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Interplay between surface and bending energy helps membrane protrusion formation

Raj Kumar Sadhu * and Sakuntala Chatterjee
Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India

(Received 26 February 2019; published 1 August 2019; corrected 14 August 2019)

We consider a one-dimensional elastic membrane, which is pushed by growing filaments. The filaments
tend to grow by creating local protrusions in the membrane and this process has surface energy and bending
energy costs. Although it is expected that with increasing surface tension and bending rigidity, it should become
more difficult to create a protrusion, we find that for a fixed bending rigidity, as the surface tension increases,
protrusions are more easily formed. This effect also gives rise to nontrivial dependence of membrane velocity
on the surface tension, characterized by a dip and a peak. We explain this unusual phenomenon by studying
in detail the interplay of the surface and the bending energy and show that this interplay is responsible for a
qualitative shape change of the membrane, which gives rise to the above effect.
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I. INTRODUCTION

Inside a cell, actin filaments grow and exert polymeriza-
tion force on the plasma membrane and create membrane
protrusions. This process plays an important role in cell
motility [1–7]. In many experiments, it has been studied how
the mechanical properties of the plasma membrane directly
affect the formation of membrane protrusion. For example, by
artificially increasing the membrane tension in experiments,
it has been seen that the rate of protrusion formation goes
down, while by decreasing the membrane tension, the rate is
found to increase [8,9]. Although, these studies indicate that
the membrane tension is generally an obstacle to protrusion
formation, in [10], it was shown that in certain situations,
membrane tension can also enhance protrusions by stream-
lining actin polymerization in one specific direction.

These studies show it is important to understand how the
elastic interactions in the membrane influence the mechanism
of protrusion formation and in this Rapid Communication, we
address this question in a simple setting. We model the elastic
membrane using the Helfrich Hamiltonian, which is the most
commonly used model that includes surface and bending
energy of the membrane [11–26]. We describe the membrane
using a one-dimensional height field, whose time evolution
is governed by the Helfrich Hamiltonian. Any variation in
the height costs energy and a flat membrane corresponds to
the lowest energy configuration. We consider the membrane
being pushed by few growing filaments, which tend to create
protrusions in the membrane that cost energy [27–30]. As
surface tension σ or bending rigidity κ of the membrane is
increased, one would expect that protrusion formation should
become more difficult, since the energy cost for creating
a protrusion ought to go up monotonically with σ and κ .
Surprisingly, we find it is not so. For a fixed value of κ , there
is a significant range of σ , for which the energy cost actually
decreases with σ , which makes protrusion formation easier.
More specifically, the surface energy cost for creating a local
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protrusion in the membrane increases monotonically with σ ,
as expected, but the bending energy cost shows a peak, which
in turn gives rise to a peak in the total energy cost. Not only for
cell motility, our finding has potential implications for a wide
class of systems, where elastic deformation of a membrane is
involved. The fact that we have been able to observe this effect
in a simple and general model is encouraging and this opens
up the exciting possibility of finding it in many different kinds
of systems.

To understand the mechanism behind this intriguing effect,
we examine the shape of the membrane near the binding site,
where the filament is in contact with the membrane, and show
that a qualitative change in the shape is responsible for this. In
Fig. 1, we depict this mechanism. In the limit when both σ and
κ are large, the membrane has very slow spatial variation of its
height. In this limit, one can neglect higher order derivatives
of height and assume the height profile of a local protrusion is
almost linear in space, as shown in Fig. 1 by the thin red line.
For such a local shape of the membrane, the bending energy
(which scales as the square of the second derivative of height)
has a nonzero value at the binding site. Everywhere else on
the membrane near the binding site, the bending energy is
negligible. As σ decreases slightly but still remains large, the
shape of the membrane remains qualitatively the same, but the
height gradient magnitude now increases (see the blue dotted
line in Fig. 1) and the bending energy becomes significantly
larger at the binding site. To minimize this energy, as σ is
lowered further, the membrane shape finally changes qualita-
tively, and becomes as shown by the black thick line in Fig. 1,
where the peak gets rounded and the height profile also does
not remain linear anymore. While the bending energy now is
nonzero even away from the binding site, its variation across
the membrane happens more gradually. The bending energy
cost to create a local protrusion, which is proportional to the
fourth derivative of height, is lower for such a configuration.

II. DESCRIPTION OF THE MODEL

Our system consists of a set of N parallel filaments growing
against a membrane as shown in Fig. 2. The membrane is
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FIG. 1. Schematic picture of typical membrane shape h(x)
around the binding site at x = b. Keeping κ constant at a moderate or
large value, as σ is varied, the membrane shape changes qualitatively.
The curve at the bottom (top) is for the largest (smallest) σ value.

described by a height profile {hi}, defined on a one-
dimensional lattice of length L with lattice constant unity. We
assume periodic boundary condition hi = hi+L on the lattice.
In the absence of any external force, the height profile of
the membrane follows an equilibrium dynamics with the
Helfrich Hamiltonian, which is standardly used to describe
the height fluctuations of a plasma membrane [12,14–16].
This Hamiltonian consists of surface interaction and bending
interaction of the membrane and in our lattice model, it has
the form [29–32]

H = σ

L∑

i=1

(h′
i )

2 + κ

L∑

i=1

(h′′
i )2 = σ

L∑

i=1

(hi − hi−1)2

+ κ

L∑

i=1

(hi−1 − 2hi + hi+1)2, (1)

where σ is proportional to the surface tension and κ to the
bending rigidity. Both of these parameters have dimensions
of energy/length2, as follows from the above equation. In
Eq. (1), we have neglected the nonlinear terms, which can be
justified if the magnitude of height gradient everywhere on
the membrane is much less than unity [24,33,34]. The size of
a typical eukaryotic cell is about a few tens of micrometers
[35], which can be compared with the size of our membrane
patch. The horizontal distance between two consecutive lattice
sites in our model can be taken to be 1/L times the size of
the membrane. The vertical height difference between two
consecutive lattice sites is in the scale of nanometers, set by
the size of an actin monomer. Thus, height gradient remains
small and the linear approximation for the Hamiltonian in
Eq. (1) remains valid.

It follows from Eq. (1) that the minimum energy configu-
ration is reached when the membrane is completely flat, i.e.,
hi the same for all i. For a finite temperature, the membrane
undergoes thermal fluctuations, as a result of which hi can
increase or decrease by an amount δ. The corresponding

Membrane

Bound
Filament

Free 
Filament

FIG. 2. Schematic diagram of the model. The thick solid line
represents the height profile of the membrane and thick dashed lines
represent the bound and free filaments.

energy costs E±
i can be obtained from Eq. (1) as

E±
i = σ {2δ2 ∓ 2δ(hi−1 − 2hi + hi+1)} + κ{6δ2 ± 2δ(hi−2

− 4hi−1 + 6hi − 4hi+1 + hi+2)}
or, in terms of the discrete derivatives,

E±
i = σ {2δ2 ∓ 2δh′′

i } + κ{6δ2 ± 2δh′′′′
i }

= �±
i + K±

i . (2)

Here E+
i denotes the total energy cost for changing hi to

hi + δ and �+
i denotes the surface energy cost and K+

i denotes
the bending energy cost for the same process. Similarly, E−

i ,
�−

i , and K−
i are the respective energy costs for changing hi

to hi − δ. We use the Metropolis algorithm to perform the
simulations.

One additional constraint that the system must obey is that
the height of the membrane at the binding sites should be such
that the membrane always stays above the filament tips (as
shown in Fig. 2). Any height fluctuation that brings a binding
site at a lower height than the filament tip, is forbidden. As
long as this constraint is satisfied, the update rules can be
chosen following the local detailed balance R+/R− = e−βε ,
where R+ is the rate of a process that has a positive energy
cost ε and R− is the rate of the reverse process.

The filaments are modeled as rigid rodlike polymers, com-
posed of monomers of length d [27,36–38]. In Fig. 2, we
have represented the filaments using dashed lines, each dash
denoting a monomer. A (de)polymerization event increases
(decreases) the length of a filament by an amount d . For the
sake of simplicity, we have used d = δ here [also see Eq. (2)].
In Sec. VII of [39], we have included our data for the d �= δ

case. There are two types of filaments in our model: a free
filament, which is not in contact with the membrane, and a
bound filament, whose tip is in contact with the membrane
site [27,36,37,40]. The point of contact is referred to as a
binding site. For a free filament, polymerization happens with
rate U0. For a bound filament, however, a polymerization
process increases the height of the binding site by an amount
d and hence there is an energy cost involved in this process.
For a positive (negative) energy cost, the bound filament
polymerization rate is taken to be U0R+ (U0R−), while for zero
energy cost, the rate is simply U0. The depolymerization rate
of the filament is equal to W0 always, as it does not involve
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FIG. 3. σ -V curve for different values of κ . For small κ values, V
decreases with σ , but for moderate or large κ values, V shows a min-
imum and a maximum. We scale each curve by Vmax, which denotes
the largest value of V for a particular V -σ curve. We have Vmax =
3.45 × 10−2 nm/s, 1.55 × 10−3 nm/s, and 2.00 × 10−4 nm/s for
κ = 0.1 pN/nm, 0.8 pN/nm, and 1.2 pN/nm, respectively. The ver-
tical lines show σ values used in Fig. 5. Left inset: peak position σ ∗

shifts leftward with κ . Right inset: Exponential fall of V for large
σ with κ = 1.2 pN/nm. The decay constant 3.6 matches closely
with the analytical prediction 2βδ2. Here, for all the plots, we use
L = 64. The filament depolymerization rate, W0 = 1.4 s−1 [1,40,41],
the free filament polymerization rate, U0 = 2.784 s−1 [1,40,41], the
monomer size is d = δ = 2.7 nm [1,40,42], β = 1/kBT , and we have
used T = 300 K.

any membrane movement. Note that, in the absence of any
polymerization force from the filaments, the membrane tends
to stay flat and this aspect is somewhat similar to lamellipodial
protrusions, rather than filopodial protrusions observed in a
cell. In our simulation, each Monte Carlo step consists of
L membrane updates and N filament updates. The detailed
simulation algorithm has been presented in Sec. I of [39].

III. RESULTS

We present our results in this section. As mentioned in the
Introduction, our main result is the nonmonotonic variation
of the membrane velocity as a function of σ . We first present
our simulation data showing this effect and then we show how
this nontrivial behavior can be explained from detailed mea-
surement of the energy cost and the shape of the membrane.
We show our results for a single filament (N = 1) here. Most
of our conclusions remain valid even for the case of multiple
filaments, if the filament density is not too high.

A. Membrane velocity shows a dip and a peak with σ

Pushed by the growing filaments, the membrane develops
an average velocity. In Fig. 3, we present our data for the
variation of membrane velocity V as a function of the surface
tension σ , for a fixed value of bending rigidity κ . We find that
for small κ , velocity decreases monotonically with σ , as ex-
pected [27]. However, as κ is held fixed at a moderate or large
value, V shows a rich behavior: starting with a nonzero value
at σ = 0, V first decreases with σ and reaches a minimum and
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FIG. 4. Average energy cost for creating a protrusion at the
binding site. Surface energy cost �+

b increases with σ but bending
energy cost K+

b shows a peak. For moderate or large κ values, when
K+

b is dominant, this gives rise to a peak in total energy cost E+
b .

For very large σ , we see K+
b saturating and variation in E+

b is then
controlled by �+

b again. These data are for κ = 1.2 pN/nm and
the other simulation parameters are as in Fig. 3. The vertical lines
correspond to σ values used in Fig. 5.

then it increases to reach a maximum before finally decreasing
exponentially for large σ . While this nonmonotonic behavior
is in general interesting [27], the most intriguing observation
here is that, there is a range of σ for which V grows with σ .
This growth is counterintuitive because one generally expects
that with increasing surface tension, it should become more
difficult for the filament to push the membrane. As we show
in the following section, this expectation in fact breaks down.

The data in Fig. 3 is for a fixed L value. We have checked
that as L is increased, V ∼ 1/L, but the peak position does
not depend on L for sufficiently large L values. As L becomes
small, the peak in the V -σ plot shifts to lower σ values with
decreasing L (Fig. S-5 of [39]).

B. Bending energy cost shows a peak with σ

From Eq. (2), it follows that the energy cost E+
b for creating

a protrusion at the binding site i = b can be decomposed into
two parts: the surface energy cost �+

b and the bending energy
cost K+

b . In Fig. 4, we plot the steady-state average values of
E+

b , �+
b , and K+

b as a function of σ , for a large value of κ .
While �+

b increases with σ monotonically, K+
b is found to

show a peak. Moreover, this peak appears for relatively small
σ values, when the total energy cost is actually controlled by
the bending interaction. As a result, E+

b also shows a peak and
immediately after the peak, there is a range of σ values, for
which energy cost decreases with σ , contrary to the normal
intuition. Finally, for very large σ , when the membrane is
almost flat, K+

b saturates and �+
b increases linearly with σ

[see Eq. (2)] and E+
b also shows a linear rise.

Although, it seems quite surprising that energy cost shows
nonmonotonic variation with σ , this effect can be very simply
explained from the consideration of the membrane shape near
the binding site. For very large σ and κ , the membrane
remains almost flat and higher order derivatives of height
can be ignored and one can assume an almost linear height

020401-3



RAJ KUMAR SADHU AND SAKUNTALA CHATTERJEE PHYSICAL REVIEW E 100, 020401(R) (2019)

 0.04

 0.05

 0.06

 0.07

 0.08

b 60  70

(a) σ=0.80 pN/nm

h i
 (

nm
)

i

 0.16

 0.2

 0.24

b 60  70

(b) σ=0.60 pN/nm

h i
 (

nm
)

i

 400

 450

 500

b 60  70

(c) σ=0.01 pN/nm

h i
 (

nm
)

i

 0

 0.4

 0.8

 1.2

 0  0.4  0.8

(d)

h b
 (

nm
)

σ (pN/nm)

FIG. 5. (a)–(c) Local shape of the membrane around the binding
site for different σ with κ = 1.2 pN/nm. (d) Discrete fourth deriva-
tive of height at the binding site, h′′′′

b = hb−2 − 4hb−1 + hb − 4hb+1 +
hb+2, as a function of σ . Here, L = 64 and the other simulation
parameters are as in Fig. 3.

variation around the binding site. We check this explicitly
in our simulations [see Fig. 5(a)]. Note that, here we only
present the height profile near the binding site and far away
from this point, height variation does not remain linear any-
more, the profile gradually flattens out. However, this part
of the membrane does not influence the energy cost near the
binding site. In the region around the binding site, where the
height profile is linear, the bending energy, which depends
on the second derivative of height, has a nonzero value only
at the binding site, and zero elsewhere. Keeping κ fixed
at large value, as we lower σ , the qualitative shape of the
membrane remains similar, but the magnitude of the height
gradient is now larger [Fig. 5(b)]. This, however, gives rise to a
very high bending energy around the binding site, since height
gradient changes sharply from a large positive value to a large
negative value across the binding site. Therefore, as σ is low-
ered further, such a membrane shape becomes unsustainable
and instead a shape shown in Fig. 5(c) is observed, where the
height gradient does not change so sharply but varies more
slowly in space. Such a membrane shape stores less bending
energy than the one with a linear height variation. In Sec.
III of [39], we have also included an approximate analytical
explanation of this effect, where we analytically calculated the
membrane shape, adapting a simplified description outlined in
[43].

With the above picture in mind, it is now easy to understand
the variation of the fourth derivative of height (that determines
the bending energy required to create a protrusion) at the
binding site. In the configuration shown in Fig. 5(a), the
second derivative has a negative value at the binding site
and zero elsewhere in its neighborhood. As we lower σ ,
the configuration changes to what is shown in Fig. 5(b) and
the magnitude of the second derivative at the binding site
increases, i.e., the minimum in h′′

i is now sharper. This will
increase its curvature, i.e., the fourth derivative at the binding
site. However, as the membrane shape changes to Fig. 5(c)
for even lower σ , h′′

i now has a nonzero (negative) value even
some distance away from the binding site, since the height

profile is not linear anymore. Around the binding site, h′′
i now

varies more gradually and while it still has a minimum at the
binding site, the minimum is not as sharp. This corresponds
to a lower curvature and the fourth derivative decreases in
magnitude. We show this explicitly in Fig. 5(d).

However, when κ is small, the above effect is absent. Since
the bending energy is actually responsible for the change in
membrane shape and for small κ , the bending energy is just
not significant enough to bring about this change. In this
case, the membrane height profile around the binding site
remains linear for all σ values and the fourth derivative falls
monotonically with σ . As a result, energy cost and velocity
varies monotonically with σ (see Figs. S-1 and S-3 in [39]).

C. A more quantitative explanation of the full V -σ curve

In the previous section, we have offered a simple qual-
itative explanation of how the energy cost for creating a
protrusion shows a peak with σ , for large values of κ . This
makes it plausible that V can also show a similar peak,
since pushing the membrane upward becomes easier as σ is
increased within a certain range. However, the net membrane
velocity results from both upward and downward movements
of the membrane and in this section, we present a more
quantitative and detailed calculation, that explains the full V -σ
curve, along with its maximum and minimum.

The membrane being in steady state, its average velocity
should be the same at all sites and below, we write down the
expression for velocity at the binding site b. For large κ , height
gradients at the binding site are small and hence energy costs
E±

b are positive [also see Eq. (2)], which gives

Vb = δ[U0 p0e−βE+
b + e−βE+

b − (1 − p0)e−βE−
b ], (3)

where p0 is the contact probability of the filament tip with the
membrane. The first term in Eq. (3) corresponds to the bound
filament polymerization. The second and third terms represent
thermal fluctuation of the membrane height at the binding site.
Here, we have used the fact that hb can always increase with
rate e−βE+

b , but it can decrease only when the filament is not
bound to the membrane.

As explained in Eq. (2), E+
b (E−

b ) is the energy cost for
increasing (decreasing) hb by an amount δ, and generally it
depends on the local configuration around the binding site.
Here, we use the approximation that E±

b may be replaced by
their average values (to keep our notations simpler, we have
used the same symbol for the average quantities as well). We
have also checked that (data not shown here) as long as κ is
not too small, the contact probability p0 does not show much
variation and remains close to 1/2, its value for a rigid barrier
[27].

For large κ and small σ , the surface energy cost is much
smaller than the bending energy cost and we can replace E±

b ≈
K±

b and this gives

V ≈ e−6βδ2κδ{(U0 + 1)p0e−2βδκh′′′′
b

− 2(1 − p0)sinh(2βδκh′′′′
b )}. (4)

It is easy to see from the above expression that as h′′′′
b first

increases with σ , reaches a peak, and then decreases, V
also initially decreases with σ , reaches a minimum, and then
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starts increasing. As σ increases further, it is not possible to
neglect the elastic energy anymore and Eq. (4) does not remain
valid. However, in this case, both σ and κ are large, and the
magnitudes of h′′

b and h′′′′
b are negligible, and we can write

V � δ(U0 + 1)p0e−6βδ2κe−2βδ2σ , (5)

where V decreases exponentially with σ . We verify this from
our numerical simulation (Fig. 3, right inset). The exponential
decay constant numerically observed is 3.6, which is close to
the analytically predicted value 2βδ2 � 3.52. When κ is held
fixed at a larger value, the exponential decay in Eq. (5) starts
at a smaller value of σ , since the height derivatives become
negligible already. This is why the peak position σ ∗ shifts
toward smaller values as κ increases (Fig. 3, left inset).

IV. DISCUSSIONS

Throughout this Rapid Communication, we have limited
our studies to one dimension and it is an important question
whether our conclusions remain valid for a two-dimensional
membrane as well. Generalizing Eqs. (1) and (2) for the
two-dimensional case, it can be shown that the bending energy
cost is much higher in this case, which slows down the time
evolution for moderate or high values of κ . Although, for
small κ values, we have been able to verify (data not shown
here) that V decreases monotonically with σ , as found in the

one-dimensional system, higher κ values remain numerically
inaccessible to us. More research is needed to conclude with
certainty if nonmonotonic variation of V with σ for high κ

values persists in the two-dimensional model as well.
It should be possible to experimentally verify our conclu-

sions. One direct measurement would be to measure the mem-
brane velocity for different values of σ and κ [44–46] and see
whether a non-monotonicity as shown in Fig. 3 can be found.
The energy scales involved in our simulations are actually
comparable to physical systems. For example, the increase
of V with σ that we observe for high κ , corresponds to the
surface energy varying in the range of 0.5–2 (10−19 J) and the
bending energy lies in between 1 and 3.5 (10−19 J). These val-
ues are within the experimentally observed ranges for flexible
membranes [47]. Although, in real systems, many other fac-
tors, apart from surface energy-bending energy interplay, are
relevant, it would be interesting to see whether this basic sig-
nature of a protrusion formation mechanism can still be found.
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