosil samples were prepared carefully without any
undesirable crystallization or phase separation issues.

The AFM scans were conducted at the Nanotechnology
Research Center (ITUnano) at Istanbul Technical University,
a clean room facility where the temperature and humidity
were held constant at 296 K and ∼35%, respectively. This
temperature is just 6 K over the crystallization temperature of
the pure 8CB; therefore, we avoided any unwanted accidental
crystallization during the surface scans. The scan area for
ρs = 0.051, 0.078, 0.104, 0.22, and 0.347 g/cm3 was 5 μm2,
and for ρs = 0.49 and 0.647 g/cm3 it was 2 μm2. The 3D
surface pictures can be found elsewhere [25].

The AFM (Nanomagnetics) was used in noncontact mode
at a frequency of ∼161 kHz. The AFM scans were transferred
to MATLAB and Mathematica using NMI Image Analyzer v1.4
software. All of the surface analyses described in the main text
were performed using our own codes.

II. ANALYSIS

Fractal surfaces appear in nature in diverse areas such as
fracture in rocks, cancer growth processes, wetting of sur-
faces, burning of paper, and rupturing [27,28]. Fractal surfaces
possess self-affine structure, i.e., when observed at different
scales the surface looks self-similar. This scale-independent
property is characterized by fractal dimension DF, which is
calculated from the variation of the surface roughness with
respect to the spatial scale. We use three separate meth-
ods to calculate fractal dimension of our samples’ surfaces:
power spectral density, box counting, and coarse-graining
(also called variable bandwidth) [Figs. 2(a)–2(c)]. Since the
value of the fractal dimension is dependent on the method
used, each method has its own definition of fractal dimension
and its own systematic and random errors. In this work, we
are interested in the trend of how DF changes with varying
aerosil gel density ρs rather than the actual values of the fractal
dimensions of each sample.

Before calculating DF’s, we created, with simulation, mock
fractal surfaces with known DF’s in order to test our codes,

and from these simulations we determined systematic and
random errors of the three methods we used to calculate
DF’s. Then we used our codes on the real AFM surface data
from our samples and our findings established that our fractal
dimension analysis data from all three DF calculation methods
fall on a straight line on a log-log plot [Figs. 2(a)–2(c)]. This
power-law feature indicates the existence of self-affine surface
structure and makes the use of fractional dimension analysis
justified.

One of the methods we used to calculate DF’s of the
surfaces is power spectral density (PSD). We calculated the
periodograms, i.e., Fourier transform squared, for each sur-
face data. We verified that periodograms of our data fall as
power law in inverse length scale, which is characteristic of
a self-affine surface. The slope of the fall-off in the Fourier
space gives DPSD

F of that surface. The fits have been performed
with the data points at the lower end of the power spectrum,
from the first to the 25th Fourier mode. This is due to the
fact that in power-law type spectra, the greatest amplitudes
appear in the lower end of the spectrum whereas contributions
from the higher modes are negligible. When we plot DF versus
ρs, we find a rising trend where DF increases with increasing
aerosil density ρs [Fig. 2(a)]. We find a similar trend by using
the box counting method [Fig. 2(b)]. For this method, we first
turned our surface height data from 256×256 matrices into
3D arrays of 256×256×256 by rescaling the surface heights
between 1 and 256. This gives us 3D arrays that contain 1’s at
coordinates that correspond to the surface heights and 0’s for
the remaining entries. Then we divide these 3D arrays into
boxes of size r = 2, 4, 8, 16, 32, 64, and 128, and count
the number of boxes containing 1’s for each r, which we
call n(r). We find box counting dimension Dbox

F by fitting
our counts to the curve n(r) = r−Dbox

F . The third method we
employed was the coarse-graining (CG) method where we
first turn the 256×256 surface data into a one-dimensional list
by flattening it. Then we divide this list into equal partitions
of size r. For a chosen r, we calculate the standard deviation
σ of the heights within each partition, and calculate the
mean of those σ ’s to find σavg. We repeat this calculation for
different values of partition size r, which are different powers
of 2. The coarse-graining fractal dimension DCG

F is found by
fitting the curve σavg(r) = rζ to the calculated σavg values, and
then using the definition DCG

F = 2 + ζ . The coarse-graining
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FIG. 3. Correlation between the aerosil gel density, the fractal
dimension, and the order parameter β. Calculated fractal dimensions
with respect to aerosil gel density ρs, which controls the disorder
strength in the bulk. This graph also contains the order parameter
β values obtained from previous x-ray experiments [14,17,19]. We
added “2” to the order parameter β to be able to show all of the results
on the same graph. The error bars are coming from the Marquardt-
Levenberg nonlinear fit analyses.

method yields an increasing trend similar to the other two
methods [Fig. 2(c)]. Here we emphasize that we have made
our fits to extract DF’s for each sample by using the same
range of data points within all three methods, otherwise one
can find any trend by arbitrarily choosing the fit range (see
Supplemental Material figures for the detailed plots of all the
fits [29]).

III. RESULTS

The results of this study (Table I) establish a positive corre-
lation between the bulk aerosil gel density ρs and the surface
fractal dimension DF . Figure 3 shows that the surface fractal
dimension, calculated via three different methods, increases
with increasing ρs.

Since ρs also controls the strength of the randomness in
the bulk, the bulk-boundary correspondence we discovered
also reveals a link between the surface fractality and the order
parameter β measured via x-ray scattering. The parameter β

is the order parameter exponent which was obtained from the
x-ray scattering fits [14,17] and it demonstrates the char-
acteristic changes in the smectic modulations with aerosil
dispersion. In Fig. 3, in addition to DF’s, we also show the
trend of the order parameter β versus the aerosil gel density
ρs, which can also be seen as the disorder strength. According

to previous x-ray studies, β exhibits an increasing trend with
respect to increasing ρs. The smaller β values fall into the
universality class of the two-dimensional Ising model. As ρs

increases, the increasing β values go past the tricritical point
and become equal to that of the universality class of the 3D
Ising model [14,20,22]. Such an increase in β is a sign of
change in the universality class of the 8CB LC’s smectic-
A phase under the quenched random disorder effects. Our
findings (Fig. 3) uncover the correlation between the order
parameter β and the fractal dimension DF .

Our results are also in good agreement with the 3D col-
loidal fractal dimension values obtained from small-angle
x-ray scattering (SAXS) measurements [30]. Silica colloid
clusters in solution have been studied via electron microscopy,
light scattering, and SAXS techniques. Unlike our measure-
ments, these experiments directly measure the bulk char-
acteristics such as the order parameter β in the x-ray LC
scattering measurements. The DF values obtained from these
measurements are found to be in the vicinity of DF ∼2 for
the samples with low silica content. In these experiments,
fine powders of silica are compressed in order to increase the
silica density. As in the case of our high ρs samples, a similar
increase in the calculated fractal colloid dimension has been
observed at high silica densities where the fractal dimension
reaches DF ∼2.5 [30].

The gels of LC+aerosil mixtures can create systems with
controlled random disorder, and our experiments have demon-
strated that this randomness in the bulk reflects itself at the
boundary as fractal surfaces. This reveals the interconnection
between the aerosil gel density in bulk ρs, order parameter
β, and surface fractal dimension DF. It remains an open
question as to which other soft materials would feature such a
bulk-boundary correspondence. In this work we used LCs to
verify the existence of the bulk-boundary correspondence in
soft matter, which can be seen as a proof of concept study. On
the other hand, a research program dedicated to investigating
the interplay between DF and the properties of other soft ma-
terials such as polymers, gels, lipids, and other biomaterials
is needed. Furthermore, theoretical studies to understand the
exact mechanisms that lead to bulk-boundary correspondence
in randomly disordered soft matter are also missing. This line
of research may open the door to engineering surfaces of
polymers and biomaterials by controlling bulk randomness
in order to obtain the desired surface wetting and friction
properties, which mainly depend on surface fractality.
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