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Estimation of bulk viscosity of dilute gases using a nonequilibrium molecular dynamics approach

Bhanuday Sharma and Rakesh Kumar*

Indian Institute of Technology Kanpur, Uttar Pradesh, India 208016

(Received 27 March 2019; revised manuscript received 3 June 2019; published 24 July 2019)

A method is proposed for the calculation of bulk viscosity, μb, of dilute gases using nonequilibrium molecular
dynamics (NEMD) simulations. The method uses measurement of mechanical (Pmech) and thermodynamic
pressure (Pthermo) in a NEMD simulation of an expanding fluid and then relates the bulk viscosity to them by
the relation μb = (Pmech − Pthermo)/∇ · �u, where ∇ · �u is the controlled rate of expansion of the fluid per unit
volume. A special emphasis is given to the fundamental physical understanding of bulk viscosity in this work.
The proposed method is demonstrated for the estimation of bulk viscosity of dilute nitrogen gas in the
temperature range of 200–800 K. Variation of bulk viscosity with temperature is reported in the above-mentioned
temperature range and is found to be in a reasonably good agreement with the data available in the literature.
Furthermore, variation of bulk viscosity with pressure and volumetric expansion rate is obtained. A weak
linear dependency of bulk viscosity with pressure is observed, which increases with temperature. However,
no significant effect of the rate of volumetric expansion is observed until 108 s−1. Moreover, the effect of the
direction of volumetric change (expansion vs. compression) is also demonstrated in this work.
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I. INTRODUCTION

Ever since Sir George Gabriel Stokes (1819–1903) pro-
posed the complete set of equations for the dynamics of
viscous fluids in 1845 [1], bulk viscosity has remained as one
of the most controversial subjects of fluid dynamics [2]. The
recent surge of interest in Mars missions has made the study
of bulk viscosity more relevant, as the Martian atmosphere
consists approximately 96% of carbon dioxide gas, which has
the bulk-to-shear-viscosity ratio ≈2000 [3,4]. The account of
bulk viscosity in the analysis has also enabled more accurate
modeling of several fluid mechanical phenomena [5–17]. On
the other hand, in contrast to shear viscosity, which is a
very well studied subject, the field of bulk viscosity is still
not completely explored. There are considerable ambiguities
about the nature, effects, and applicability of the concept
of bulk viscosity. Even for most common fluids, existing
experimental values of bulk viscosity are spread over a broad
range, and widely accepted values are still not available [18].
In this paper, we provide a detailed physical insights on
concept of bulk viscosity of dilute gases and propose a method
for its calculation using nonequilibrium molecular dynamics
approach.

The stress-strain rate relationship (i.e., constitutive rela-
tion) for a Newtonian fluid is given as follows:

σik = −Pthermo δik + μ

(
∂ui

∂xk
+ ∂uk

∂xi

)
+ λ

∂u j

∂x j
δik, (1)

where σik is Cauchy’s stress tensor, δik is the Kronecker
delta, ui is velocity of the fluid, xi is a spatial coordinate,
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and the scalar quantity Pthermo is the thermodynamic pres-
sure or hydrostatic pressure. The above relation contains two
independent coefficients; the first is the coefficient of shear
viscosity (μ), which is sometimes also termed as the first
coefficient of viscosity, and the second is the coefficient of
longitudinal viscosity (λ), which is also referred to as the
second coefficient of viscosity.

The above relation, Eq. (1), can be rearranged as follows
by separating isotropic and deviatoric parts of the strain-rate
tensor:

σik = −Pthermo δik + μ

(
∂ui

∂xk
+ ∂uk

∂xi
− 2

3

∂u j

∂x j
δik

)

+μb
∂u j

∂x j
δik, (2)

where μb = ( 2
3μ + λ). The coefficient μb is known as the

coefficient of bulk viscosity, and it represents the irreversible
resistance, over and above the reversible resistance, caused by
isentropic bulk modulus to change of volume [19]. Its values
are expressed in the same units as shear viscosity, i.e., Pa s
or poise. Thermodynamics constrains both the shear viscosity
and bulk viscosity to have only non-negative values [20]. The
values of bulk viscosity for common dilute gases at 300 K are
listed in Table I [21]. It should be noted that the bulk viscosity
of dilute monatomic gases is zero.

The mechanical pressure, Pmech, is defined as the negative
average of the diagonal terms of stress tensor, as given below:

Pmech = − 1
3 (σ11 + σ22 + σ33) = Pthermo − μb ∇ · �u. (3)

Historically, Stokes [1] assumed the bulk viscosity (μb) to be
identically zero for all fluids. It implies that mechanical pres-
sure is always equal to thermodynamic pressure, irrespective
of the process through which the system is undergoing, i.e.,
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TABLE I. Ratio of bulk viscosity to shear viscosity for common
gases at 300 K [21].

Gas μb/μ Gas μb/μ

Carbon monoxide 0.548 Dimethylpropane 3.265
Nitrogen 0.769 Water vapor 7.36
n-Pentane 0.896 Hydrogen 28.95
Isopentane 1.057 Chlorine 751.88
n-Butane 1.13 Fluorine 2329
Isobutane 2.00 Carbon dioxide 3828

the viscous forces do not depend on the rate of expansion or
compression at all. This assumption is known as Stokes’s hy-
pothesis. Later, it became customary to use this hypothesis in
fluid mechanics. However, Stokes [1] himself did not take this
hypothesis as always true. He mentioned that in commonly
encountered flows, if analysis with and without considering
bulk viscosity produces the same results, then it would be
because of small ∇ · �u rather than μb being zero. However,
there are instances, where we cannot neglect the effects of
bulk viscosity, for example, when the ∇ · �u is very high (e.g.,
inside a shock wave); when fluid is compressed and expanded
in repeated cycles such that the cumulative effect of the small
contribution from each cycle is no more negligible (e.g., sound
wave) [22]; when the atmosphere consists of majority of those
gases, such as CO2, which exhibit a large bulk viscosity [5];
or when results of interest might get affected by even small
disturbances, e.g., study of Rayleigh-Taylor instability [15].
In such cases, it becomes necessary to account for the bulk
viscosity terms in the Navier-Stokes equation.

In addition to these classical hydrodynamics scenarios,
bulk viscosity may also play an important role in several
cosmological phenomena, e.g., damping of vibrations created
during the formation of a new neutron star and growth of
gravitational-wave instability in rapidly rotating neutron star
[23,24]. The origin of bulk viscosity in these circumstances
is primarily due to the chemical nonequilibrium caused by
nuclear reactions. Bulk viscosity along with other transport
properties is also of central importance to the space-time
description of the heavy-ion collision experiments being con-
ducted at the Brookhaven National Laboratory’s Relativistic
Heavy Ion Collider and CERN’s Large Hadron Collider.
One of the primary objectives of these experiments was the
formation and investigation of quark-gluon plasma (QGP),
the state of the matter of the Early Universe (first 30 μs after
the Big Bang) [25].

In all these applications, precise values of bulk viscosity
are needed, and to develop a method for its estimation is the
primary aim of this work.

The paper is organized as follows: In Sec. II, we first
describe the physical mechanism responsible for the genesis
of normal stresses in dilute gases due to both shear and bulk
viscosity. In Sec. III, we review the existing methods available
for the determination of bulk viscosity. Section IV outlines the
proposed method and describes the intermolecular potential
used in the molecular dynamics (MD) simulations. In Sec. V,
the results of present MD simulations are presented and
analyzed. Finally, concluding remarks are made in Sec. VI.

FIG. 1. Three layers of different velocity in a divergent flow
field. Dots represent gas molecules and two vertical dashed lines are
imaginary boundaries separating these three fluid layers.

II. MICROSCOPIC PICTURE OF NORMAL STRESSES
IN AN EXPANDING OR CONTRACTING DILUTE GAS

To understand the microscopic origin of the normal stress,
we rewrite Eq. (2) for the normal stresses acting in the x
direction on the yz plane of the fluid element,

σ11 = −Pthermo + 2μ

(
∂u1

∂x1
− 1

3
∇ · �u

)
+ μb∇ · �u. (4)

The second and third terms in the above equation are contribu-
tions of shear and bulk viscosity to normal stress, respectively.
Mechanisms responsible for stresses due to these terms are
discussed as follows.

A. Shear viscosity

In dilute gases, the mechanism of generation of normal
stress due to shear viscosity is analogous to the mechanism
that produces shear stress, i.e., the transport of momentum in
adjacent layers of fluid due to thermal diffusion of molecules.
Consider a flow field dilating only in one direction with three
different layers of fluid having velocities as shown in Fig. 1.
The left, middle, and right layers have a bulk velocity equal
to u, u + du, and u + 2du, respectively, in the direction as
shown in Fig. 1. When any molecule from the leftmost layer
jumps to middle layer due to its random thermal motion, it will
decrease the average momentum of middle layer. As a result,
the middle layer will be pulled toward the left side. Similarly,
if any molecule from the rightmost layer jumps to the middle
layer, then it will increase the average momentum of middle
layer. As a consequence, there is a pull on the middle layer
toward the right side. The combined effect of these two pulls
will be a normal stress on the fluid element of middle layer
along the direction of velocity gradient. Therefore, in contrast
to what the name “shear viscosity” can misrepresent, shear
viscosity can produce not only shear stresses but also normal
stresses.

B. Bulk viscosity

Herzfeld and Rice [26] first suggested that microscopic
cause of bulk viscosity is the slow exchange of energy be-
tween the translational mode and internal degrees of free-
dom (viz., rotational and vibrational). The mechanism can be
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FIG. 2. Expansion of gas in a piston-cylinder arrangement.

explained by considering a simple example in which a poly-
atomic dilute gas, say, nitrogen, is expanding adiabatically in
a piston-cylinder arrangement, as shown in Fig. 2.

Let us assume that initially the piston was at rest, and
the gas was in equilibrium at a temperature of 300 K. With
the assumption of frozen vibrational mode at the prevailing
temperature conditions, the gas has three translational and two
rotational degrees of freedom. Since the gas is in equilibrium,
these all five degrees of freedom possess equal amount of
energy because of the equipartition law of energy. Now, when
the gas expands, it does work against the piston and loses its
energy. The energy that the gas loses comes directly from
its translational mode, whereas the energy associated with
rotational mode remains momentarily unaffected. It causes an
imbalance in the equipartition of energy among translational
and rotational degrees of freedom. At this stage, the system
is in a state of nonequilibrium, and its current translational
kinetic energy is less than that which would be if the system
is again brought to equilibrium adiabatically. Similarly, its
rotational kinetic energy is more than that which would be
if the system is brought to equilibrium. The system tries to
regain its state such that the whole kinetic energy is equally
distributed among all degrees of freedom. In this attempt,
the system transfers some of its kinetic energy from internal
modes to translational modes by means of intermolecular
collisions among gas molecules.

The mechanical pressure, Pmech, at any point in the fluid is
the negative average of normal stresses acting on that point.
For a dilute gas, it represents actual force caused by bom-
bardment of molecules on a unit area and therefore depends
only on the random translational kinetic energy of the gas
molecules. This is also the reason why PV work comes at the
cost of translational kinetic energy. Kinetic theory of gases
relates mechanical pressure to translational kinetic energy
(Etrans) by the following relation:

Pmech = 2 Etrans

3V , (5)

where V is volume of the system. Hydrostatic or thermo-
dynamic pressure, Pthermo, is the mechanical pressure of the
system under hydrostatic conditions and, hence, equilibrium
conditions. Therefore, for a system in nonequilibrium, the
term “thermodynamic pressure” loses its meaning [20]. How-
ever, for such a system, it can still be defined as the me-
chanical pressure of the system if it is brought to equilibrium
adiabatically [27]. Moreover, due to the equipartition law of
energy, the translational kinetic energy (Etrans) of the system
at equilibrium is equal to 3/ f of the total energy (Etotal), where

f is number of total degrees of freedom of gas. Thus, the
thermodynamic pressure can be given as follows:

Pthermo = 2

3V (Etrans at equilibrium) = 2

3V

(
3

f
Etotal

)
, (6)

Pthermo = 2 Etotal

fV . (7)

From the above discussion, it can be deduced that for the
time duration, when translational kinetic energy is less than
its value at equilibrium, the mechanical pressure is also less
than the mechanical pressure at equilibrium (i.e., the thermo-
dynamic pressure). Since monatomic gases do not possess any
internal degrees of freedom, it becomes immediately clear that
the mechanical pressure at any instant will always be equal to
the thermodynamic pressure. Therefore, we can expect them
to exhibit zero bulk viscosity if we consider the possibility of
nonequilibrium in rotational and vibrational mode only. Both
theories and experiments [28,29] also confirm the same.

However, it is possible that factors other than rotation
and vibration, like electronic excitation or chemical reaction
[20], can also cause nonequilibrium in monatomic gases. For
instance, Istomin et al. [30] has shown that the bulk viscosity
is not zero in electronically excited monatomic gases at tem-
peratures higher than 2000 K. Similarly, if we consider the
nonequilibrium within the translational degrees of freedom,
i.e., among the X , Y , and Z directions of translational velocity,
then also the monatomic gases can show nonzero bulk vis-
cosity. However, the relaxation time of this kind of nonequi-
librium is much smaller than the rotational-translational and
vibrational-translational relaxation times [31]. Therefore, the
contribution of such nonequilibrium processes to bulk viscos-
ity is also small.

III. METHODS FOR DETERMINATION
OF BULK VISCOSITY

Unlike shear viscosity, determination of bulk viscosity has
always remained a challenging task. We present a brief sum-
mary of various approaches available for estimation of bulk
viscosity, μb, of QGP and hadronic matter, and nonrelativistic
classical fluids in Secs. III A and III B, respectively, with a
particular focus on the latter.

A. Determination of bulk viscosity of QGP and hadronic matter

For the estimation of transport coefficient of QGP
and hadronic matter, two standard approaches are mainly
used: the Boltzmann equation-based relaxation time approx-
imation (RTA) approach and the linear response theory-
based Green-Kubo formulation. A brief review of these
methods can be found in Refs. [25,32,33]. A vast amount of
research has been done on this topic. Here we summarize only
some of the key contributions in this field. Gavin [34] used the
well-known nonrelativistic form of the Boltzmann equation
to calculate the transport coefficients for both the QGP and
hadronic matter using the RTA method. Prakash et al. [35,36]
studied the equilibration of hot hadronic matter in the frame-
work of relativistic kinetic theory. They calculated transport
coefficients considering only elastic collisions in the dilute
gas limit using extended Chapman-Enskog formalism. For a
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general review of the relativistic kinetic theory, the reader may
refer to the classical text by Groot et al. [37]. Chakraborty
et al. [38] extended the classical works of Prakash et al.
[35,36] and Gavin [34] and presented a theoretical framework
for the calculation of shear and bulk viscosity of hot hadronic
matter. Their work accounted for not only inelastic collisions
but also formation and decay of resonances, temperature-
dependent mean fields, and temperature-dependent masses.
Demir et al. [25,39,40] carried out ultrarelativistic quantum
molecular dynamics simulations of hadronic media and cal-
culated bulk viscosity using both Green-Kubo method and
relaxation time approximation.

B. Determination of bulk viscosity of classical fluids

1. Theoretical methods

Theoretically, bulk viscosity of dilute gases can be related
to the relaxation time of equilibration processes by Tisza’s [3]
formulation, given as follows:

μb = ρeq a2 (γ − 1)

γ

∑
i

cv,i

cv

τi, (8)

where ρeq is density of gas at equilibrium, a is speed of sound
in absence of viscosity, γ is the ratio of specific heats at
equilibrium, cv,i is heat capacity of ith internal mode, cv is
total heat capacity of the gas, and τi is the relaxation time
of that internal mode, and the summation is performed over
all internal degrees of freedoms (i.e., rotational, vibrational).
However, the applicability of this expression is limited to
the low-frequency regime where ωτ � 1, with ω being the
frequency of sound wave [41].

Li et al. [42] related bulk viscosity to bulk modulus and
relaxation time as follows:

μb = Kτtot, (9)

where K is bulk modulus of the fluid, defined as K =
−V (∂P/∂V ), and τtot is total average relaxation time of in-
ternal energy in all excited modes.

2. Experimental methods

The experimental determination of bulk viscosity is not
as straightforward as shear viscosity and usually based on
indirect techniques, such as absorption and dispersion of
sound wave, and Rayleigh-Brillouin scattering [19,43,44].

Absorption of the sound wave is the additional decrease
in intensity with distance, over and above the geometric
reduction caused by the inverse square law. It has been found
that the experimentally observed absorption is much higher
than the predictions based on the theory that accounts only
for classical absorption, i.e., absorption due to shear viscosity,
thermal conductivity, and thermal radiation. Since this excess
absorption cannot be attributed to dissipation phenomenon be-
cause of translational motion of molecules (i.e., shear viscos-
ity, heat conduction), it is assumed that this excess absorption
is because of bulk viscosity [45]. The absorption of sound is
characterized by absorption coefficient (α), and it is related to
bulk viscosity, μb, as follows [28]:

αPeq

ω2
= 2π2

γ a

[
4

3
μ + (γ − 1)2

γ

Mκ

R
+ μb

]
, (10)

where Peq is equilibrium pressure, M is molar mass, κ is
thermal conductivity, and R is gas constant.

However, the assumption that the excess absorption is due
to bulk viscosity can only be examined when some direct
measurements of bulk viscosity from an independent method
are made and values are compared [4,45]. Furthermore,
this approach of measuring bulk viscosity is susceptible to
considerable errors since it involves subtraction of classical
absorption coefficient from total absorption coefficient to
get absorption due to bulk viscosity. For the calculation of
classical absorption, the use of μ and κ taken from different
sources also introduces error in estimates of bulk viscosity
made using this method [44].

Alternatively, bulk viscosity can also be measured by
sound dispersion experiments. Dispersion of sound causes
speed of sound to be frequency dependent, and this depen-
dency is given as follows [46]:

a2 = a2
0 + (

a2
∞ − a2

0

) ω2τ 2

1 + ω2τ 2
, (11)

where a is the speed of sound at frequency ω, a0, and a∞
are speed of sound for very low and very high frequencies,
respectively. The obtained relaxation time then can be related
to bulk viscosity.

Pan et al. [47] suggested that bulk viscosity of dilute
gases can also be measured using coherent Rayleigh-Brillouin
scattering. In this technique, gas density perturbations are
generated and measured using laser beams. The experimen-
tally observed scattering profile is then compared with that
obtained from the theoretical models to get transport co-
efficients, including bulk viscosity. However, in contrast to
acoustic experiments, which measure bulk viscosity at mega-
hertz frequencies, these experiments measure bulk viscosity
in gigahertz domain. Because of this reason, a significant
difference between the estimated values from the two above-
mentioned methods is usually observed [47–53].

Emanuel et al. [7] has deduced that for dense polyatomic
gases, the density-based thickness of shock wave consists of
many thousands of mean free paths and varies linearly with
the ratio μb/μ. Thus, the experimentally measured shock
wave thickness can be used to calculate bulk viscosity; nev-
ertheless, we could not find any experimental implementation
of this technique in the literature.

3. Computational methods

Numerical simulation methods used for estimation of bulk
viscosity are classified into two categories, viz., equilibrium
molecular dynamics– (EMD) based methods and nonequi-
librium molecular dynamics– (NEMD) based methods. In
the former, the system is first brought to thermodynamic
equilibrium, and then transport coefficients are calculated by
sampling the microscopic data. There are two such meth-
ods: the Green-Kubo method and Einstein’s method. Both
use the integrals of time-correlation functions of fluctua-
tions of the pressure tensor to calculate shear and bulk
viscosities.

The Green-Kubo method uses the Green-Kubo relations
for calculation of transport properties [54,55]. For shear vis-
cosity, μ, and bulk viscosity, μb, these relations are given as
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follows:

μ = V
kBT

∫ ∞

0
〈Pi j (t ) Pi j (0)〉dt, (12)

where kB is the Boltzmann constant, T is temperature, Pi j (t )
denotes the instantaneous value of the i jth off-diagonal ele-
ment of the pressure tensor at a time t , and the angle bracket
indicates the ensemble average. Further, to reduce the statisti-
cal error in calculation of μ, averaging is performed over three
different values obtained from three different components of
pressure tensor, viz., Pi j , Pjk , and Pki,

μb = V
kBT

∫ ∞

0
〈δP(t ) δP(0)〉dt . (13)

Here P(t ) is the instantaneous value of the average of three
diagonal terms of pressure tensor at a time t , i.e., P(t ) =
1
3 [Pii(t ) + Pj j (t ) + Pkk (t )]. The fluctuations, δP(t ), is aberra-
tion of mean pressure from equilibrium pressure, i.e., δP(t ) =
P(t ) − Peq, where Peq is equilibrium pressure of the system,
and it is calculated by the time average of P(t ) over a long
time.

The EMD-based methods predict transport coefficient very
well for most of the systems. However, in some cases, they
suffer from several issues. For example, in the Green-Kubo
method, for the correct estimation of viscosity coefficients,
the autocorrelation function should decay to zero with time.
In such a case, the integral of autocorrelation function would
reach a constant value. Nevertheless, it does not necessarily
happen in practice. The autocorrelation function might show
either long-time tails or fluctuations [56]. Further, viscosities
should be estimated from the region of the graph of the
integral vs. time, when it reaches a constant value. First, it
is difficult to identify such a region, and, second, even if we
can identify such a region, there will always be arbitrariness
in the value of viscosity because of ambiguity in determining
the cut-off time [56].

A NEMD-based method, which measures transport coeffi-
cients by directly measuring the gradient of the corresponding
parameter, can possibly overcome these issues. Such methods
are well developed for shear viscosity, heat conductivity, and
mass diffusivity. However, for bulk viscosity, historically it
has been seen that implementation of such a method is a
challenging task. To the best of our knowledge, only one
attempt has been made so far to use NEMD-based methods
for the estimation of bulk viscosity. In this work, Hoover
et al. [19] cyclically compressed and expanded the fluid in
the following manner to produce measurable effects:

L/L0 = 1 + ξ sin(ωt ), (14)

where L0 is mean length, L is instantaneous length of the
cubic simulation domain, ξ is strain amplitude, and ω is the
frequency describing the linearized strain rate,

ε̇ = ξω cos(ωt ). (15)

As the linearized strain rate (ε̇) approaches zero, the authors
expected the average pressure of the system to deviate from
equilibrium pressure by −3ξωμb cos(ωt ). Also, if the defor-
mation given by Eq. (14) takes place through the mechanism
of external work, then the lost work due to irreversible heating
will give rise to energy increase per cycle (the cycle time being

2π/ω), which is equal to (2π/ω)9ξ 2ω2μbV/2. Based on the
measurement of average pressure and rise in the energy of the
system, the authors estimated bulk viscosity of a soft sphere
fluid modeled with potential φ(r) = ε(σ/r)12.

C. The proposed method

From the above discussion, it is clear that a direct method,
either experimental or computational, to calculate bulk viscos-
ity directly form isotropic continuous expansion or compres-
sion does not exist so far. Therefore, we take the opportunity
to show that bulk viscosity can indeed be reliably calculated
from Eq. (3) using nonequilibrium molecular dynamics ap-
proach. In the proposed method, Pmech, and Pthermo of a fluid
undergoing volume change with constant ∇ · �u are determined
by translational and internal energy content of the gas using
Eqs. (5) and (7) and are then used to evaluate the bulk viscos-
ity using Eq. (3). Such a method will be of great interest as it
will provide a deeper insight into the physics of the subject
and will serve long-awaited validation of Eq. (3). This method
will also substantiate the hypothesis that excess absorption
of sound energy is due to bulk viscosity [45]. Although the
proposed method is in principle applicable to all expansion
or compression rates, a practical application of the method
requires a sufficiently high expansion or compression rates
(e.g., ∇ · �u ∼ 108 s−1 for N2) to measure accurate values of
bulk viscosity (see Sec. V D for more details).

The proposed approach differs from that of Hoover et al. in
several aspects. First, Hoover et al. modified the Hamiltonian
equation itself to simulate homogeneous compression and ex-
pansion with periodic boundaries. On the other hand, we have
not made any kind of alteration in the equations of dynamics.
Moreover, we have used reflective wall-type boundaries to
make the expansion or compression (and hence, extraction
(addition) of energy from (to) the system by means of work)
more realistic. Therefore, the approach adopted in the present
work is closer to the natural physics.

The second major difference is that Hoover et al. calculated
bulk viscosity of a dense fluid by simulating point particles
with a soft-sphere potential. Hence, they ignored the contribu-
tion in bulk viscosity arising from rotational and vibrational
relaxation and accounted for only the contribution of struc-
tural rearrangement of molecules, which is significant only in
case of dense fluids. In contrast to this, we have calculated
bulk viscosity of a dilute gas accounting for the contribution
of rotational relaxation. We have ignored the contribution
of structural rearrangement of molecules by assuming that
the pressure due to pairwise intermolecular interaction, Ppair,
is small.

IV. MOLECULAR MODEL AND EXPRESSIONS
FOR PRESSURE CALCULATION

A. Molecular model

The classical MD models atoms as point mass objects
and calculates their trajectory according to Newton’s laws
of motion. The word classical implies that the electronic
structure and quantum mechanical effects are neglected. A
brief overview of molecular dynamics approach can be found
somewhere else [57,58]. In the present work, we have used the
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Large Scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) [59] to simulate dilute nitrogen gas. The nitrogen
atoms are modeled as point particles interacting with each
other as per the Lennard-Jones interatomic potential, given as
follows:

V (ri j ) =
{

4ε
[(

σ
ri j

)12 − (
σ
ri j

)6]
, if ri j < rcutoff

0 if ri j > rcutoff

,

where σ = 3.17 Å, ε = 0.0938 kcal/mol, and rcutoff = 12 Å
[60]. The interamolecular N-N bond can be modeled as a
harmonic oscillator (equilibrium bond length = 1.098 Å, and
force constant = 2295 N/m) [61]. Moreover, the simulations
are carried out in the temperature range 200–800 K. This
temperature is quite low as compared to characteristic vibra-
tional temperature of nitrogen (θv = 3374 K [61]); therefore,
it is assumed that the vibrational modes are not activated, i.e.,
there is no energy exchange taking place between vibrational
and translational and vibrational and rotational modes [62].
We have implemented this constraint in our MD simulations
by modeling N2 molecule as a rigid rotor using RATTLE algo-
rithm [63]. The RATTLE algorithm ensures that the distance
between the atoms of a bond remain fixed, and the molecule
behaves as a rigid rotor.

B. Expressions for pressure calculation

In general, stresses in any molecular dynamic system can
be written as the summation of kinetic and virial term [64–66].
The virial term involves the contribution of pairwise interac-
tions, long-range Coulombic interactions, etc. However, for a
nonpolar dilute gas, as we show in Fig. 9 the virial term is
small enough to be neglected. In this case, the expression for
mechanical stress can be approximated by keeping only the
kinetic term,

σab V =
N∑
1

(−mvavb), (16)

where σab is component of stress tensor, where a and b take
on values x, y, and z to generate σxx, σyy, σzz, σxy, σyz, and σxz;
m is mass of the gas atom; va the component of velocity of the
atom in the direction a; and N is total number of atoms. Hence,
the expression of mechanical pressure can be written as

Pmech = −
(

σxx + σyy + σzz

3

)
= m

∑N
1

(
v2

x + v2
y + v3

z

)
3V

= 2 Etrans

3V . (17)

If the system were in equilibrium with same total energy and
volume, then the translational kinetic energy would have been
3/ f of total energy. Thus, the expression for the thermody-
namic pressure of a dilute diatomic gas, modeled as a rigid
rotor, can be written as:

Pthermo = 2 Etotal

5V . (18)
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FIG. 3. Shear viscosity of nitrogen obtained from Green-Kubo
formulation.

The component of pressure due to pairwise interaction, Ppair,
is calculated as follows [66]:

Ppair = 1

6V

N∑
i=1

Np∑
j 	=i

(�ri · �Fi j + �r j · �Fji ), (19)

where �ri and �r j are position vectors of ith and jth atom and
�Fi j is the force acting on ith atom due to its interaction with
jth atom. First summation is performed over Np neighbors of
atom i, and second summation is performed over all the N
atoms present in the simulation.

C. Expansion and compression

The expansion or compression is performed by displacing
all the boundaries (outward for expansion and inward for
compression) of the cubical domain, at every time step, by
a distance δL, keeping centroid of the domain fixed,

δL = 1

2

(
L ∇ · �u

3
�t

)
, (20)

where L is instantaneous side of the cubical domain and �t is
time step size used in the simulation. The factor 1/2 accounts
for expansion or compression by displacement of both the
opposite faces.

V. RESULTS AND DISCUSSION

A. Calculation of shear viscosity

To validate the molecular model of nitrogen (i.e., inter-
atomic potential) that we have used to calculate bulk viscosity,
we first calculated the shear viscosity of nitrogen with the
Green-Kubo method. The results are shown and compared
with the numerical works of Hanley et al. [67] and Billing
et al. [68] and the experimental work of Vogel et al. [69] in
Fig. 3. The close match between these results suggests that
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the chosen potential can reproduce thermodynamic properties
of simulated gas within the acceptable limit of errors.

B. Demonstration of method through expansion
of gas with constant ∇ ·�u

In this section, we show the implementation of homoge-
neous expansion technique to estimate bulk viscosity. For the
simulations carried out in this work, it has been verified that
the value of bulk viscosity does not get affected (within statis-
tical uncertainty) by the time step size and the number of the
molecules used in the simulation. A detailed analysis of the
results, along with the physics of the problem, is presented as
follows. First, a representative cubical fluid element, consist-
ing of 3.85 million nitrogen molecules, is created. Boundaries
of the simulation domain are modeled as the Lennard-Jones
reflective wall. The molecules are first assigned velocities
corresponding to a temperature and pressure of 400 K and
1 bar, respectively, and then the system is equilibrated for 5 ns.
After that, it is adiabatically expanded with ∇ · �u = 108 s−1.
This expansion is further followed by another equilibration,
and an adiabatic compression with same |∇ · �u|, and then a
final equilibration. The above-mentioned process is shown in
Fig. 4. The results are discussed as follows.

As shown in Fig. 4, initially, during the first equilibration,
the value of (Pthermo − Pmech) oscillates about zero due to
the exchange of energy between rotational and translational
mode as the intermolecular collisions take place. It is ensured
that the total energy of the system for this duration remains
conserved within the numerical accuracy.

Then, at t = 5 ns, the system starts expanding and, hence,
does work against the walls of the simulation domain. As we
stated earlier, this work (energy) is extracted from transla-
tional kinetic energy (Etrans) of the gas and the kinetic energy
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FIG. 5. Translational and rotational temperature variation. The
inset shows enlarged view of region marked with dotted rectangle.

associated with rotational mode (Erot) remains as momentarily
unaffected as the process of doing work does not affect the
rotational mode directly. This statement can also be verified
from Fig. 5, where the variation of translational and rotational
temperature is shown with time. It can be observed that the
slope of Ttrans vs. time graph changes immediately at t = 5 ns;
while the slope of Trot vs. time remains zero beyond t = 5 ns,
and after that, it changes gradually as the difference (�E )
between Etrans/3 and Erot/2 increases.

For a given thermodynamic state of the system, the rate of
energy transfer from rotational to translational mode depends
on the difference between translational and rotational temper-
ature, �T . Initially, when the system is in a state of equilib-
rium, i.e., at t = 5 ns, the translational temperature is equal to
the rotational temperature and hence �T is zero, as shown
in Fig. 5. Now, as the expansion begins, the translational
temperature starts decreasing immediately, whereas the rota-
tional temperature instantaneously remains unchanged. This
leads to a difference between the two temperatures (Fig. 5).
Because of this difference, intermolecular collisions cause a
net transfer of energy from rotational mode to translational
mode. However, at this early stage, the difference �T is very
small, and therefore the rate of decrease in Erot (i.e., rate of
energy transfer from rotational mode to translation mode) is
also very small as compared to the rate at which system is
losing its translational energy (i.e., rate at which system is
doing work). So the �T further increases, as shown in Fig. 5.
Consequently, rate of energy transfer from rotational mode to
translational mode also increases.

After this transient phase of t = 5 to ≈10 ns (Fig. 4), the
temperature difference �T and hence �P, both of which
depend on the local thermodynamic state (i.e., temperature
and pressure) of the system and expansion rate ∇ · �u, reach
their value corresponding to these conditions. At this stage,
(Pthermo − Pmech)/∇ · �u can be considered as the value of bulk
viscosity at the local thermodynamic state for the given value
of ∇ · �u. However, for the present case of adiabatic expansion

013309-7



BHANUDAY SHARMA AND RAKESH KUMAR PHYSICAL REVIEW E 100, 013309 (2019)

time (ns)

ΔT
/Δ

T
0

0 2 4 6 8
-0.2

0

0.2

0.4

0.6

0.8

1

MD data
Exponential fit : y = e-1.9*x

FIG. 6. Time history of �T/�T0. It should be noted that the t =
0 ns of this figure corresponds to t = 50 ns of Fig. 4.

or compression, the temperature and pressure of the system
are continuously changing. It results in continuously varying
(Pthermo − Pmech) during t = 10 to 20 ns and t = 40 to 50 ns
as shown in Fig. 4. Furthermore, the asymmetry of curve
between the expansion and compression region of Fig. 4 is
explained by the argument that the system requires some finite
time to reach its pseudo steady state, along with the fact that
μb(compression) > μb(expansion) (see Sec. V D).

At t = 35 ns, the system is subjected to compression with
∇ · �u = −108 s−1. In a similar fashion to the expansion,
(Pthermo − Pmech) or �P reaches a pseudo steady state in
approximately 5 ns, i.e., at t = 40 ns, after which we can
consider (Pthermo − Pmech)/∇ · �u to be equal to bulk viscosity.

Finally, at t = 50 ns, the compression is seized, and the
system is allowed to return to its state of equilibrium. For this
equilibration process, the variation of �T/�T0 with time is
plotted in the Fig. 6, where �T0 is value of �T at t = 50.
It should be noted that the t = 0 ns of Fig. 6 corresponds
to t = 50 ns of Fig. 4. By fitting the curve of �T/�T0 vs.
time to an exponential curve [�T/�T0 = exp(−t/τrot )], we
calculated the rotational relaxation time (τrot) of the system. In
this simulation we obtain a rotational relaxation time, τrot =
0.53 ns for a compression rate ∇ · �u of −108 s−1. We can
also calculate the corresponding value of rotational relaxation
number, which is given as Zrot = τrot/τc, where the mean
collision time (τc) is defined with its usual definition τc =
λ/C̄′ and λ is the mean free path and C̄′ is the mean molecular
speed. We obtain Zrot = 3 at a temperature and pressure of
412 K and 1.038 bar, respectively. This compares fairly well
with the Zrot range of 2 to 6 found in the literature [68,70–74].
The value of τrot, obtained during the equilibration process,
can also be used to calculate bulk viscosity using the Tisza’s
formulation [Eq. (8)] [3]. For nitrogen with frozen vibrational
levels, Cvrot = R. Hence, Tisza’s expression for bulk viscos-
ity reduces to μb = (γ − 1)2Peq τrot. This procedure yielded
a bulk viscosity value of 9 × 10−6 Pa s, as compared to
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FIG. 7. Variation of nonequilibrium parameter, ψ = (Ttrans −
Trot )/Teq, during the simulation

1.3 × 10−5 Pa s at a temperature of 412 K and pressure of
0.96 bar, obtained by direct calculation based on the pressure
difference between mechanical and thermodynamic pressure
in our work. Noteworthy is the fact that the calculation of
bulk viscosity through estimation of relaxation time by fitting
the �T/�T0 vs. t curve to exponential curve is very sensitive
to curve fitting. Even for two different but equally good fit,
there could be a huge variation in measured relaxation time
and hence the bulk viscosity. On the other hand, a direct
calculation of bulk viscosity from the difference between
mechanical and thermodynamic pressure, as demonstrated in
this work, is straightforward and free from such errors.

Another important point, which needs to be addressed, is
that for the algorithm to work properly, the flow characteristic
time should be greater than the relaxation time of internal
mode or a near-thermodynamic equilibrium condition should
prevail [75]. In other words, the expansion or compression
shall be slow enough as compared to the internal energy
collisional relaxation. To this end, if we take inverse of expan-
sion rate, i.e., (∇ · �u)−1 = 10−8 s, as the flow characteristic
time and compare it with the relaxation time, τrot, value of
5.3 × 10−10 s obtained previously, then it turns out that the
condition is indeed satisfied. The further reduction of ∇ · �u
to 107 s−1 has also not produced any significant change in μb.
Details of this study are discussed in Sec. V D. Another reason
to ensure the near-equilibrium condition is that the Zrot and
hence the relaxation rate is not only dependent on the near-
equilibrium temperature but also the magnitude of nonequi-
librium [31]. To quantify the deviation of simulated gas from
equilibrium, we have plotted the variation of nonequilibrium
parameter, ψ = (Ttrans − Trot )/Teq, with time, where Teq is
corresponding equilibrium temperature (Fig. 7). It can be seen
that the |ψ | remains less than 0.15 throughout the simulation,
whereas the variation in Zrot over this range of ψ is less than
0.1 [31]. Therefore, although at first ∇ · �u of the order of
108 s−1 may seem too high for the simulation to fall in the
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“near-equilibrium” regime, the obtained range of ψ once
again confirms that it is indeed a near-equilibrium simulation.

From another perspective, during the adiabatic expansion,
the temperature and pressure of the gas continuously changes,
hence the bulk viscosity, which is dependent on tempera-
ture and pressure of gas. Therefore, instantaneous value of
(Pthermo − Pmech)/∇ · �u will be a fair approximation of μb only
if change in bulk viscosity in a duration equal to one relaxation
time is small enough so that the effects of continuously
varying μb on (Pthermo − Pmech) can be neglected. Otherwise,
before the (Pthermo − Pmech) reaches its right value correspond-
ing to the present thermodynamic state, the system will move
to another thermodynamic state at which (Pthermo − Pmech) sig-
nificantly differs from that of previous one. In this way, system
will never be able to achieve correct value of (Pthermo − Pmech).
Hence, the instantaneous value of (Pthermo − Pmech)/∇ · �u will
not represent μb. For this simulation (∇ · �u = 108 s−1), we
have observed �μb to be less than 3 × 10−7 Pa s in a time
interval of length τrot = 0.53 ns. Therefore, we can neglect the
effects of continuously varying μb and take the instantaneous
value of (Pthermo − Pmech)/∇ · �u as the bulk viscosity at the
prevailing temperature and pressure.

Figure 8 compares the PV graph for the expansion and
compression processes. Hysteresis is formed due to nonisen-
tropicity caused by bulk viscosity. For a given volume and
total kinetic energy of the system, the mechanical pressure
during compression is greater than the mechanical pressure
during the expansion process. Therefore, after a complete
cycle of expansion and compression for a duration of 15 ns
each, there is a net input of energy into the system by means
of PV work. Since a sound wave is a wave of compression and
expansion, the above-mentioned mechanism also explains the
role of bulk viscosity in the absorption of sound wave at a
microscopic level, i.e., how bulk viscosity causes some part
of sound energy to convert into thermal energy of the gas after
each cycle of compression and expansion.
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FIG. 9. Contribution of translational kinetic energy (Pkinetic) and
pairwise interaction (Ppair) in calculation of mechanical pressure

1. Contribution of pairwise interaction in pressure

Figure 9 shows the variation in the absolute value of
contribution of intermolecular interaction (Ppair) to pressure
during the simulation and compares it with instantaneous
kinetic (mechanical) pressure. Ppair is negative due to the at-
tractive nature of intermolecular interactions at large distances
corresponding to the dilute gas conditions. As the expansion
begins, the contribution of intermolecular interaction (Ppair) in
pressure calculation decreases due to increase in intermolecu-
lar distances and vice versa for compression.

In the present study, the gas is in a dilute state, since
the density of the system remains between 0.1865 and
0.8358 kg/m3 throughout the simulation. Corresponding
number densities are 4.0 × 1024 and 1.8 × 1025 m−3. Accord-
ingly, the contribution to pressure due to pairwise intermolec-
ular interaction, Ppair, remains less than 0.04% of the kinetic
pressure throughout the simulation. It can be observed from
Fig. 9 that the maximum value of Ppair is 20 Pa, which is
indeed very small as compared to Pkinetic ≈ 105 Pa. Therefore,
we have neglected the contribution of pairwise intermolecular
interaction (Ppair) in the calculation of pressure and accounted
for only the contribution of kinetic energy to the calculation of
Pmech and Pthermo. Moreover, the calculation of bulk viscosity
in this method depends on the difference Pmech − Pthermo rather
than the individual values of Pmech and Pthermo. By definition,
both the Pmech and Pthermo correspond to same volume and
same density, and therefore, for a dilute gas, the contribution
of Ppair to both Pmech and Pthermo should be almost the same.
Because of this reason, the contribution of Ppair would get
nullified in the calculation of bulk viscosity.

This enables us to ignore the contribution of intermolecular
forces to the bulk viscosity.

2. Compression followed by expansion

Now we study the impact of the order of expansion
and compression processes on the bulk viscosity, i.e., if
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FIG. 10. (a) Comparison of Pthermo − Pmech vs. time for the two cases. In case 1, fluid is first expanded and then compressed, whereas in
case 2, the fluid is first compressed and then expanded. To ease the comparison between these two cases, the expansion and compression parts
of case 2 are separated and superimposed on the corresponding parts of case 1 curve. Panels (b) and (c) show the comparison of variation of
Pthermo − Pmech and μb vs. temperature during expansion and compression, respectively, for both the cases.

compression is performed before the expansion, rather than
first expansion and then compression. We have studied these
two cases and results are discussed as follows. The first
case, case 1, is the simulation discussed in Fig. 4, in which
system is subjected to following processes in the order of
mention—equilibration, expansion, equilibration, compres-
sion, and a final equilibration. In case 2, the order of pro-
cesses is reversed. In this case, a new system is created
and equilibrated at temperature and pressure corresponding
to that of case 1 at t = 35 ns. Next, it is compressed for
15 ns and then again equilibrated for 15 ns. After that the
system is expanded for 15 ns. Finally, in the end it is again
equilibrated.

Results are shown in Fig. 10(a). In this figure, to ease
the comparison between these two cases, the expansion and
compression parts of case 2 are separated and superimposed
on the corresponding parts of case 1 curve. In this figure, it can
be observed that both the curves are overlapping in case of
compression. However, for expansion, case 2 shows slightly
higher values of Pthermo − Pmech, although the difference is
still less than 2.5%. This small difference can be explained as
follows: Although the volume of the system is same, the en-
ergy content, and hence temperature, of case 1 at t = 55 ns is
higher than that at t = 0 ns, as it has undergone an irreversible
cycle of expansion and compression. Since the compression
of case 2 is started from the same thermodynamic state of

013309-10



ESTIMATION OF BULK VISCOSITY OF DILUTE GASES … PHYSICAL REVIEW E 100, 013309 (2019)

+
+ +

+ + + +
+

+

temperature (K)

μ b
  (

10
-5
 P

a 
s)

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

Present work (isothermal)
Present work (adiabatic)
Kistemaker et al. (1970)
Winter et al. (1967)
Parker et al. (1953)
Ziyu et al. (exp., R-B scattering, 2013)
Meijer et al. (exp., R-B scattering, 2010)
Billing et al. (semiclassical, 1992)
Prangsma et al. (exp., sound absorption, 1972)
Ganzi et al. (1971)
Carnevale et al. (exp., 1967)

+

FIG. 11. Variation of bulk viscosity, μb, with temperature at
pressure of 1 bar.

case 1 at t = 35 ns, after the compression of same duration
(15 ns), the case 2 has the same temperature as that of case
1 at 55 ns. Therefore, the temperature of case 2 just before
the expansion is slightly higher than that of case 1. Therefore,
because of higher temperature at any corresponding time step,
the μb∇ · �u, and hence Pthermo − Pmech in case 2, is found to be
slightly higher than that in case 1.

Figures 10(b) and 10(c) compare the plots of Pthermo −
Pmech and bulk viscosity with respect to temperature for cases
1 and 2 for expansion and compression processes, respec-
tively. It is quite evident that Pthermo − Pmech and bulk viscosity
values are in a very good agreement between the two cases.

C. Variaton of bulk viscosity with temperature and pressure

Figure 11 shows variation of bulk viscosity with temper-
ature. The simulations are carried out at ∇ · �u = 108 s−1.
Noteworthy is the fact that only limited data are available
for bulk viscosity in literature. Therefore, in addition to this
directly available data, we have also used data available for
rotational collision number (Zrot) to calculate bulk viscosity
using Tisza’s relation [3]. A comparison of data collected from
literature in this manner with our results is made in Fig. 11. It
should also be noted that each of the data point, corresponding
to the present work, shown in the Fig. 11 is obtained using
a separate numerical experiment. Each simulation took ap-
proximately 96 h of computations on 120 Intel Xeon 2.5-GHz
processors. It can be observed that the available experimental
or numerical values for the bulk viscosity of nitrogen are
spread over a wide range, as they have been obtained by
different researchers and using different methods. Our results
also fall in that range and closely match with the results of
Billing et al. [68], who used a semiclassical model to calculate
rotational collision number by treating rotational motion in
classical fashion and vibrational relaxation in a nonclassical
quantized manner. Our results also match closely with exper-
imental data of Winter et al. [46] and Kistemaker et al. [71].
It should be noted that experiments used for determination

of bulk viscosity rely on indirect methods, like absorption
and dispersion of sound or Rayleigh-Brillouin scattering. In
contrast to this, the method proposed in this work has a strong
theoretical basis and gives the estimation of bulk viscosity
from a direct assessment of the difference between mechanical
and thermodynamic pressure [52,70–72,76].

After studying the variation of bulk viscosity with temper-
ature, our next aim is to study its variation with pressure.
For this purpose, we have simulated isothermal expansion
by adding Nose-Hoover thermostat in our MD simulations.
Since, in an isothermal expansion, only pressure changes
and the temperature remains constant, the observed varia-
tion of bulk viscosity can be attributed to pressure alone.
However, a thermostat is a computational trick to maintain
a constant temperature in a simulation. Therefore, to avoid
any computational artifacts in the simulation, it is necessary to
ensure that the thermostat does not interfere with the natural
relaxation of the gas, i.e., it does not alter the dynamics of
system in a way that is unrealistic or inconsistent with the
natural physics. Therefore, we have first verified that both the
adiabatic and isothermal expansion yield same bulk viscosity
(within the limits of statistical error of simulation) at a given
temperature and pressure. This can be seen from our data
for isothermal and adiabatic expansion in Fig. 11. Another
reason for comparing bulk viscosity obtained from adiabatic
expansion to isothermal one is as follows: A natural expansion
of gas caused by the flow over an aerodynamic object in
an open atmosphere with ∇ · �u = 108 s−1 resembles more
an adiabatic rather than isothermal expansion. Because, to
maintain a constant temperature, fluid needs to be thermally
equilibrated with its surrounding. However, this process of
equilibration is not instantaneous and requires some finite
time. When the fluid is expanded or compressed at ∇ · �u of
the order of 108 s−1, the temperature of gas changes so rapidly
that flow does not get enough time for a significant energy ex-
change with the surrounding, and hence such flow conditions
resemble more to adiabatic rather than isothermal conditions.

Figure 12 shows the variation of bulk viscosity with pres-
sure at temperature values of 200, 350, and 500 K. Each
of these three isotherms is an average of four independent
trajectories, each done with 70 million N2 molecules. The
fluctuation of the curve can be reduced by further increasing
the number of molecules in the simulation or by taking the
average over more trajectories. It can be observed that at lower
pressures, bulk viscosity decreases with pressure. The proba-
ble reason for this trend is that at as the pressure decreases, the
rotational relaxation time increases, and at very low pressures
the characteristic time of flow starts becoming comparable
to relaxation time. However, as the pressure increases, this
dependence gradually weakens, and beyond some range, the
bulk viscosity can be assumed as independent of pressure.

Now we provide an estimate for error involved in the
calculation of bulk viscosity using the proposed method.
Figure 13 shows the four different trajectories for variation
of bulk viscosity with pressure at a constant temperature of
350 K in the plateau region of 1 to 2 bar (see Fig. 12). Each of
the trajectories was started with microscopically different but
macroscopically same initial condition. It can be observed that
for more than 95% of the times, bulk viscosity fluctuations
lie in (1.123 ± 0.05) × 10−5 Pa s. Standard deviation and
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standard error for the curve showing average of these four tra-
jectories are 1.2 × 10−7 and 1.0 × 10−8 Pa s, respectively. For
the other two curves of 200 K and 500 K (Fig. 12), standard
deviations are 1.3 × 10−7 and 1.5 × 10−7 Pa s, respectively,
while the corresponding standard errors are 9.3 × 10−9 and
1.1 × 10−8 Pa s. We have observed similar range of uncer-
tainty in all the values of bulk viscosity reported in this work.

D. Variation of bulk viscosity with ∇ ·�u
Although dependence of bulk viscosity on the frequency

of sound is studied in a few works [46], to the best of our
knowledge, a direct study of the dependence of bulk viscosity
on ∇ · �u has not been done so far. The reason for this is that
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FIG. 13. Four different trajectories for variation of bulk viscosity
with pressure at a constant temperature of 350 K in the plateau region
of 1 to 2 bar (see Fig. 12).

carrying out such an experiment is difficult to perform [4], and
available numerical methods (i.e., the Green-Kubo method
and Einstein’s method) are unable to simulate expansion or
compression, since they are based on equilibrium molecular
dynamics (see Sec. III). However, the method proposed in this
work, being inherently based on expansion and compression
of the gas, enables us to investigate the effects of ∇ · �u on bulk
viscosity.

The equation of sound wave [P − Peq = (P − Peq )max

sin(ωt )] combined with the adiabatic relation (PVγ =
constant) yields

1

V
dV
dt

= ∇ · �u = −ω

γ

(P − Peq )max

P
cos(ωt ). (21)

If we consider conditions of a typical sound absorption ex-
periment, (P − Peq )max ∼ 10−2 Pa, P ∼ 105 Pa, γ = 1.4, and
ω = 100 MHz, then we get ∇ · �u of the order of 10. On
the other hand, in practical situations where it is important
to account for bulk viscosity effect, e.g., supersonic and
hypersonic flows, ∇ · �u may be of the order of 105 s−1.
Therefore, in analysis of such situations, the use of bulk
viscosity calculated by the sound absorption and dispersion
method is questionable.

Also, in case of higher-frequency sound waves at high
temperatures with activated vibrational modes, if 1/ω be-
comes very small as compared to relaxation time (τvib) of
vibrational mode, i.e., (1/ωτvib) � 1, then ∇ · �u changes its
sign so frequently that system does not get enough time for
any significant exchange of energy to take place between the
vibrational mode and other modes of energy. Therefore, at
higher frequencies (gigahertz range), the vibrational mode
effectively behaves as frozen and only internal modes with
shorter relaxation time, viz., rotational mode, contribute to the
relaxation process [52]. Whereas if the system is subjected to
a steady compression or expansion with constant ∇ · �u, there
will be plenty of time for all internal modes to participate
in the energy exchange process, and hence both vibrational
and rotational modes contribute to the bulk viscosity at all
values of ∇ · �u. Therefore, for applications in high-divergence
steady-state flows, the value of bulk viscosity computed by the
proposed method should be used rather than those calculated
by sound absorption and dispersion or optical methods.

As mentioned earlier, although Eq. (3) is in principle ap-
plicable to all expansion and compression rates, the practical
application of the proposed approach requires a sufficiently
high expansion or compression rate. The reason for this is
as follows: The Eq. (3), Pmech − Pthermo = μb∇ · �u, suggests
that for a given thermodynamic state of the fluid, i.e., for
a given μb, higher ∇ · �u results in greater Pmech − Pthermo.
Since ∇ · �u is a controlled variable in the simulation, the
statistical error in estimated bulk viscosity, μb, is directly
related to statistical error in calculated Pmech − Pthermo, which
in turn depends on statistical fluctuations of Pmech and Pthermo.
Thus, in order to minimize the statistical error in measured
bulk viscosity, it is desired that the signal, Pmech − Pthermo,
is at least an order of magnitude greater than the statistical
fluctuations in the Pmech and Pthermo. Hence, sufficiently high
expansion and compression rates are required. One can reduce
these statistical fluctuations either by increasing number of
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FIG. 14. Variation of bulk viscosity with ∇ · �u at 300 K.

simulated molecules or by taking average over several inde-
pendent molecular dynamics trajectories.

However, it should also be noted that the bulk viscosity
is a thermodynamic parameter only if the deviation of the
system from local thermodynamic equilibrium is small. At
higher deviation, bulk viscosity will depend not only on the
thermodynamic state of the system, i.e., temperature and
pressure, but also on the expansion and compression rates.
Therefore, a too-high value of ∇ · �u should also be avoided.
In summary, the smallest possible value of ∇ · �u is desired,
which can produce Pmech − Pthermo large enough such that its
statistical fluctuations are small. In case of N2, we found
∇ · �u = 108 s−1 to be a reasonably good choice.

The above-mentioned constraints restrict us to use values
of |∇ · �u| greater than 2 × 107. For the allowed range of
expansion or compression rates, the variation of μb with ∇ · �u
at 300 K is presented in Fig. 14. The graph shows that bulk

viscosity remains roughly constant in the range |∇ · �u| =
2 × 107 to 108 s−1. Beyond that, it gradually increases for
compression, whereas decreases gradually for the expansion
process. It can be observed from Fig. 14 that the bulk viscosity
calculated from the compression is slightly higher than that
obtained from expansion. This difference is in line with the
observations made by Valentini et al. [31]. In their molecular
dynamics study, they found that the value of Zrot depends not
only on the magnitude of nonequilibrium but also on the direc-
tion of deviation from equilibrium, i.e., whether the rotational
temperature is greater than the translational temperature or
otherwise.

VI. CONCLUSIONS

A method based on the continuous compression and ex-
pansion of a dilute gas is proposed for the calculation of
bulk viscosity, which is one of the most fundamental as well
as a critically important fluid property in some situations.
The basic idea is to use the classical molecular dynamics
approach for the estimation of mechanical and thermody-
namic pressures of a gas dilating at a controlled rate. The
simulated pressure values are then used to calculate the bulk
viscosity, which is found to be in reasonably good agreement
with the previous experimental and numerical data available
in the literature. The simple, but theoretically sound, method
proposed here thus can be used to accurately calculate the bulk
viscosity of unknown fluids with much ease using existing
molecular models. The method can also be used as an alterna-
tive way for calculating rotational collision number of dilute
gases.
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