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Spatiotemporal correlation uncovers characteristic lengths in cardiac tissue
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Complex spatiotemporal patterns of action potential duration have been shown to occur in many mammalian
hearts due to period-doubling bifurcations that develop with increasing frequency of stimulation. Here, through
high-resolution optical mapping experiments and mathematical modeling, we introduce a characteristic spatial
length of cardiac activity in canine ventricular wedges via a spatiotemporal correlation analysis, at different
stimulation frequencies and during fibrillation. We show that the characteristic length ranges from 40 to
20 cm during one-to-one responses and it decreases to a specific value of about 3 cm at the transition from
period-doubling bifurcation to fibrillation. We further show that during fibrillation, the characteristic length is
about 1 cm. Another significant outcome of our analysis is the finding of a constitutive phenomenological law
obtained from a nonlinear fitting of experimental data which relates the conduction velocity restitution curve
with the characteristic length of the system. The fractional exponent of 3/2 in our phenomenological law is in
agreement with the domain size remapping required to reproduce experimental fibrillation dynamics within a
realistic cardiac domain via accurate mathematical models.
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Exploiting characteristic lengths and times represents a
primary strategy to understand natural phenomena. In this
perspective, heart dynamics shows multiple spatial and tem-
poral scales ranging from physiological up to pathological
regimes [1-3]. Complex series of cardiac spatiotemporal
activation patterns, e.g., phase-locking and period-doubling
bifurcations [4-6], can lead to a disorganized ventricular
electrical activity—fibrillation (see Fig. 1 for an experimental
example of the induction of fibrillation)—classified as life-
threatening cardiac arrhythmias in the clinical community.
These phenomena are known to be supported by specific
physical indicators, e.g., spatial dispersion of repolarization
[7-9] and associated abnormal values of action potential (AP)
duration and conduction velocity (CV), producing oscilla-
tions in the electrocardiogram signal and suggesting their
clinical importance in risk stratification for sudden cardiac
death [10]. Attempts to classify different regimes involved in
cardiac activity dates back to Wiggers [11], and this subject
is still widely studied in animal experiments and isolated
myocardium as well as supported by sophisticated mathemati-
cal models [12-17]. Indicators quantifying general properties
of ventricular fibrillation have been proposed in the physics
literature [18-21], e.g., order parameters and correlation func-
tions. However, a comprehensive spatiotemporal index, able
to characterize the different regimes, is still missing, thus
limiting our predictive power.

In this Rapid Communication, we provide an experimental-
modeling rationale identifying a predictive indicator of car-
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diac dynamics. We make use of AP optical mapping record-
ings on endocardial canine ventricular wedges [we refer to
Gizzi et al. [S] and the Supplemental Material (SM) [22]
for details on the experimental protocol] and fine-tuned phe-
nomenological mathematical models of cardiac electrical ac-
tivity [9,23] measuring characteristic lengths under different
dynamical regimes. We unveil constitutive properties of the
heart, further identifying a normalized characteristic length
which may serve as a predictive indicator of period-doubling
bifurcations (alternans). We explain such observations by in-
troducing a phenomenological relation linking characteristic
length and conduction velocity. Strikingly, such a constitutive
law allows us to accurately predict and reproduce spatiotem-
poral fibrillation behaviors by applying a domain size map-
ping. This methodology prevents any additional model tuning,
which usually represents a necessary extra step to simulate
arrhythmias in realistic cardiac geometries.

Mathematical model tuning. We make use of a mon-
odomain formulation of the four-variable minimal model
for cardiac electrophysiology [23] fine tuned upon exper-
imental data (see SM). The objective here is to highlight
the complex multiscale nature of the cardiac tissue and the
intrinsic coupling between its spatial and temporal features.
In this perspective, Fig. 2(a) compares the time course of
two consecutive action potentials during fast electrical pacing
[cycle length (CL)] quantifying the action potential duration
(APD) for a representative example of canine optical map-
ping recordings [5] and one-dimensional (1D) simulations.
Figure 2(b) compares the conduction velocity (CV) calculated
on the two-dimensional (2D) endocardial surface (average
and standard error from seven samples—squared symbols)
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FIG. 1. Endocardial action potential (AP) voltage data from
fluorescence optical mapping showing the transition from normal
rhythm to ventricular tachycardia up to ventricular fibrillation. Spa-
tial distribution at selected frames (top) and time course of a single
pixel (bottom). In sequence: Top-down propagating front, top-down
wave back, single clockwise spiral, double-clockwise spirals. The
color code refers to normalized voltage amplitude. The grayscale
background represents the endocardial ventricular tissue [5].

for decreasing values of CL (restitution protocol [24]) with
respect to 1D model prediction (solid line). Figure 2(c) shows
experimental and simulated endocardial electrical excitations
during a single action potential wave propagation, confirming
the accuracy of the numerical wave-front dynamics. In this
case, the phase field approach is adopted [25] such that the
computational domain size corresponds to the irregular optical
area taken from the measures. As an additional level of infor-
mation, isochrones of activation are provided in both cases
to highlight further the need for nontrivial anisotropies in
the computational model to reproduce the observed dynamics
[26]. Finally, Fig. 2(d) shows a spatial view of alternans maps
on the optical field of view obtained on the same tissue for
different CL. In particular, from left to right, CL decreases,
thus inducing a higher and more heterogeneous distribution of
alternans in the tissue, up to 25 ms of APD difference for two
consecutive beats. We assume the presence of alternans when
the condition |AAPD| > 2 ms is fulfilled [5] (see details in
SM).

Correlation measure. We introduce a quantitative anal-
ysis of fluorescence optical mapping signals based on the
calculation of correlation functions and the identification of
the corresponding characteristic spatial length (decay length
Ly). Specifically, we computed a two-point operator within a
square box extracted from the mapped tissue [see Fig. 2(d)],

RG.T) = (V4 = (VA)(;i(a‘Zs - (VB>I)>I’ 0

where Vy =V (X,1), Vg = V(X + 7, 1), (-), represents the time
average computed over a selected time window, and o4, op
are the standard deviations of V4 and Vg, respectively. We
finally average R(X,7) over the whole squared domain to
compute the global correlation index at distance 7 defining the
characteristic length Ly as R(¥) o< exp (—|7|/Ly) (see details
in SM).

Evaluated L values are shown in Fig. 3(a) for seven differ-
ent ventricular preparations. Optical data (squared symbols)
are characterized by an average L decreasing from 38 to
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FIG. 2. (a) Experimental (black) and simulated (red-light gray)
AP time course for two consecutive activations during fast pacing
with the indication of APD alternans. (b) Conduction velocity restitu-
tion curve (mean and standard error) for experimental tissue samples
(symbol), fitting exponential law (dashed), and one-dimensional
model prediction (solid). (c) Representative endocardial wave-front
propagations and corresponding isochrones from experiments (top)
and model (bottom). Arrows indicate the location of the pacing
electrode. (d) Spatial map of AAPD alternans evolution during pace-
down stimulation protocol [5]: nonalternating (white), concordant
(blue—singly gray), discordant alternans (blue/red—multigray). The
red square (left) indicates the region selected to compute the correla-
tion function.

3 cm for the endocardial surface (34 to 4 cm for the epicardial
surface—not shown), reducing CL from 450 to 115 ms. As
expected, we observe tissue variability, but it decreases at
short CLs where smaller Ly values are identified, and signifi-
cant exponential decay of the two-point correlation function
is obtained. The robustness of the methodology is further
confirmed by two-dimensional numerical simulations [solid
circle symbols in Fig. 3(a)] that match the experimental decay
length trend finally merging the mean experimental value at
short CLs.

We further characterize the multiple transitions occurring
at fast pacing enriching the previous analysis with the measure
of the normalized decay length L* in Fig. 3(b),

i+l . _Lf— (L)

<L0> = ) , T’

2
representing an integral quantification of the well-known car-
diac beat-to-beat variability. In particular, we identify (i) the
transition from no alternans to concordant alternans, when a
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FIG. 3. (a) Decay length as a function of pacing cycle length
for endocardial experimental recordings and corresponding model
simulations. Standard deviation is superimposed to the experimental
measures. Dashed curves indicate the fitted estimate of character-
istic length ﬁ), Eq. (3), in the linear case (¢ = 1) and fitted for
experiments and model (o« = 1.5). (b) Normalized decay length L*
vs pacing cycle length for a representative experimental recording
(solid) and model (dashed).

net increase of L* is observed, and (ii) the transition from
concordant alternans to discordant alternans when consecutive
CL-dependent oscillations of L* are present. We also note
that L* is not null for the experimental data at slow pacing
rates (CL > 300 ms), thus implying an intrinsic dispersion
in the tissue, and L* oscillates by lowering CL within the
discordant alternans regime (CL < 150 ms). Interestingly, an
intermediate resynchronization pattern appears, L* ~ 0, ob-
served only as a critical state before a transition occurs. We
justify such transitions in terms of L* values obtained via
numerical simulation [dashed line in Fig. 3(b)]. The model
can reproduce the normalized decay length patterns both in
amplitude and timing, in particular predicting the onset of
alternans. However, it does not capture either dispersion at
slow pacing rates nor multiple oscillations at fast CLs. We
stress here that these two limitations are common in the
current literature of computational cardiology [27]. An effort
in introducing memory in time and dispersion in space [17,26]
aims, in fact, at reproducing in silico arrhythmic scenarios that
usually require nonphysical (larger) simulation domains and
ad hoc parameters’ choice.

Phenomenological constitutive theory. We assume that the
excitation wave velocity varies with the pacing period ac-
cording to the exponential law CV(CL) = A — Bexp (C CL).
Hence, we can successfully fit the experiments, as shown
in Fig. 2(b) (dashed line) by posing A = xka, B = kb, and
C = ¢/t in which k = 1 cm/ms and t = 1 ms restore phys-
ical dimensions, and a = 0.177, b = 0.31, ¢ = —0.015 are
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FIG. 4. Characteristic length vs CV in (a) linear and (b) log-
log scales. Squares denote experimental measures at specific cycle
lengths. Vertical bars denote standard deviation.

nondimensional parameters. Based on this fit, we identify the
characteristic length Ly of the excitation wave by introducing
a phenomenological constitutive relation in which the pacing
CL acts as an internal variable,

Lo = kCV*CL, 3)

and CV = CV/k represents the experimental-based
dimensionless dispersive conduction velocity restitution
relationship. Equation (3) holds the notable limit of
linear—nondispersive—wave propagation for « =1, shown
in Fig. 3(a) [green (upper) dashed line]. We further remark
that the quantity Ly does not correspond to the concept of
wavelength. Indeed, the characteristic length is based on an
integral space-time operation and quantifies the response of
the whole tissue at different pacing frequencies. From such
a plot, it appears evident that the linear limit, also in the
case of the chosen dispersive CV(CL) relation, is not able
to reproduce the sought characteristic lengths L. Figure 4,
in fact, shows linear and log-log plots of the characteristic
length as a function of CV. In particular, Fig. 4(a) highlights
the vertical saturation effect at high CV providing L, as
independent of the pacing rate for physiological conditions.
However, a horizontal asymptote appears at small CV greatly
varying Ly at fast critical pacings. The log-log plot in
Fig. 4(b) further supports the power-law trend assumed for
interpolating CV(CL) restitution curves.

We performed, then, a second fitting procedure to iden-
tify the values of « able to reproduce such a global and
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synthetic length. Our analysis shows that both for the exper-
iment (dashed blue) and model (dashed red), the exponent
able to replicate the measured Ly corresponds to o >~ 1.5.
This particular value is in agreement with the fractional
Laplacian operator exponent showed to replicate experimental
dispersion of repolarization in human cardiac tissue [28,29]
and that is based on a microscopic biophysics description of
cardiac propagation. The result, by analogy in a homogenized
micro-macro perspective, can be read as (i) a spatiotemporal
generalization of scale invariance usually adopted in fractal
geometry [30] and (ii) the fractional diffusion description of
cell-cell coupling in cardiac electrophysiology [28,31,32].
Domain mapping for ventricular fibrillation. Upon this
result, we analyze ventricular fibrillation both for the exper-
imental preparations and the mathematical model. Fibrillation
is an autoexcitatory regime (no external pacing) presenting
multiple unstable spirals at the same time within the tissue
(usually three for both experiments and simulations—see
SM), and much shorter decay lengths [19]. Our analysis
reveals that Ly falls to an average value of 1.1 cm for the
endocardial experimental data [see Fig. 3(a), red area (right)—
squared symbol] supporting evidence that cardiac fibrillation
is not a spatially random mechanism but a high-dimensional
process characterized by a measurable degree of coherence
[33-35]. Accordingly, numerical simulations confirm Ly =~
1.4 cm only when a domain scaling procedure is applied
[see Fig. 3(a), red area (right)—circle symbol]). Such a scaling
methodology is necessary to reproduce in silico the spiral
meandering observed in the experiments within a realistic
tissue size. We solve such well-known problem as follows: (1)
We simulate a sustained fibrillation scenario in a nonphysical
squared domain with side length A = 20 units where unit =
1 cm; (2) we perform a downscaling of the domain size
according to the fitted value of the exponent, « = 1.5, defining
the unit = 0.37 cm that leads to the physical domain size
expected from the experiments, i.e., § = A% = 7.4 cm; (3)
we overimpose the irregular mask boundaries from the experi-
ments; (4) we perform the spatiotemporal correlation analysis
within the physical box of size 3 x 3 cm? (in agreement with
the experimental case) and identify the sought decay length.
Discussions and perspectives. Physiological cardiac syn-
chronization features are associated with long-range corre-
lated dynamics corresponding to large spatial depolarization
or repolarization states. Pathological behaviors, instead, are
related to short-range coherent local states. In such a scenario,
we address the interpretation of spatial correlation supporting
both an augmented system’s understanding and mathematical

model predictivity. The physical meaning of such a value
is regarded as the total length through which the activation
wave must propagate to synchronize the whole organ as well
as to restore the resting condition in a unified manner (full
depolarization and repolarization phases consolidating addi-
tional information than the sole wavelength [36]). Besides, we
characterize the transition of the excitation wave starting from
normal rhythm (nonalternating), passing through a period-
doubling bifurcation (concordant and discordant alternans),
and ending with sustained ventricular fibrillation. To this end,
we quantified the characteristic length transitions obtained
during the pace-down stimulation protocol recorded for sev-
eral experiments following the usual restitution procedure in
cardiac electrophysiology [5]. We thus identify critical values
of the decay length: Ly ~ 10 cm at the onset of discordant
alternans (CL ~ 200 ms), and Ly < 3 cm at the onset of
fibrillation (CL ~ 100 ms). On these pieces of evidence, we
develop a unified criterium in terms of the characteristic
length of the system, either Ly or Ly, entailing, in a homog-
enized sense, feedback instabilities due to intra- and inter-
cellular multiscale interactions. Accordingly, we incorporate
our findings into a phenomenological constitutive law based
on wave-front CV(CL) restitution properties. The advantage
of our method over previous attempts to predict excitation
adaptability, alternans, and arrhythmia onset [36,37] is due
to incorporating spatiotemporal information in an integral
and feedback sense, thus predicting cardiac instabilities. Our
phenomenological theory indicates that a fractional exponent
(¢ = 3/2) best replicates the experimental decay lengths of
the system during sustained pacing. Accordingly, we extrapo-
late this value to fibrillation scenarios by introducing a domain
size mapping allowing us to reproduce the physical spatiotem-
poral features of the system without modifying any of the
model parameters. Such theoretical reasoning, making use of
nonlinear phenomenological laws, clearly suggests the need
for a deeper understanding of cardiac tissue in terms of mi-
crostructural features and nonlocal diffusion operators [6,38—
42], interscale coupling [43] and information flow [44,45],
molecular diffusion [46], and spatiotemporal renormalization
[47] to replicate and predict emerging phenomena in cardiac
electrophysiology.
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