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Computing resonant modes of circular cylindrical resonators by vertical mode expansions
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Open subwavelength cylindrical resonators of finite height are widely used in various photonics applications.
Circular cylindrical resonators are particularly important in nanophotonics, since they are relatively easy to
fabricate and can be designed to exhibit different resonance effects. In this paper, an efficient and robust
numerical method is developed for computing resonant modes of circular cylinders which may have a few
layers and may be embedded in a layered background. The resonant modes are complex-frequency outgoing
solutions of the Maxwell’s equations with no sources or incident waves. The method uses field expansions
in one-dimensional (1D) “vertical” modes to reduce the original three-dimensional eigenvalue problem to 1D
problems and uses Chebyshev pseudospectral method to compute the 1D modes and set up the discretized
eigenvalue problem. In addition, a new iterative scheme is developed so that the 1D nonlinear eigenvalue
problems can be reliably solved. For metallic cylinders, the resonant modes are calculated based on analytic
models for the dielectric functions of metals. The method is validated by comparisons with existing numerical
results, and it is also used to explore subwavelength dielectric cylinders with high-Q resonances and analyze

gold nanocylinders.
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I. INTRODUCTION

Metallic or dielectric circular cylinders of finite height are
widely used as optical resonators in photonics applications
[1]. Depending on their material, size, and aspect ratio, cir-
cular cylinders are used in integrated photonics as microdisk
resonators [2], in plasmonics as metallic nanoparticles, and
in metasurfaces as building blocks [3-6]. Due to their simple
geometry, circular cylinders are relatively easy to fabricate,
and they are capable of creating strong local fields that are
useful for lasing, sensing, Raman scattering, nonlinear optics,
and quantum optics [1]. To design resonators of proper mate-
rial, size, and aspect ratio and to analyze their applications,
it is essential to calculate the resonant modes accurately.
A resonant mode (also called resonant state or quasinormal
mode) is a complex-frequency solution of the source-free
Maxwell’s equations satisfying an outgoing radiation condi-
tion. Some interesting resonant modes may exist at special
geometric parameter values only. Recently, it was found that
subwavelength dielectric cylinders of particular aspect ratio
can have high-Q resonant modes [7] and these modes can
be used to enhance second harmonic generation [8]. To find
desired resonant modes for various applications, a robust,
accurate, and efficient numerical method is needed. For metal-
lic cylinders, the dielectric function depends strongly on the
frequency. Since the resonant frequencies are complex, it is
necessary to extend the dielectric function to the complex
frequency plane using proper analytic models.
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For dielectric cylindrical resonators, numerical methods
that give the correct Q factors have appeared since 1980s
[9,10]. Currently, the most widely used method is the finite-
element method (FEM) with perfectly matched layers (PMLs)
[11-13]. FEM is very versatile and its adaptive version is
well suited to analyze structures with complex geometries
[14]. PML is a widely used technique for truncating unbound
domains in numerical simulations of waves [15]. For dielectric
structures where the material dispersion can be ignored, FEM
gives a linear matrix eigenvalue problem that can be solved
using standard numerical linear algebra techniques. For dis-
persive media, the eigenvalue problem is nonlinear, but it can
be linearized by using auxiliary functions if an analytic model
for the dielectric function is available [16,17]. Typically, FEM
gives rise to large matrices and it is not as efficient as desired.
More efficient methods can be developed by taking advantage
of the special features of the structure. The boundary inte-
gral equation (BIE) method is suitable for structures with a
piecewise constant dielectric function [10,18], but it is compli-
cated to implement when the cylinder and/or its surrounding
have multiple layers. The Fourier modal method (FMM),
also called rigorous coupled wave analysis, is widely used
in diffraction analysis of layered periodic structures [19-21],
and it has been extended to computing resonant modes of
nonperiodic structures [22]. When applied to circular cylin-
ders, the standard FMM [22,23] uses vectorial modes that
are functions of the two horizontal variables (perpendicular
to the cylinder axis) and avoids a discretization in the vertical
variable z (along the cylinder axis). To take advantage of the
rotational symmetry of circular cylinders, two special FMMs
have been developed. The method of Armaroli er al. [24] and
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Bigourdan et al. [25] uses one-dimensional (1D) modes that
depend on z and analytic solutions in the horizontal radial
variable r and azimuthal angle 6. The method of Li et al. [26]
uses 1D modes that depend on r and analytic solutions in z and
6. All versions of BIE and FMM give rise to fully nonlinear
eigenvalue problems.

In this paper, we develop a simple 1D mode expansion
method for analyzing circular cylindrical resonators. Similarly
to the method of Armaroli et al. [24], we use 1D modes that
depend on z and analytic solutions in r and 6. Instead of
Fourier series, we use the Chebyshev pseudospectral method
[27] to discretize z, calculate the 1D modes, and set up the
nonlinear matrix eigenvalue problem. Our choice is motivated
by the advantage of the Chebyshev pseudospectral method
shown in numerical studies of diffraction gratings [28,29].
Our method is applicable to multilayered cylinders embedded
in a multilayered surrounding medium. It also gives rise to
nonlinear matrix eigenvalue problems, but the matrix size is
small. In addition, we develop a robust procedure to reduce
the nonlinear matrix eigenvalue problem to a scalar equation,
so the complex frequencies of the resonant modes are simply
solutions of the scalar equation. For metallic cylinders, ana-
lytic models for the dielectric functions of metals are needed.
For gold, we show that the critical point (CP) model [30,31]
gives satisfactory results. Numerical examples are presented
to validate and illustrate our method.

II. VERTICAL MODE EXPANSIONS

We consider a circular cylinder of radius a and height h
with its bottom in the xy plane (at z = 0) and its axis aligned
with the z axis. The dielectric function in the cylindrical region
given by r < a (r is the horizontal radial variable) is allowed
to be a general function of z and w, i.e., ¢ = ¢ (z, ®), where
w is the angular frequency. The medium outside the cylin-
drical region can also be layered and its dielectric function
is given by & = ¢(z, ) for r > a. In addition, we assume
both @ and ! become the same constants for z > % and for
z < 0, respectively.

For scattering problems with a given incident wave at a
given real frequency w, the vertical mode expansion method
(VMEM) is very natural and easy to implement [32]. After
expanding the incident wave to components that depend on
the horizontal angle @ as ™ for integers m, the original 3D
problem is reduced to independent 2D problems in r and z. For
each m, the wave field inside and outside the cylindrical region
can be further expanded in corresponding vertical modes
which are functions of z. The expansion coefficients satisfy a
linear system with a (4N) x (4N) coefficient matrix, where N
is the number of points for discretizing z. Different approaches
can be used to solve the vertical modes and to set up the linear
systems. The VMEM of Ref. [32] is based on the Chebyshev
pseudospectral method [27].

We use VMEM to formulate a nonlinear eigenvalue prob-
lem for resonant modes. With a discretization in z, the 1D
structure given by &) (for / = 0 or 1) has 2N numerically
calculated vertical modes ¢§I’P )(z) with propagation con-

stants n;.l”’) for j € {1,2,...,N} and p € {e, h}. The cases
p=-e and p = h correspond to the E and H polarizations,

respectively. These vertical modes depend on w. If a resonant
mode depends on 6 as €™ then its vertical components can
be approximated by
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where J,, is the Bessel function of first kind and order m and
H'V is the Hankel function of first kind and order m. The
horizontal components H; and E; (tangential to the boundary
of the cylinder at »r = a) can also be written down, and they
involve the derivatives of ¢(l ) (z) [32]. The continuity of H,,
E,H,and E; atr =a and the N discretization points of z
gives rise to a homogeneous linear system

Au(@) ¢, =0, ey

where ¢, is a column vector of length 4N for ! nf), ] €

{1,2,...,N}, L €{0,1}, and p € {e, h}. Since all ¢<”’>

(l P) depend on w, the matrix A,, also depends on w. Equatlon
(1) is a fully nonlinear matrix eigenvalue problem. A resonant
mode corresponds to a complex @ such that A,, is singular.
The wave field of the mode can be constructed from a nonzero
vector ¢, satisfying Eq. (1).

Notice that the right-hand side of Eq. (1) is zero, since
resonant modes are nonzero solutions without incident waves
and sources. For scattering problems with a given incident
field at a given frequency, the VMEM [32] gives rise to

A, (o) ¢y, =by, 2)

where b,, is a vector with four blocks related to the z and
T components of electromagnetic fields of some reference
solutions (induced by the incident wave), and each block is a
vector of length N corresponding to the N discretization points
of z.

Nonlinear eigenvalue problems can be solved by local iter-
ative methods or global contour integration methods [33,34].
A local iterative method relies on a scalar function f(w), such
that f(w) = 0 if and only if A,,(w) is singular. Choices of f
include the determinant of A,,, the smallest singular value of
A,,, the smallest eigenvalue (in magnitude) of A,,, etc. The
determinant is usually not a good indicator for singularities
of a matrix, unless the size of the matrix is very small. The
smallest singular value or eigenvalue are better indicators,
but they can still be difficult to use if the matrix A, is ill
conditioned (close to singular) even when w is away from a
complex resonant frequency. Cheng et al. [35] suggested to
use

r>a,

r>a,

flw) = 3)

1
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where a and b are given vectors independent of w. If a and b
are chosen randomly, as suggested by the authors of Ref. [35],
then the function f above can be rather oscillatory, and an
iterative method may have difficulty to converge, even when a
good initial guess is available.

The contour integration methods are more robust. They can
be used to calculate all resonant modes inside a domain in the
complex w plane, without the need for any initial guesses.
Equation (3) suggests that a solution @ of f(w)=0 is a
pole of a complex function g(w) = a’ A, 'b, assuming A,, is
analytic in w and g is analytic in w except at the poles cor-
responding to the complex resonant frequencies. Therefore,
contour integrals can be used to determine the poles of g based
on the residue theorem. The contour integration methods of
Refs. [33,34] are more robust since they replace the vectors
a and b by matrices, but they are not very efficient, since
they need to evaluate the integral on the chosen contours to
high accuracy and these contours cannot be too close to the
complex resonant frequencies.

We use a local iterative method based on the f(w) given in
Eq. (3), but choose a and b as simple column vectors with
only one or two nonzero entries. The vectors a and b are
chosen such that f(w) is smooth near the complex resonant
frequency. Consider E, and H, along the vertical boundary
of the cylinder at r = a. If H, is expected to be strong at
z = z; (one of the discretization points of z), then we can put
a nonzero entry 1 in the vector b at the position corresponding
to H, at z;. If H, is expected to have a significant overlap with
the first E-polarized vertical mode, then we place a nonzero
entry 1 in the vector a to pick up the coefficient of q&fo’g).
In that case, al’ A 'b = ci(f;,f) and f(0) = 1/05?;:). If H, has
a more significant overlap with the second vertical mode,
then we choose a such that f(w) =1 /cg?;,f). Similarly, if E,
is the dominant z component, then a nonzero entry of b is
put in the block corresponding to E;, and a is chosen such
that f(w) =1 /cf,;f') where j is usually 1 or 2, depending on
which vertical mode has a more significant overlap with E,. If
the structure has a reflection symmetry in z, then the resonant
mode is either symmetric or antisymmetric in z, and we can
use a vector b with two (symmetrically positioned) nonzero
entries, either 1 and 1 or 1 and —1, to excite symmetric or
antisymmetric modes, respectively. The equation f(w) =10
can be solved by standard iterative methods such as the secant
method. With this strategy for choosing a and b, the method
exhibits excellent global convergence, and resonant modes
can be found even when the initial guesses are not very
accurate.

For resonators with a dispersive material, it iS necessary
to use an analytic model for its dielectric function, since
a resonant mode has a complex frequency, but measured
data for the dielectric function are only available for real
frequencies. Analytic models for dielectric functions of metals
and other dispersive materials are widely used in time-domain
numerical simulations. The simplest one is the Drude model,
but it is only accurate in a limited frequency range. The multi-
pole Lorentz-Drude models are more appropriate [16,17]. For
gold, the CP model is only slightly more complicated than
the Drude model, and it gives a good fit for a wide range
of frequencies [30,31]. Some details on the CP model are

TABLEI. Resonant wavelength Re(A) (in um) and quality factor
Q for selected modes of a microdisk resonator.

Armaroli [24] Li [26] This work

Mode Re(A) (0] Re(}) (0] Re(}) 0

TE, 5 1.5735 16 1.5728 19 1.5729 20
TE, ¢ 1.4019 34 1.4016 41 1.4016 41
TE; 7 1.2655 82 1.2665 89 1.2665 90
TE, s 1.1583 175 1.1574 199 1.1574 200
TE, 1.0694 350 1.0673 457 1.0674 456
TE 10 0.9938 828 0.9914 1059 0.9915 1061
TM, 6 1.3079 25 1.3052 25 1.3053 25
™, 7 1.2045 52 1.1998 51 1.1998 51
TM, 5 1.1122 105 1.1112 107 1.1112 107
T™, 9 1.0358 215 1.0356 237 1.0357 238
™, 0.9706 536 0.9703 549 0.9704 548
T™, 1 09132 1254 0.9130 1303 0.9131 1303

given in the Appendix. Notice that all analytic models are
obtained by fitting measured data for real frequencies, it is not
clear how accurate these models are for complex frequencies.
It is possible that fitting real-frequency data with too many
terms can only give less accurate approximations for complex
frequencies. We believe the CP model is highly appropriate
for computing resonant modes of gold resonators in the optical
frequency range.

III. DIELECTRIC RESONATORS

To validate and illustrate our method, we present a few
numerical examples for cylindrical dielectric resonators in this
section. The first example is a microdisk with a dielectric
constant ¢ = 10.24 surrounded by a dielectric medium with
& = 2.25. The radius and height of the microdisk are a =
0.77 um and h = 0.24 pm, respectively. This example was
previously analyzed by Armaroli et al. [24] and Li et al.
[26] using special FMMs with 1D vertical and radial modes,
respectively. PMLs are used in these works to periodize the
z or r directions. In our method, the z variable is truncated
to an interval of 1.92 um with a total of five layers. The
top and bottom layers are PMLs with a thickness of 0.6 um.
The middle layer corresponds to the microdisk of height A.
Between the PMLs and the middle layer are dielectric layers
of 0.24 um. Since the bottom of the microdisk is in the
z =0 plane, the PML above the microdisk is a layer from
Zpml = 0.48 pum to zeng = 1.08 um, where z is replaced by

z _ 2
2=z+S/ <ﬂ> dr. 4)
Zom \<end — Zpml

The PML below the microdisk is similarly defined. The
z variable is discretized by Chebyshev points in five
subintervals with a total of N = 108 discretization points, and
the parameter S for the PMLs is § = 3 + 7i. Our results are
listed in Table I for comparison with those of Refs. [24,26].
For all three methods, we list the resonant wavelength
Re(A), where A =2mc/w is the complex wavelength and
c is the speed of light in vacuum and the quality factor
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FIG. 1. Normalized resonant frequencies of a few resonant
modes on an AlGaAs cylinder of varying aspect ratio.

Q0 = —0.5Re(w)/Im(w) = 0.5Re(r)/Im(A). The quasi-
transverse-electric (quasi-TE) and quasi-transverse-magnetic
(quasi-TM) modes have dominant H, and E, components
respectively, and are denoted as TE; ,, and TM ,,,, where m is
the azimuthal index and j is the mode index. The case j = 1
corresponds to a vertical profile with a single field maximum
located at the middle of the microdisk. Large values of m
correspond to whispering-gallery modes with high Q factors.
Our results agree very well with those of Li ef al. [26]. Notice
that the resonant wavelength decreases as m increases, and
only the first mode in the table, i.e., TE; 5, has a resonant
wavelength larger than the diameter 2a = 1.54 pum.

Recently, subwavelength dielectric structures supporting
high-Q resonances have been designed by relating them to
periodic structures with bound states in the continuum [7]. In
particular, resonant modes with quality factors over 100 have
been found on subwavelength circular cylinders of AlGaAs
and they have been used to enhance nonlinear optical effects
[8]. Using our method presented in the previous section, we
calculate a few resonant modes for a circular AlGaAs cylinder
surrounded by air, assuming the dielectric constant of AlGaAs
ise = 10.73. In Fig. 1, we show the first six symmetric quasi-
TE modes of azimuthal order m = O for different aspect ratio
a/h. The vertical axis of Fig. 1 is the real normalized resonant
frequency Re(w)a/(2mc) = a/Re(A). Our results agree very
well with those of Carletti e al. [8]. In our calculations, the
vertical variable z is truncated by PMLs and discretized by
N = 108 points. In Fig. 1, two points are highlighted on the
curve corresponding to the third smallest resonant frequency.
The points A and B correspond to resonant modes with quality
factors Q = 18 and Q = 115, respectively. The field profiles
for these two points are shown in Fig. 2, where H is the
magnetic field multiplied by the free space impedance, so that
H and electric field E have the same physical units. For both
A and B, the resonant wavelength is significantly larger than
the diameter and height of the cylinder.

If the dielectric constant of the cylinder is further increased,
then the quality factors of the resonant modes can be even
larger. For example, if the dielectric constant of the cylinder
is changed to € = 11.56 (for silicon) and the surrounding
medium is still air (¢ = 1), then there is a high-Q resonant
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FIG. 2. Magnitudes of the electric field E and scaled magnetic
field H on the xz plane for the AlGaAs cylinder at points A and B
in Fig. 1, where (a) and (b) are for point A and (c) and (d) are for
point B.

mode for aspect ratio a/h = 0.88211 and the quality factor is
Q ~ 179.427. The normalized complex frequency of this res-
onant mode is wa/(2wc) = a/A = 0.4256205-0.001186053i.
Its electromagnetic field patterns are shown in Fig. 3. Notice
that the diameter and height of the cylinder are still smaller
than the resonant wavelength.

IV. METALLIC RESONATORS

In this section, we calculate some resonant modes for
circular metallic cylinders of different sizes. The first example
is a gold nanorod of radius ¢ = 15 nm and height # = 100 nm,
embedded in a dielectric medium of ¢ = 2.25. This example
was previously analyzed using a finite element method [36]
and a FMM [23,25]. In these works, a particular resonant
mode with azimuthal order m = 0 was carefully studied,
while the dielectric function of gold is approximated by a
Drude model,

2
“p

£(®) = 5o 0 +ilw’

with parameters e, = 1, @, = 1.26 x 10'° rad/s, and I' =
1.41 x 10'* rad/s. These parameters are chosen to fit the
measured data of Ref. [37]. The complex wavelength of
that mode is approximately 0.9177210 + i0.0469092 pum
[36] or 0.9173666 + i0.0468896 um [25]. Using the same
Drude model, we calculate the resonant mode with our
method and obtain the complex wavelength A = 0.9176863 +

IEI LA HI 8
0.6 25
6 i 08 ‘ 2
1 s " v 04 15
0.3
- » - 1
0.1 05

FIG. 3. Magnitudes of the electric field E (left) and scaled mag-
netic field H (right) on the xz plane of a resonant mode for a silicon
cylinder with aspect ratio a/h = 0.88211.
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i0.0469084 pm. Our result has an excellent agreement with
the FEM result [36] and a good agreement with FMM result
[25]. Due to field singularity along the sharp edges and the
large field gradient at the surface of the nanorod, numerical
methods typically exhibit a slow convergence, and it is diffi-
cult to assess the accuracy of these solutions. To obtain our
result, we used N = 265 points to discretize the z variable
truncated to the interval (—1, 1.1) um, where the bottom of
the nanorod is at z = 0.

Next, we calculate the resonant modes of a gold cylinder
with radius a =40 nm and height 72 = 50 nm, assuming
it is surrounded by a homogeneous medium with dielectric
constant € = 2.25. In order to find resonant modes with
different resonant frequencies, it is desirable to use an analytic
model (for the dielectric function of gold) which is accurate
for a wider frequency range. One possibility is to use the
Lorentz-Drude model [16,17]. We choose to use the relatively
simple CP model [30,31]. Some details of the CP model
are given in the Appendix. It should be pointed out that all
these models are obtained by fitting measured data for real
frequencies, but what is needed is a formula for the dielectric
function on the complex w plane (at least near the real axis).
This is a difficult task, since the measured data on the real
o axis have only limited accuracy, and, more importantly,
there is no guarantee that a formula fitting real w data very
well remains accurate for complex w. From that perspective,
a simple formula, such as the CP model, that fits the real w
data reasonably well over a sufficient large frequency range is
probably the right choice. Based on the CP model, we obtain
a symmetric resonant mode of azimuthal order m = 1 with
complex wavelength A = 0.6369 + i0.04402 um and quality
factor Q = 7.2342. For this calculation, the vertical variable z
is truncated to (—0.3, 0.35) um by PMLs, and the boundaries
among the bottom and top PMLs, dielectric layers, and the
cylinder are located at z = —0.1, 0, 0.05, and 0.15 um. The
PML above the cylinder is a layer from z,m = 0.15 um to
Zend = 0.35 um, and the complex variable Z is defined in
Eq. (4) for § = 7 + 5i. The bottom PML is similar. The five
subintervals of z are discretized by 47, 25, 13, 25, and 47
points, respectively. The total number of discretization points
forzis N = 157.

In order to provide some justification for our choice of the
CP model, we calculate the scattering spectrum of the gold
cylinder for normal incident plane waves. In Fig. 4, we show
the normalized scattering cross section as a function of the in-
cident wavelength. The results are obtained using the VMEM
for scattering problems as formulated in Ref. [32]. The red
solid line and the blue circles are results obtained using the
CP model and the measured data of Johnson and Christ [38].
Due to the circular geometry of the cylinder, a normal incident
plane wave (with a wave vector parallel to the z axis) produces
a scattering field with an azimuthal dependence of sin(6) and
cos(#). Therefore, the normal incident plane wave can only
excite resonant modes with azimuthal order m = 1. The
peak of the scattering spectrum is located at 0.641 um, and
it is close to the resonant wavelength Re(1) = 0.6369 pum
calculated earlier. By measuring the difference in wavelengths
at which the normalized scattering cross section reaches its
half-maximum, an approximation of the quality factor can be
obtained, and it is about 7.54. The agreement with the directly

10 T T
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0.8 09 1
Wavelength (pzm)

FIG. 4. Normalized scattering cross section of a gold circular
cylinder with radius 40 nm and height 50 nm for a normal incident
plane wave.

calculated value Q = 7.2342 is acceptable. Since the quality
factor is quite small, it is impossible to accurately extract the
resonant wavelength and quality factor from the scattering
spectrum. Based on these calculations, we believe that the CP
model can give satisfactory results for resonant modes of gold
resonators in the optical frequency range.

V. CONCLUSION

Open circular cylindrical resonators appear in numerous
nanophotonics applications. A special numerical method is
developed for computing resonant modes of (possibly mul-
tilayered) circular cylinders of finite height embedded in a
possibly layered background. The method relies on expan-
sions of the field in 1D modes which are functions of z,
establishes 1D eigenvalue problems using Chebyshev pseu-
dospectral method, and includes a new procedure for solving
the resulting nonlinear eigenvalue problems. The method is
further applied to determine the aspect ratio of subwavelength
silicon cylinder with a high-Q resonance (Q ~ 179.427). It
is also used to analyze a gold nanocylinder. It is shown
that the resonant wavelength and Q factor calculated directly
using the CP model (for the dielectric function of gold)
agree reasonably well with those extracted from the scattering
spectrum.

Although general numerical methods, such as the FEM, are
available for computing resonant modes even when the media
are dispersive, our method is simple, efficient, and robust.
For scattering problems, the VMEM is applicable to more
general structures including cylinders with arbitrary cross
sections [39], multiple cylinders [40,41], and periodic arrays
of cylinders [42]. We are extending the method for computing
resonant modes for such more general structures.
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FIG. 5. Comparison of the CP model and measured data of
Ref. [38] for gold. Panels (a) and (b) show real and imaginary parts
of /e = n+ik.

APPENDIX
The CP model [30,31] for gold is

2 2
w
P
U — Gi(w),
D w2+iFw+j§:1 j(@)

where the first two terms in the right-hand side above is the
Drude model, and

i¢; e—i¢j
Gi(w)=C; + .
J( ) J<w.,-—a)—iI‘j wj+a)+iFj>

In the above, e, w,, I', w;, I'j, ¢;, and C; are parameters
chosen to fit the measured data of Ref. [38], and they are

oo = 1.54, 1 =¢r=—1/4,

wp, = 131815 x 10'°,  I' =1.29997 x 10"
C) =5.09339 x 10°, C, =6.37985 x 10"
w; =4.01054 x 10, @, = 5.79986 x 10'°,
I =9.92082 x 10, T, =1.77826 x 10".

The unit for w,, I', C}, wj, and I'; is rad/s. In Fig. 5, we
compare the CP model for gold with the data of Ref. [38] for
the real and imaginary parts of /¢ = n + ik.
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