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The present paper analyzes the typical unified lattice Boltzmann (LB) models for different convection-
diffusion (CD) problems in multiphase systems. The CD problems in multiphase systems can be roughly
classified into three groups: CD problems with a continuous scalar value and a continuous flux, a discontinuous
scalar value and a continuous flux, a continuous scalar value and a discontinuous flux. The characteristics of the
corresponding unified LB models for the three kinds of CD problems are analyzed and the equivalence between
the LB models based on different perspectives or numerical schemes is revealed. Finally, a comprehensive
multiphase LB model (CMLBM) capable of solving different isotropic and anisotropic CD problems in
multiphase systems is proposed. Four typical CD problems in multiphase systems are calculated to validate
the CMLBM; the results show that it performs well against the typical isotropic and anisotropic CD problems in
multiphase systems.
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I. INTRODUCTION

The lattice Boltzmann method (LBM) is based on the
Boltzmann equation for describing the nonequilibrium pro-
cess in statistical mechanics. It has been proven to be an
efficient numerical method for simulating the nonequilib-
rium physical processes, such as fluid flows and different
convection-diffusion (CD) problems. Furthermore, some de-
veloped lattice Boltzmann (LB) models have been proposed
to simulate different CD problems in multiphase systems.

The different CD problems, e.g., heat transfer and mass
transfer, in multiphase systems have similar governing equa-
tions which consist of the transient term, convection term, and
diffusion term. According to the natural interface conditions,
the CD problems in multiphase systems can be classified into
three major groups: CD problems with a continuous scalar
value and a continuous flux, a discontinuous scalar value and a
continuous flux, a continuous scalar value and a discontinuous
flux.

For the CD problems with a continuous scalar value and
a continuous flux, heat transfer in multiphase systems can be
considered as the typical example. The LB models to simulate
heat transfer in the multiphase systems can be classified into
two major groups: the discrete schemes and unified schemes.
The discrete schemes solve the governing equation in different
phases separately and need additional treatment for the phase
interface to ensure the interface conditions. In this category,
some difference methods [1–4] and interface treatments [5–7]
have been proposed to treat the interface conditions. These
discrete schemes share the same characteristics including
extra effort to capture the interface position and complex cal-
culation steps. These limitations prevent the discrete schemes
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from being prevalent to simulate practical problems with
complex or moving interfaces.

The unified schemes, however, can solve the governing
equations in different phases directly. Some research [8–11]
has constructed the unified schemes by adding an additional
term to the LB equation to correct the influence caused
by different heat capacities of different phases. However,
these methods need extra efforts to calculate the source
term and bring some numerical errors to the results. One
popular approach for constructing a unified model is mod-
ifying the equilibrium distribution function (EDF) [12–15].
The Chapman-Enskog expansion shows that the governing
equation for heat transfer in multiphase systems can be re-
covered by using the modified EDF. In addition, the vir-
tual heat capacity correction method [16] was applied to
construct the unified LB model by modifying the physical
model. The improved virtual heat capacity correction method
[17] shows that the modifications of the physical model are
equivalent to the modifications of the EDF. Another approach
[18] is adjusting the model parameters to satisfy the in-
terface conditions. The asymptotic analysis shows that the
model can ensure the interface conditions with second-order
accuracy.

In the CD problems with a discontinuous scalar value and
a continuous flux, the conjugate mass transfer in multiphase
systems can be considered as the typical case. Here the
discussed LB models are based on the double film theory [19].
This problem is characterized by a concentration jump at the
phase interface described by the double film theory, which
brings additional difficulties to the simulations using the LB
model. In the category of discrete schemes, Molaeimanesh
and Akbari [20] proposed an interface treatment scheme to
model the oxygen transfer across the gas-electrolyte interface
in a cathode catalyst layer of a proton exchange membrane
fuel cell. It shares the same characteristics of those discrete
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schemes of conjugate heat transfer problems in multiphase
systems.

In the category of unified schemes, Lu et al. [19] analyzed
the physical mechanism of Henry’s law and showed that
Henry’s law can be expressed as a relation between two
weight coefficients in an EDF. By adjusting the weight coef-
ficients, a unified LB model can be constructed. In another of
their works [21], they analyzed the shortcomings of Fick’s law
in describing mass transfer in multiphase systems and then
proposed a revised description of Fick’s law. The governing
equation based on the revised description of Fick’s law has a
similar expression with the governing equation of heat transfer
in multiphase systems, and then a unified LB model can be
constructed by modifying the EDF.

In the CD problems with a continuous scalar value and
a discontinuous flux, the solid-liquid phase change can be
considered as the typical case. The problem is characterized
by the latent heat that keeps the interface temperature constant
and the discontinuous heat flux at the phase interface. Most of
the previous LB models for solving solid-liquid phase change
problems are the unified schemes, since it is hard for the
discrete schemes to deal with the discontinuous heat flux at
a moving phase interface. Many LB models [22–30] consider
the latent heat as an extra source term, which significantly
increases the computation cost since the latent heat is implicit
and has to be updated through iteration. On the other hand,
by adding the latent heat into the total enthalpy, Huang et al.
[31] proposed a new total enthalpy-based LB model. Thus
the implicit latent enthalpy term can be eliminated, and then
the iteration steps can be eliminated as well. Especially,
Huang and Wu [32] proposed a multi-relaxation-time (MRT)
LBE that can recover the standard governing equation with
different heat capacities in the solid and liquid phases. Fur-
thermore, they analyzed the appearance of the unphysical
numerical diffusion resulting from the discontinuous heat
flux at the phase interface and theoretically proved that the
unphysical numerical diffusion of the one-dimensional one-
phase melting problem can be eliminated by adjusting the
relaxation parameters of the MRT model. Following their
work, some researchers [33,34] extended the two-dimensional
MRT model to three dimensions. In addition, Lu et al. [35]
proposed an optimal two-relaxation-time (OTRT) LB model
which can eliminate the unphysical numerical diffusion of an
arbitrary DmQn (m dimensions and n discrete velocities) LB
model for both one-phase and two-phase melting problems.

In addition to the proposed LB models that focus on
specific CD problems in multiphase systems, some researches
focus on general CD problems in multiphase systems. On
the one hand, some researchers proposed the general differ-
ence schemes [36–39] to treat different interface conditions,
which can be considered as discrete schemes. Guo et al. [37]
proposed an interface treatment for specified jumps of scale
value and/or flux at the interface. Mu et al. [36] proposed a
general interfacial treatment for continuous or discontinuous
scalar value and flux. The scheme contains more interface
condition types. Based on the boundary schemes [38] for
Robin boundary conditions on straight or curved boundaries,
Hu et al. [39] proposed an interfacial scheme for CD prob-
lems with general interfacial conditions, including conjugate
conditions with or without jumps in heat and mass transfer,

continuity of macroscopic variables and normal fluxes in ion
diffusion in porous media with different porosity, and the
Kapitza resistance in heat transfer.

On the other hand, some models [40,41] are based on the
modified EDF, which can be considered as unified schemes.
Even though the Chapman-Enskog expansion can recover
the governing equation of the general CD problems, the
expansion is based on continuous distribution functions by
default, which means that the scalar value and flux should be
continuous. Therefore, for the problem with a discontinuous
scalar value or flux, special treatments are needed.

Compared with the discrete schemes, the unified schemes
are easier in implementation and dealing with the complex
and moving interfaces, which makes the unified schemes more
attractive. Therefore, the present paper focuses on analyzing
the typical unified LB models for CD problems in multiphase
systems. The characteristics of the typical unified LB models
for the three kinds of CD problems are respectively analyzed.
The detailed mathematical analyses prove the equivalence
between different LB models. Finally, the CMLBM, which
considers the three kinds of isotropic and anisotropic CD
problems in multiphase systems, is constructed. Several typi-
cal CD problems are calculated to validate the CMLBM, and
the results show that CMLBM performs well in all the tests.

II. ANALYSIS OF THE TYPICAL UNIFIED LB MODELS

A. The MRT LB model for CD problems in a single phase

The general MRT lattice Boltzmann equation for CD prob-
lems can be expressed as

gi(x + ei�t, t + �t )

= gi(x, t ) − [M−1SM]i j
[
g j (x, t ) − geq

j (x, t )
]
, (1)

where gi is the discrete distribution function, geq
i is the EDF,

ei is the discretized velocity, M is the matrix that projects
a vector onto the moment space m, S is the relaxation
matrix, and �t is the time interval. In the present paper,
the three-dimensional model with seven discrete velocities
(D3Q7 model) is adopted for all the following discussions and
simulations. The discrete velocities can be expressed as

[e0, e1, e2, e3, e4, e5, e6]

=
⎡
⎣0

0
0

1
0
0

−1
0
0

0
1
0

0
−1

0

0
0
1

0
0

−1

⎤
⎦c, (2)

where c is the lattice speed defined as c = �x/�t = 1 and �x
is the mesh interval. The matrix M is expressed as [42]

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1
0 1 −1 0 0 0 0
0 0 0 1 −1 0 0
0 0 0 0 0 1 −1
6 −1 −1 −1 −1 −1 −1
0 2 2 −1 −1 −1 −1
0 0 0 1 1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

The relaxation matrix S, which is a diagonal matrix, can be
expressed as

S = diag[s0, s1, s2, s3, s4, s5, s6]. (4)
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Among the relaxation parameters in the diagonal relaxation
matrix, the values of s0, s1, s2, and s3 are set as s0 = 1 and
s1,2,3 = 1/τ, respectively, where τ is the relaxation time, and
the other relaxation parameters, which can be adjusted to
achieve a better performance in the calculation, are variables
in a range of 0 < s4,5,6 < 2.

The EDF can be expressed as

geq
i =

{
w0ψ i = 0

wiψ
[
1 + ei · u/c2

s

]
i �= 0

. (5)

The weight coefficient is given as

wi =
{

1/4 i = 0

1/8 i �= 0
. (6)

The corresponding sound speed is c2
s = c2/4. The scalar

value and diffusivity coefficient are obtained by Eqs. (7) and
(8), respectively:

ψ =
∑

i

gi, (7)

D = (τ − 0.5)c2
s �t . (8)

By using the Chapman-Enskog expansion, the macroscopic
governing equation, Eq. (9), can be recovered:

∂ψ

∂t
+ ∇ · (ψu) = ∇ · (D∇ψ ). (9)

Note that for the situation with s0,1,2,3,4,5,6 = 1/τ , the
MRT model degenerates to the standard single-relaxation-
time (SRT) LB model. The lattice Boltzmann equation,
Eq. (1), can be solved through two steps:

Collision step:

ĝi(x, t + �t ) = gi(x, t ) − [M−1SM]i j
[
g j (x, t ) − geq

j (x, t )
]
.

(10)

Streaming step:

gi(x + ei�t, t + �t ) = ĝi(x, t + �t ), (11)

where the symbol ĝi denotes the distribution function after the
collision step.

B. Analysis of the LB models for heat transfer
in multiphase systems

By setting ψ = T, the above LB equation can recover the
governing equation of heat transfer in a single phase:

∂T

∂t
+ ∇ · (T u) = ∇ · (α∇T ), (12)

where α is the thermal diffusivity coefficient. However, the
governing equation of heat transfer in multiphase systems
with variable thermophysical properties is expressed as

∂ (ρcpT )

∂t
+ ∇ · (ρcpT u) = ∇ · (k∇T ), (13)

where k is the thermal conductivity. It can be seen that when
the heat capacity ρcp is variable in the entire domain, Eq. (12)
has additional deviation terms compared with Eq. (13). As
introduced in the Introduction, there are four approaches to

construct the unified LB models for heat transfer in multiphase
systems.

For the methods based on adding additional source terms
[8–11], the temperature- or enthalpy-based EDF does not
change. The additional source terms are added to offset the
derivation terms approximately. Since these methods need
extra efforts to calculate the source term, which inevitably
introduces extra numerical errors, they are disadvantageous
compared with other unified models.

For the method to modify the EDF [15], the original EDF
is replaced with

geq
i =

{
ρcpT − (ρcp)0T + w0(ρcp)0T i = 0

wiρcpT
[
(ρcp)0/ρcp + ei · u/c2

s

]
i �= 0

, (14)

where (ρcp)0 is the reference heat capacity, which can be
chosen as the minimum heat capacity of the entire area to
ensure numerical stability. Note that the original EDF is the
discretization of the Maxwell-Boltzmann distribution func-
tion, while the modified EDF cannot be obtained from the
Maxwell-Boltzmann distribution function directly.

Later, the improved virtual heat capacity correction method
[17] showed that the modified EDF corresponds to three
modifications of the physical model. The first correction is
using virtual heat capacity for the entire area; the second
correction is adding a source term to the distribution function
g0; and the third correction is using the real heat capacity for
the convection term. Finally, it can obtain the same modified
EDF.

Another approach [18] is by adjusting the model parame-
ters to satisfy the interface conditions. The EDF used in the
simulation is given as

geq
i =

{
(1 − 6�)T i = 0

�T
(
1 + ei·u

2�

)
i �= 0

, (15)

where � is the weight coefficient of the directions i �= 0; it can
also be considered as the probability of scalar T transferring
to neighbor nodes. The first adjustment is setting

γ = �B

�A
= (ρcp)A

(ρcp)B

, (16)

where �A and �B are � in phase A and phase B, respectively,
and the values are determined by max(�A, �B) = 1/8. It
means that the probability of scalar T transferring from phase
A to B (�A) is different from that transferring from phase B to
A, i.e., (�B). The second adjustment is revising the streaming
process between the two phases as

gB
i (x + ei�t, t + �t ) = γ ĝA

i (x, t ), (17)

gA
i (x + ei�t, t + �t ) = (1/γ )ĝB

i (x, t ). (18)

It means that the scalar T is not conserved, i.e., the distribution
function in phase A, ĝA

i (x, t ), changes to γ ĝA
i (x, t ) in phase

B. In fact, the second adjustment corresponds to multiply
the distribution function with ρcp. By replacing gi with g∗

i =
ρcpgi, the revised streaming process between the two phases,
Eqs. (17) and (18), can be recovered to the standard streaming
process as follows:

g∗B
i (x + ei�t, t + �t ) = ĝ∗A

i (x, t ), (19)

g∗A
i (x + ei�t, t + �t ) = ĝ∗B

i (x, t ). (20)
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Correspondingly, the EDF is modified to

geq
i =

{
(1 − 6�)ρcpT i = 0

�ρcpT
(
1 + ei·u

2�

)
i �= 0

. (21)

According to the confinement max(�A, �B) = 1/8 and
Eq. (16), the values of � in different phases can be expressed
as a unified scheme as follows:

� = 1

8

(ρcp)0

ρcp
. (22)

Substituting Eq. (22) into Eq. (21), the final EDF can be
expressed as

geq
i =

{
ρcpT − 3

4 (ρcp)0T i = 0

1
8ρcpT

( (ρcp)0
ρcp

+ 4 ei ·u
c2

)
i �= 0

, (23)

which is the same as the modified EDF, Eq. (14).

C. Analysis of the LB models for mass transfer
in multiphase systems

By setting ψ = C in Eq. (9), we can get the governing
equation of mass transfer in a single phase:

∂C

∂t
+ ∇ · (Cu) = ∇ · (D∇C). (24)

According to the analysis in Ref. [21], it is more reasonable
to set φC as the driving potential of mass transfer, where φ

is a dimensionless parameter that proportional to the average
diffusion velocity of solute molecules. The values of φ in the
gas and liquid phases are determined by φG = 1/ max(1, He)
and φL = He/ max(1, He), where He is the distribution coef-
ficient determined by the properties of solute and solutions.
The revised Fick’s law is given as [21]

qm = D

φ
∇(φC). (25)

Therefore, the corresponding governing equation for mass
transfer in multiphase systems can be written as

∂C

∂t
+ ∇ · (Cu) = ∇ ·

[
D

φ
∇(φC)

]
. (26)

In the LB model based on modifying the EDF, the modified
EDF is given as

geq
i =

{
(1 − φ)C + w0Cφ i = 0

wiC
(
φ + ei·u

c2
s

)
i �= 0

. (27)

Through the Chapman-Enskog expansion [21], the governing
equation, Eq. (26), can be recovered.

In the LB model based on adjusting the model parameters
to satisfy the interface conditions [19], the EDF used in the
simulation is given as

geq
i =

{
(1 − 6�)C i = 0
�C
(
1 + ei ·u

2�c2

)
i �= 0

. (28)

The adjustment is setting

�G

�L
= 1

He
, (29)

where the values of �G and �L are determined by
max(�G, �L ) = 1/8. It means that the probability of scalar C
transferring from liquid to gas (�L) is different from that trans-
ferring from gas to liquid, i.e., (�G). The detailed discussion
of the physical meaning of Eq. (29) can be seen in Ref. [19].

According to the values of φ and Eq. (29), the values of
� in different phases can be expressed as a unified scheme as
follows:

� = 1
8φ. (30)

Substituting Eq. (30) into Eq. (28), the final EDF can be
expressed as

geq
i =

{(
1 − 3

4φ
)
C i = 0

1
8φC + ei·u

2c2 C i �= 0
. (31)

It can be seen that Eq. (31) is equivalent to Eqs. (27), which
means that the two LB models based on different perspectives
are equivalent.

In addition, it is noted that in the governing equation
Eq. (26), the driving potential φC can be considered as an
introduced continuous scalar. Therefore, the CD problem with
a discontinuous scalar value needs to be transformed to the
one with a continuous scalar value in LBM.

D. Analysis of the LB models for solid-liquid phase change

The governing equation of heat transfer in a system with
solid-liquid phase change can be written as [32]

∂H

∂t
= ∂ (ρcpT + ρ fLLa)

∂t
= −∇ · (ρcpT u) + ∇ · (k∇T ),

(32)

where H, fL, and La are the total enthalpy, fluid fraction, and
latent heat, respectively. As introduced in the Introduction, the
latent heat source term ∂ (ρLa fL )

∂t is implicit, which significantly
increases the computation costs since the implicit latent heat
has to be updated through iteration. By adding the latent
enthalpy ρLa fL into the total enthalpy term H, the implicit
latent enthalpy term can be eliminated. The EDF of the LB
model for solid-liquid phase change can be expressed as [32]

geq
i (x, t ) =

{
ρH − (ρcp)0T + wi(ρcp)0T i = 0

wi(ρcp)0T + wiρcpT ei·u
c2

s
i �= 0

, (33)

where (ρcp)0 is the reference heat capacity, which is chosen
as the minimum heat capacity of the entire area. Here the
higher-order terms of the EDF in Ref. [32] are neglected.
The modified EDF corresponds to three modifications of the
physical model as well.

Owing to the discontinuous heat flux at the phase interface,
unphysical numerical diffusion exists [32] for the standard
SRT LB model. The two references [32,34] showed that the
unphysical numerical diffusion induced by a discontinuous
heat flux can be eliminated by adjusting the relaxation pa-
rameters in the relaxation matrix. However, the mathematical
analyses in the two references were not complete enough,
since only the one-dimensional one-phase melting problem
was theoretically analyzed. The later research [35] proved
that the OTRT model can eliminate the unphysical numerical
diffusion of an arbitrary DmQn LB models for both one-phase
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and two-phase melting problems. In fact, it can be proven that
the OTRT model is equivalent to the MRT model with the
adjusted relaxation parameters. Therefore, the MRT model
with adjusted relaxation parameters can be proven to have
the same performance with the OTRT model in eliminating
the unphysical numerical diffusion for both one-phase and
two-phase multidimensional melting problems.

As an example, in the D3Q7 MRT model with adjusted
relaxation parameters [34], the free relaxation parameters can
be set as

s4 = s5 = s6 = 2 − 1/τ . (34)

Thus the matrix M−1SM in evolution function Eq. (1) can be
expressed as

M−1SM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
7τ

− 6
7

1
7 − 1

7τ
1
7 − 1

7τ
1
7 − 1

7τ
1
7 − 1

7τ
1
7 − 1

7τ
1
7 − 1

7τ

1
7 − 1

7τ
1
7 − 1

7τ
6

7τ
− 6

7
1
7 − 1

7τ
1
7 − 1

7τ
1
7 − 1

7τ
1
7 − 1

7τ

1
7 − 1

7τ
6

7τ
− 6

7
1
7 − 1

7τ
1
7 − 1

7τ
1
7 − 1

7τ
1
7 − 1

7τ
1
7 − 1

7τ

1
7 − 1

7τ
1
7 − 1

7τ
1
7 − 1

7τ
1
7 − 1

7τ
6

7τ
− 6

7
1
7 − 1

7τ
1
7 − 1

7τ

1
7 − 1

7τ
1
7 − 1

7τ
1
7 − 1

7τ
6

7τ
− 6

7
1
7 − 1

7τ
1
7 − 1

7τ
1
7 − 1

7τ

1
7 − 1

7τ
1
7 − 1

7τ
1
7 − 1

7τ
1
7 − 1

7τ
1
7 − 1

7τ
1
7 − 1

7τ
6

7τ
− 6

7
1
7 − 1

7τ
1
7 − 1

7τ
1
7 − 1

7τ
1
7 − 1

7τ
1
7 − 1

7τ
6

7τ
− 6

7
1
7 − 1

7τ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (35)

In the LB model we have ∑
i

gi(x, t ) −
∑

i

geq
i (x, t ) = 0. (36)

Therefore, the matrix M−1SM in Eq. (1) can be replaced by⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
τ

− 1 0 0 0 0 0 0
0 0 1

τ
− 1 0 0 0 0

0 1
τ

− 1 0 0 0 0 0
0 0 0 0 1

τ
− 1 0 0

0 0 0 1
τ

− 1 0 0 0
0 0 0 0 0 0 1

τ
− 1

0 0 0 0 0 1
τ

− 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (37)

It can be found that the evolution of distribution function
gi is only related to geq

i , gĩ, and geq
ĩ

, where ĩ denotes the
opposite direction of i. The evolution equation, Eq. (1), can
be simplified as

gi(x + ei�t, t + �t )

= geq
i (x, t ) − (1 − 1/τ )

[
gĩ(x, t ) − geq

ĩ
(x, t )

]
. (38)

For the OTRT model, the evolution equation can be given as

gi(x + ei�t, t + �t )

= geq
i (x, t ) +

(
1 − 1

2τs
− 1

2τa

)[
gi(x, t ) − geq

i (x, t )
]

−
(

1

2τs
− 1

2τa

)[
gĩ(x, t ) − geq

ĩ
(x, t )

]
, (39)

where τa and τs are the antisymmetric and symmetric relax-
ation times, respectively, and their values are determined by

τa = τ, 1/τa + 1/τs = 2. (40)

By substituting Eq. (40) into Eq. (39), Eq. (39) can be
simplified to Eq. (38), which means that the MRT model for
solid-liquid phase change with adjusted relaxation parameters
is equivalent to the OTRT model mathematically.

III. THE COMPREHENSIVE LB MODEL FOR DIFFERENT
CD PROBLEMS IN MULTIPHASE SYSTEMS

A. Introduction of the CMLBM

According to the analyses above, the treatments for dif-
ferent kinds of CD problems in unified LB models can be
concluded. For the CD problems with a continuous scalar
value and a continuous flux, no special treatment is needed.
For the CD problems with a discontinuous scalar value and
a continuous flux, a continuous scalar can be introduced to
transform the problem to the one with both continuous scalar
value and flux. For the CD problems with a continuous scalar
value and a discontinuous flux, the MRT LB model with
an optimal relation between the relaxation parameters or the
simplified model given by Eq. (38) is needed. Based on the
unified LB model for CD problems with a continuous scalar
value and a discontinuous flux, the CMLBM that can deal with
the three kinds of CD problems in multiphase systems can be
constructed.

The governing equations of the CD problems in multiphase
systems can be written in a unified scheme as

∂A(ψ )

∂t
+ ∇ · [B(ψ )u] = ∇ · [D∇C(ψ )], (41)

where A(ψ ), B(ψ ), and C(ψ ) are the functions of the
scalar ψ. The corresponding EDF of the LB model can be
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given as

geq
i =

{
A(ψ ) − C(ψ ) + w0C(ψ ) i = 0

wiC(ψ ) + wiB(ψ ) ei·u
c2

s
i �= 0

. (42)

The corresponding equilibrium moment space m is

meq = Mgeq = [A(ψ ), uxB(ψ ), uyB(ψ ), uzB(ψ ),

6A(ψ ) − 21C(ψ )/4, 0, 0]. (43)

The evolution function and relaxation matrix M are given as
Eq. (1) and Eq. (4), respectively. The relaxation parameters
in the relaxation matrix are given as s0 = 1, s1,2,3 = 1/τ , and
s4,5,6 = 2 − 1/τ .

The macroscopic parameters A(ψ ) and D are determined
by

A(ψ ) =
∑

i

gi, (44)

D = (τ − 0.5)c2
s �t . (45)

By using the Chapman-Enskog expansion (see Appendix), the
macroscopic governing equation, Eq. (41), can be recovered.

In addition, considering that some CD problems are
anisotropic, the above LB model is extended to the anisotropic
situation by replacing the relaxation matrix by [42]

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

s0 0 0 0 0 0 0
0 sxx sxy sxz 0 0 0
0 syx syy syz 0 0 0
0 szx szy szz 0 0 0
0 0 0 0 s4 0 0
0 0 0 0 0 s5 0
0 0 0 0 0 0 s6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (46)

The relaxation parameters si j (i, j = x, y, z) are determined by

D = 1
4�t (I − A/2)A−1, (47)

where D is the diffusivity coefficient matrix and A = si j . The
other relaxation parameters are given as s0 = 1, s4 = s5 =
s6 = 2 − sxx.

By using Chapman-Enskog expansion (see Appendix), the
LB model can recover the anisotropic governing equation:

∂A(ψ )

∂t
+ ∇ · [B(ψ )u] = ∇ · [D∇C(ψ )]. (48)

It is underlined that for the isotropic CD problems in mul-
tiphase systems, the simplified evolution equation (38) is rec-
ommended. The simplified CMLBM is labeled by SCMLBM.
It is equivalent to the MRT model in both accuracy and
stability while it has a similar low computation cost with the
standard SRT model.

B. Boundary treatments

For the Dirichlet boundary condition, the simplified bound-
ary scheme in Ref. [43] is adopted, which can be expressed as

gi(xb, t + �t ) = −gĩ(xb, t + �t ) + 2wiC(ψ ), (49)

FIG. 1. Schematic of heat transfer in a channel filled with two
fluids.

where xb is the boundary point, ĩ denotes the opposite direc-
tion of i, and C(ψ ) is the scalar value at the boundary point.

For the Neumann boundary condition with zero flux, the
Neumann boundary scheme in Ref. [42] is adopted:

gi(xb, t + �t ) = ĝĩ(xb, t + �t ). (50)

IV. RESULTS AND DISCUSSION

A. The unsteady heat convection
diffusion in a channel filled with two fluids

As an example of CD problems with both continuous scalar
value and flux, an unsteady heat convection-diffusion problem
in a channel filled with two fluids is considered. The functions
A(ψ ), B(ψ ), and C(ψ ) in the SCMLBM correspond to ρcpT,

ρcpT, and (ρcp)0T, respectively. The macroscopic parame-
ters including the temperature T and thermal conductivity k
are determined by

T =
∑

i

gi/(ρcp), (51)

k

(ρcp)0

= (τ − 0.5)c2
s �t . (52)

As shown in Fig. 1, the computational domain of size
L × L is filled with liquid A in the upper area and liquid B
in the lower area. The entire domain has a uniform horizontal
velocity u0. The upper and lower boundaries are set as a
Dirichlet condition:

T (y = 0, L) = cos(βx + ωt ), (53)

where β = 2π/L, ω is the frequency. The left and right
boundaries are periodic. In the numerical simulation, the two
periodic boundaries are set as Dirichlet condition as well,
and the temperature distributions at the two boundaries are
determined by the analytical solution. The analytical solution
of the problem is given as

T (x, y, t ) =
{

Re{ei(βx+ωt )[γ1e−λ1y + (1 − γ1)eλ1y]} y � h

Re{ei(βx+ωt )[γ2e−λ2y + (1 − γ2e−λ2L )e−λ2(L−y)]} y > h
, (54)
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FIG. 2. Comparisons of temperature contours at Fourier numbers F = 0.025 (a) and F = 0.05 (b) between the calculated results (blue
dashed line) and analytical solutions (red solid line).

where the function Re denotes the real part of a complex number. The parameters in the analytical solution are calculated by

λ1 = β

√
1 + i

ω + u0β

αBβ2
, λ2 = β

√
1 + i

ω + u0β

αAβ2
, (55a)

a1 = e−λ1h, a2 = e−λ2h, a3 = e−λ2L, (55b)

γ1 = λ1
(
a2

3 − a2
2

)+ RαRρcpλ2
(
2a1a2a3 − a2

2 − a2
3

)
(
λ1 + RαRρcpλ2

)(
a2

1a2
3 − a2

2

)− (λ1 − RαRρcpλ2
)(

a2
1a2

2 − a2
3

) , (55c)

γ2 = λ1
(
a2

1a3 + a3 − 2a1a2
)+ RαRρcpλ2a3

(
a2

1 − 1
)

(
λ1 + RαRρcpλ2

)(
a2

1a2
3 − a2

2

)− (λ1 − RαRρcpλ2
)(

a2
1a2

2 − a2
3

) , (55d)

where Rα and Rρcp are the ratio of diffusivity coefficient
defined as Rα = αA/αB and the ratio of heat capacity defined
as Rρcp = (ρcp)A/(ρcp)B, respectively.

The parameters of the problem are given as L = 1, Rα =
0.5, Rρcp = 10, u0 = 10DA/L, ω = 20πDA/L2. First, the grid
number used for simulation is 100 × 100, and the relaxation

times in liquid A and liquid B are set as 0.9 and 2.5, respec-
tively.

To validate the SCMLBM, the temperature contours at two
different Fourier numbers F = tDA/L2 = 0.025 and 0.05 are
captured and then compared with the corresponding analytical
solutions. As shown in Fig. 2, the calculated temperature

FIG. 3. Numerical error E2 (a) and E∞ (b) analyses of the SCMLBM and the standard SRT LB model for unsteady heat convection
diffusion in a channel filled with two fluids.
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FIG. 4. Numerical errors E2 (a) and E∞ (b) of the SCMLBM and the standard SRT LB model for heat convection diffusion in a multiphase
system at different relaxation times.

fields at the two transient moments show good agreement with
the analytical solutions.

To compare the convergence orders of the SCMLBM and
the standard SRT LB model, the mesh dependence test is
performed for the two LB models. The average error E2 and
the maximum error E∞ of the two LB models at different
mesh sizes are shown in Fig. 3. The average error E2 and
maximum error E∞ are respectively defined by

E2 =
√

1

N

∑
(T − Ta)2, (56)

E∞ = max{|T − Ta|},where N is the total number of the grid
points, and Ta is the analytical solution. The numerical errors
are evaluated at F = 0.025.

As shown in Fig. 3(a), the convergence order based on E2

of the SCMLBM is 1.994, which is slightly higher than the
standard SRT LB model with a convergence order of 1.872.
The result is consistent with the second-order accuracy shown
in Chapman-Enskog expansion. In addition, the average error
of the SCMLBM is much less than the standard SRT model.
As to the maximum error E∞, Fig. 3(b) shows that the
SCMLBM has a slightly higher convergence order and a much
smaller maximum error than the standard SRT model as well.

To analyze the numerical errors further, the relations be-
tween the numerical errors and the relaxation time are in-
vestigated. Here the relaxation time in phase A (τA) is set
as a variable. As shown in Fig. 4, with the relaxation time
increasing, the E2 and E∞ of the standard SRT model show
large variation, while those of the SCMLBM have no obvious
variation. In a large range of τA, the numerical errors of the
SCMLBM are significantly smaller than the standard SRT
model.

In conclusion, the results indicate that the SCMLBM has
better accuracy than the standard SRT LB model for the heat
CD problem in multiphase systems.

B. Transient mass transfer between two liquid films

This case considers the transient mass transfer between
two liquid films. The functions A(ψ ), B(ψ ), and C(ψ ) in

the SCMLBM correspond to C, C, and φC, respectively. The
macroscopic parameters including the concentration C and
diffusivity coefficient D are determined by

C =
∑

i

gi, (57)

D

φ
= (τ − 0.5)c2

s �t . (58)

As shown in Fig. 5, the computational area is filled with
fluid A in the lower half and fluid B in the upper half.
The dynamic viscosity ratio between the two fluids is set as
μA/μB = 4. The upper wall is fixed at a constant velocity u0

while the lower wall is stationary. Thus, the stationary velocity
field can be given as

u =
{

1.6u0y/L −L/2 � y � 0

0.8u0 + 0.4u0(y − L/2)/L 0 < y � L/2
. (59)

It is set as an input in the simulation.
The other parameters are given as DB = 0.1, DA = 0.025,

He = CA/CB = 2, u0 = 16DA/L. The initial concentration

FIG. 5. Schematic of the two-fluid flow between two liquid films.
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FIG. 6. Concentration distributions at different transient moments.

distribution is set as

C =
{

CB = 1 y � 0

CA = 0 y > 0
. (60)

The left and right boundaries are periodic. Therefore, the
problem can be simplified to one dimensional. The simulation
time is limited to be short enough in the range F = tDA/L2 �
2.5 × 10−3; thus the area can be considered as infinite in the
vertical direction approximately. The transient concentration
distributions at F = 5 × 10−4, 1.25 × 10−3, and 2.5 × 10−3

are outputted and then compared with the corresponding
analytical solutions. The analytical solution for the problem
in an infinite system can be given as

C =

⎧⎪⎨
⎪⎩

CB + (CA − HeCB) 1+erf (y/
√

4DBt )
He+

√
DB/DA

y � 0

CA + (CB − CA/He) 1−erf (y/
√

4DAt )
1/He+

√
DA/DB

y > 0
. (61)

As shown in Fig. 6, the concentration has an obvious jump
at the interface. However, the calculated results are always

in good agreement with the analytical solutions at different
transient moments.

To compare the convergence order of the SCMLBM with
the standard SRT model, the mesh dependence test is per-
formed for the two models. The relaxation times in phase
A and phase B are fixed at 0.7 and 0.9, respectively. The
numerical errors E2 and E∞ at different mesh sizes are shown
in Fig. 7, where the numerical errors are calculated at F =
5 × 10−4. The results show that the two LB models have a
similar convergence order near 2 and the errors of SCMLBM
are always smaller than the standard SRT model at different
mesh sizes.

In addition, the relaxation time dependence test is made
to compare the two models. The numerical errors E2 and
E∞ at different relaxation times of the two LB models are
investigated. Figure 8 shows the variations of E2 and E∞ with
τA increasing, where τA is the relaxation time in phase A. It can
be seen that the numerical errors E2 and E∞ of the SCMLBM
are generally smaller than those of the standard SRT LB
model in a large τA range. Only for τA near 0.9, the numerical
errors E2 and E∞ of the SCMLBM are slightly larger than
the standard SRT LB model. Combining the results of mesh
dependence test, it can be concluded that the SCMLBM has
better numerical accuracy than the standard SRT model in
general for the mass transfer problem in multiphase systems.

In addition, the more detailed simulations of mass transfer
in multiphase systems with convection and large concentra-
tion jump and diffusivity ratio can be seen in Ref. [19]. The
model in this reference is based on the MRT model proposed
by Li et al. [34], which is proven to be equivalent to the
SCMLBM according to the analysis in Sec. II. D.

C. Solid-liquid phase change

As an example of the CD problem in a multiphase system
with a continuous scalar value and a discontinuous flux, the
solid-liquid phase change problems are considered in this sec-
tion. The functions A(ψ ), B(ψ ), and C(ψ ) in the SCMLBM
correspond to ρH, ρcpT, and (ρcp)0T, respectively. The
macroscopic parameters including the total enthalpy H, liquid

FIG. 7. Numerical errors E2 (a) and E∞ (b) of the SCMLBM and the standard SRT LB model for mass transfer in a multiphase system at
different mesh sizes.
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FIG. 8. Numerical errors E2 (a) and E∞ (b) of the SCMLBM and the standard SRT LB model for mass transfer in a multiphase system at
different relaxation times.

fraction fL, temperature T, and thermal conductivity k are
determined by

H =
∑

i

gi/ρ, (62)

fL =

⎧⎪⎨
⎪⎩

0 H � Hs

H−Hs
Hl −Hs

Hs < H < Hl

1 H � Hl

, (63)

T =

⎧⎪⎪⎨
⎪⎪⎩

Ts − Hs−H
cp,s

H � Hs

Hl −H
Hl −Hs

Ts + H−Hs
Hl −Hs

Tl Hs < H < Hl

Tl − H−Hl
cp,l

H � Hl

, (64)

k

(ρcp)0

= (τ − 0.5)c2
s �t, (65)

where Hs = cp,sTs is the total enthalpy at the solidus tem-
perature Ts, and Hl = cp,sTs + La is the total enthalpy at the
liquidus temperature Tl .

The physical model shown in Fig. 9 is a one-dimensional
infinite system. At the initial time, it is filled with the solid
phase at temperature T0. The left wall is kept at a constant high
temperature Th, which is higher than the melting temperature
Tm, then the solid phase starts melting.

First, the one-phase melting, which means that the initial
temperature T0 equals the melting temperature Tm and the
solid phase is inactive, is considered. The analytical solution

FIG. 9. The physical model of the solid-liquid phase change.

of this case is given by [32]

T (x, t ) =
⎧⎨
⎩

Th − Th−Tm
erf (χ ) erf

(
x

2
√

kl /ρcp,l t

)
, 0 � x � Xi(t )

Tm, x > Xi(t )
,

(66)
where Xi(t ) = 2χ

√
kl/(ρcp,l ) is the location of the phase

interface, and χ is the root of the following equation:

Sl

exp(χ2)erf (χ )
= χ

√
π, (67)

where the Stefan number Sl is defined as Sl =
cp,l (Th − Tm)/L, and the subscripts l and s denote the
parameters in the liquid phase and solid phase, respectively.

The parameters used in the simulation are set as follows:
Th = 1, Tm = T0 = 0, ρl = ρs = 1, Sl = 0.01, cp,l = 1, kl =
1/6, Rρcp = (ρscp,s)/(ρl cp,l ) = 1, and Rk = ks/kl = 1. The
relaxation times in the liquid phase and solid phase are both
set as 1.5. Owing to the inactive solid phase, the thermo-
physical property differences between the two phases are not
considered.

The temperature and liquid fraction distributions at three
transient moments t = 10, 50, and 100 calculated by the
SCMLBM are captured and compared with the corresponding
analytical solutions. As shown in Fig. 10, the calculated
results at different transient moments agree well with the
analytical solutions. In addition, all the phase interfaces are
exactly one lattice spacing, and the temperatures of the solid
phase are exactly at Tm, which means that there is no unphys-
ical numerical diffusion induced by the discontinuous heat
flux.

Second, the two-phase melting, which means that the initial
temperature T0 is lower than the melting temperature Tm and
the solid phase is active, is considered. The analytical solution
of the temperature distribution is given as [32]

T (x, t )=
⎧⎨
⎩

Th − Th−Tm
erf (χ ) erf

(
x

2
√

kl /ρl cp,l t

)
, 0 �x �Xi(t )

T0 + Tm−T0

erf (χ/
√

Rα )
erfc
(

x
2
√

ks/ρscp,st

)
, x > Xi(t )

,

(68)
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FIG. 10. Comparisons of T (a) and fL (b) between the calculated results and the analytical solutions at different times for one-dimensional
one-phase melting by conduction.

where Rα = [ks/(ρscp,s)]/[kl/(ρl cp,l )] is the ratio of ther-
mal diffusivities of the solid and the liquid phases, Xi(t ) =
2χ
√

kl/(ρcp,l ) is the location of the phase interface, and χ is
the root of the following equation:

Sl

exp(χ2)erf (χ )
− Ss

√
Rα

exp(χ2/
√

Rα )erfc(χ/
√

Rα )
= χ

√
π,

(69)

where Sl = cp,l (Th − Tm)/L and Ss = cp,s(Tm − T0)/L.

In the present simulation, the parameters are set as follows:
Th = 1, Tm = 0.5, T0 = 0, ρl = ρs = 1, cp,l = 1, kl = 1/6,

Rcp = cp,s/cp,l = 4, Rk = ks/kl = 2, Sl = 0.005, Ss = 0.02.

The relaxation times in the liquid phase and solid phase are
set as 1.5 and 2.5, respectively.

For validation, the temperature and liquid fraction distribu-
tions at three transient moments t = 5, 20, and 50 calculated
by the SCMLBM are captured and then compared with the
corresponding analytical solutions. As shown in Fig. 11,
the calculated results always show good agreement with the
analytical solutions. In addition, the phase interface widths
at different transient moments are always one lattice spacing,
which means that there is no unphysical numerical diffusion
induced by the discontinuous heat flux.

In conclusion, the SCMLBM can effectively eliminate
the unphysical numerical diffusion of both one-phase and
two-phase solid-liquid melting problems, which is consistent
with the theoretical analysis [35]. Note that according to the
theoretical analysis in Sec. II. D, the SCMLBM for solid-
liquid phase change is equivalent to the OTRT LB model
for solid-liquid phase change [35]. More simulations of two-
dimensional and three-dimensional solid-liquid phase change
with convection by using OTRT LB model can be found in
Ref. [35]. The results indicate that the SCMLBM can also
effectively eliminate the unphysical numerical diffusion of
two-dimensional and three-dimensional situations.

D. Heat conduction in a two-layer composite
anisotropic medium

Since some heat conductive materials are anisotropic, heat
conduction in a two-layer composite anisotropic medium
is considered in this section. The functions A(ψ ), B(ψ ),
and C(ψ ) in the CMLBM correspond to ρcpT, ρcpT, and
(ρcp)0T, respectively. The temperature T is obtained through
Eq. (51) as well and the thermal conductivity matrix k are
determined by

k
(ρcp)0

= 1

4
�t (I − A/2)A−1. (70)

FIG. 11. Comparisons of T (a) and fL (b) between the calculated results and the analytical solutions at different moments for one-
dimensional two-phase melting by conduction.
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FIG. 12. The physical model of the composite anisotropic
medium.

As shown in Fig. 12, the physical model is a square composite
medium that consists of medium A in the left half and medium
B in the right half. The size is L × L and L = 1. The upper
and lower boundaries are adiabatic, and the left and right
boundaries are imposed with constant high temperature Th

and constant low temperature Tc, respectively. The anisotropy
angles of the media A and B are set as γA = 45◦ and γB =
−45◦. Here the anisotropy angle is defined as the angle from
the horizontal direction x to the first principal direction ξ . The
thermal conductivity matrixes [kxx kxy

kyx kyy
] of the media A and B

are given as [0.6 0.4
0.4 0.6] and [ 0.15 −0.05

−0.05 0.15 ], respectively, the heat
capacities of the media A and B are given as (ρcp)A = 10 and
(ρcp)B = 100, respectively. To validate the present model, the
dimensionless temperature θ = (T − Tc)/(Th − Tc) contours
at the transient time F = t (kxx )A/[L2(ρcp)A] = 1 and steady
state are compared with those calculated by the finite volume
method (FVM) using software Fluent. The uniform mesh of
size 100 × 100 is used for both methods.

As shown in Fig. 13, the dimensionless temperature con-
tours given by FVM show obvious discontinuity at the phase

FIG. 13. Temperature contours at Fourier number F = 1 and steady state calculated by the CMLBM and FVM: (a) F = 1, CMLBM,
(b) F = 1, FVM, (c) steady, CMLBM and (d) steady, FVM; the area in the solid red circles is the discontinuous contour lines.
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FIG. 14. Comparison of the transient average dimensionless tem-
perature between the CMLBM and FVM.

interface. However, the CMLBM can ensure the temperature
continuity at the phase interface without any additional treat-
ment. In addition, the contours calculated by the CMLBM
match well with those given by FVM at both the transient and
steady states.

Furthermore, to make comparison quantitatively, the tran-
sient average dimensionless temperature θave of the entire area
is shown in Fig. 14. It can be seen that the curves of θave

obtained by the two methods show good agreement. The two
comparisons indicate that the CMLBM is able to simulate
anisotropic heat transfer in multiphase systems. In addition,
the temperature continuity at the phase interface can be well
ensured by using CMLBM.

V. CONCLUSION

In the present paper, the typical unified LB models for
the CD problems in multiphase systems are analyzed. As a
summary, the CD problems in multiphase systems can be
classified into three groups: CD problems with both con-
tinuous scalar value and flux, a discontinuous scalar value
and a continuous flux, and a continuous scalar value and a
discontinuous flux. Detailed analyses are performed to show
the equivalence between the unified LB models for the three
kinds of CD problems. In addition, the treatments for the three
kinds of CD problems in LB models are concluded. For the
CD problems with a continuous scalar value and a continuous
flux, no special treatment is needed. For the CD problems
with a discontinuous scalar value and a continuous flux, a new
defined continuous scalar needs to be introduced to transform
the problem to the one with both continuous scalar value and
flux. For the CD problems with a continuous scalar value and
a discontinuous flux, the MRT LB model with an optimal
relation between the relaxation parameters or the simplified
model given in Eq. (38) is needed.

As a consequence, considering different kinds of isotropic
and anisotropic CD problems in multiphase systems, the
CMLBM is proposed. For the isotropic situations, the sim-
plified CMLBM, i.e., SCMLBM, is given. It is equivalent to
the standard SRT model in simplicity; however, it has the

same accuracy and stability with the MRT LB model with
an optimal relation between the relaxation parameters. Four
typical CD problems in multiphase systems are calculated to
validate the CMLBM. For the isotropic heat and mass transfer
problems in multiphase systems with continuous fluxes, the
CMLBM has better numerical accuracy than the standard
SRT model in general. For the isotropic solid-liquid melting
problem with a discontinuous flux, it can effectively elimi-
nate the unphysical numerical diffusion. For the anisotropic
heat transfer problem in multiphase systems, it can ensure
the temperature continuity at the phase interface well while
the FVM cannot. These results show that the CMLBM is a
competitive LB model for dealing with different CD problems
in multiphase systems.
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APPENDIX: CHAPMAN-ENSKOG EXPANSION
TO RECOVER THE GOVERNING EQUATION

OF ANISOTROPIC HEAT TRANSFER
IN MULTIPHASE SYSTEMS

By using the Taylor expansion, Eq. (1) can be written as

Dg + �t

2
D2g + O(�t2) = −M−1SM

�t
(g − geq ), (A1)

where D = diag(D0, D1, . . . , D6), and Di = ∂t + ei · ∇. In
the moment space, Eq. (A1) is written as

MDM−1m + �t

2
(MDM−1)2m + O(�t2)

=− S
�t

(m − meq ). (A2)

Then we expand m as

m = m(0) + εm(1) + ε2m(2) + O(ε3), (A3)

where ε is a small parameter. To derive the macroscopic
governing equation, two macroscopic timescales t1 = εt , t2 =
ε2t and a macroscopic length scale x1 = εx are introduced to
recover the control equation, and thus we have

∂t = ε∂t1 + ε2∂t2 , ∇ = ∇1. (A4)

The matrix MDM−1 can be written as

MDM−1 = I∂t + E · ∇ = I
(
ε∂t1 + ε2∂t2

)+ εE · ∇1, (A5)

where I is the unit matrix, E = (Ex, Ey, Ez ) and

Ex = Mdiag[e0x, e1x, . . . , e6x]M−1, (A6a)

Ey = Mdiag[e0y, e1y, . . . , e6y]M−1, (A6b)

Ez = Mdiag[e0z, e1z, . . . , e6z]M−1. (A6c)
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Substituting the expansions Eqs. (A3) and (A5) in Eq. (A2), we can rewrite Eq. (A2) in the different orders of the parameter ε as

ε0 : m(0) = meq, (A7a)

ε1 :
(
I∂t1 + E · ∇1

)
m(0) = S

�t
m(1), (A7b)

ε2 : ∂t2 m(0) + (I∂t1 + E · ∇1
)(

I − 1

2
S
)

m(1) = S
�t

m(2). (A7c)

For the CD problems, only the conserved moment m0 in Eqs. (A7a), (A7b) and (A7c) is needed. The corresponding equations
can be given as

ε0 : m(0)
0 = meq

0 , (A8a)

ε1 : ∂t1 m(0)
0 + ∂x1 m(0)

1 + ∂y1 m(0)
2 + ∂z1 m(0)

3 = − s0

�t
m(1)

0 , (A8b)

ε2 : ∂t2 m(0)
0 + ∂t1

[(
1 − s0

2

)
m(1)

0

]
+ ∇1 ·

⎡
⎢⎢⎣
(

I − 1

2
A
)⎛⎜⎜⎝

m(1)
1

m(1)
2

m(1)
3

⎞
⎟⎟⎠
⎤
⎥⎥⎦ = − s0

�t
m(2)

0 . (A8c)

Owing to m0 = m(0)
0 = meq

0 , we can obtain

m(n)
0 = 0(n � 1). (A9)

Thus, Eq. (A8b) and Eq. (A8c) can be simplified as

ε1 : ∂t1 m(0)
0 + ∂x1 m(0)

1 + ∂y1 m(0)
2 + ∂z1 m(0)

3 = 0. (A10a)

ε2 : ∂t2 m(0)
0 + ∇1 ·

⎡
⎢⎢⎣
(

I − 1

2
A
)⎛⎜⎜⎝

m(1)
1

m(1)
2

m(1)
3

⎞
⎟⎟⎠
⎤
⎥⎥⎦ = 0. (A10b)

Combining the equations in Eq. (A7b), we can obtain the following equation:

− A
�t

⎛
⎜⎜⎝

m(1)
1

m(1)
2

m(1)
3

⎞
⎟⎟⎠ =

⎡
⎢⎢⎣

∂t1 m(0)
1 + ∂x1

(
2
7 m(0)

0 − 1
21 m(0)

4 + 1
3 m(0)

5

)
∂t1 m(0)

2 + ∂y1

(
2
7 m(0)

0 − 1
21 m(0)

4 − 1
6 m(0)

5 − 1
2 m(0)

6

)
∂t1 m(0)

3 + ∂z1

(
2
7 m(0)

0 − 1
21 m(0)

4 − 1
6 m(0)

5 − 1
2 m(0)

6

)
⎤
⎥⎥⎦

= ∂t1 [B(ψ )u] + 1

4
∇1C(ψ ). (A11)

Substituting Eq. (A11) into Eq. (A10b) yields

∂t2 (A(ψ )) = ∇1 · {�t
(
I − 1

2 A
)
A−1[∂t1 (B(ψ )u) + 1

4∇1C(ψ )
]}

. (A12)

Combining Eqs. (A10a) and (A12) and neglecting the higher-order term ∇1 · [�t (I − 1
2 A)A−1∂t1 (B(ψ )u)], we can get the final

governing equation,

∂t A(ψ ) + ∇ · [B(ψ )u] = ∇ · [D∇C(ψ )], (A13)

where the diffusivity coefficient matrix D is determined by

D = 1
4�t

(
I − 1

2 A
)
A−1. (A14)
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