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Monte Carlo algorithms are very effective in finding the largest independent
set in sparse random graphs
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The effectiveness of stochastic algorithms based on Monte Carlo dynamics in solving hard optimization
problems is mostly unknown. Beyond the basic statement that at a dynamical phase transition the ergodicity
breaks and a Monte Carlo dynamics cannot sample correctly the probability distribution in times linear in the
system size, there are almost no predictions or intuitions on the behavior of this class of stochastic dynamics.
The situation is particularly intricate because, when using a Monte Carlo–based algorithm as an optimization
algorithm, one is usually interested in the out-of-equilibrium behavior, which is very hard to analyze. Here we
focus on the use of parallel tempering in the search for the largest independent set in a sparse random graph,
showing that it can find solutions well beyond the dynamical threshold. Comparison with state-of-the-art message
passing algorithms reveals that parallel tempering is definitely the algorithm performing best, although a theory
explaining its behavior is still lacking.
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I. INTRODUCTION

Discrete optimization problems defined on graphs are
widespread among many scientific disciplines and commonly
found in real-world applications. Depending on the properties
of the underlying graph, these optimization problems may
become so hard to solve that all known algorithms find only
very suboptimal solutions, while the optimal ones remain
unreachable to algorithms running in polynomial time.

A common benchmark to test the effectiveness of search
algorithms is represented by optimization problems defined
on random graphs (typical case analysis). In this case, the
hardness of the optimization problem can usually be con-
trolled by varying continuously a model parameter (e.g., the
random graph mean degree or the solution size), and different
algorithms can be quantitatively compared on the basis of how
close to optimality they can go.

Unfortunately, in optimization problems that, in the worst
case analysis, are NP-hard and also hard to approximate,
a large algorithmic gap is often present in the typical case
analysis, i.e., all known algorithms stop working at an algo-
rithmic threshold which is bounded far away from the optimal
(information-theoretic) threshold. Computing the ultimate al-
gorithmic threshold in these hard problems and understanding
whether and why such an algorithmic threshold remains below
the optimal one are fundamental open questions. The present
work takes a step towards answering these questions, by
studying the problem of finding a large independent set (IS)
in a random regular graph (RRG).

Given a graph G = (V, E ), an IS is a subset of vertices
S ⊂ V such that no vertices in S are adjacent, that is, (i j) /∈
E ∀ i, j ∈ S. Finding the largest IS in a graph is a fundamental
problem that is hard in the worst case (NP-hard) and tightly
related to minimum vertex cover and maximum clique [1]. In
physics, the problem is known under the name of hard-core

model [2], because vertices in S can be seen as particles
that have a hard-core interaction and cannot be adjacent. The
largest IS thus corresponds to the densest packing configura-
tion in the hard-core model.

We call ρ the relative size of the IS, that is, |S| = ρ|V | =
ρN . On RRGs of constant degree d it has been proved that,
in the large-N limit, ISs with ρ < ρmax ∼ 2 log d/d do exist
with high probability for d large enough [3,4]. However,
algorithms running in polynomial time cannot find ISs with
ρ > ρalg ∼ log d/d for d large enough [5]. Actually, this
algorithmic threshold ρalg can be achieved with very sim-
ple algorithms [6]. The algorithmic gap, which is the strict
inequality ρalg < ρmax, has been proven for a class of local
algorithms in the large-d limit [7]. In this case, the origin of
the algorithmic failure is due to the ergodicity breaking taking
place at ρalg; this is a common phenomenon in optimization
problems [8,9], also called clustering or shattering of the
solution space.

One expects the ergodicity breaking taking place at ρalg

to affect also other types of algorithms. In particular, the
sampling of the optimal solutions through numerical methods
based on the Monte Carlo Markov chain should become much
slower when ergodicity is broken, due to the need to overcome
large barriers. However, if one is just interested in finding a
single optimal or very close to optimal solution, Monte Carlo
methods may work better than expected. This is an issue that
is one of the main motivations for the present work.

We are going to analyze the performances of different
algorithms, dedicating particular attention to those based on
Monte Carlo Markov chains, and we will try to relate such
performances to the relevant phase transitions taking place in
the space of ISs in the limit of large RRGs. Indeed, studying
the thermodynamics of the problem via the cavity method, the
authors of Ref. [10] showed how the space of ISs changes
while increasing ρ: For d < 16 it undergoes a continuous
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phase transition from a replica symmetric (RS) phase to a
phase described by a full replica symmetry breaking (FRSB)
solution, while for d � 16 the space of ISs undergoes a
random first-order transition (RFOT) and can be described
by a solution with one step of replica symmetry breaking
(1RSB).

Let us briefly review the important phase transitions in the
RFOT case, each one corresponding to a drastic change in
the structure of the set of ISs. At small densities ρ, the ISs
form a single large cluster [two ISs are considered adjacent
if they differ in o(N ) vertices] and can be well described by
an RS solution that assumes the existence of a single state.
Increasing the density, one first finds a dynamical threshold
ρd above which the space of ISs is divided into an exponential
number N of distinct clusters. This is the ergodicity breaking
phase transition that affects local search algorithms and Monte
Carlo methods for sampling. At the condensation threshold
ρc > ρd the number of clusters becomes subexponential, and
beyond the maximum density ρmax there are no more ISs. This
last threshold is equivalent to the satisfiability/unsatisfiability
threshold in constraint satisfaction problems (CSPs).

Besides the above thermodynamic transitions, another
property has been conjectured to be important for understand-
ing the origin of the algorithmic complexity in CSPs: the
concept of frozen clusters [9,11,12]. A cluster of solutions
is said to be frozen if it contains frozen variables that take
the same value in all the solutions of that cluster. The rigidity
threshold ρr is defined such that for ρ > ρr typical clusters
are frozen, while above the freezing transition ρ f all clusters
are frozen. In CSPs many smart algorithms can find solutions
in the clustered phase, but even the best performing ones do
not find frozen solutions [13]. For this reason, the freezing
threshold is conjectured to be the ultimate algorithmic thresh-
old. Unfortunately, its analytic computation is a very difficult
task, which has been achieved only in random hypergraph
bicoloring at present [14].

In Ref. [10] ρd , ρc, and ρmax were computed for d � 100.
We just want to emphasize that even for d = 100 the value of
ρmax is still far from its large-d limit ρmax ∼ 2 log d/d . In this
work we will show that for d � 100, ρalg > ρd and far from
the large-d limit ρalg ∼ ρd ∼ log d/d . This clearly indicates
that the finite-d behavior is extremely different from that of
the large-d limit, to which rigorous results are often relegated.

We will analyze different kinds of algorithms running in
polynomial times. We avoid using algorithms that are known
to find the largest IS in time typically growing exponentially
in the graph size since these are impractical. Three main
classes of polynomial algorithms will be considered: greedy
algorithms, Monte Carlo methods, and message passing
algorithms. Greedy algorithms are very popular [15–17]
because they are extremely fast and often provide a reasonably
large IS.

We will mainly focus on Monte Carlo–based algorithms
that have been much less studied. Indeed, the common belief
is that a slow enough simulated annealing (SA) is able to reach
densities not larger than the bottom of the equilibrium states
at ρd [18]. Above ρd ergodicity is broken and Monte Carlo
methods should not be able to sample correctly the equilib-
rium properties of the model. However, it is always possi-
ble that there are states accessible to the out-of-equilibrium

dynamics that terminate at densities ρ > ρd and thus an out-
of-equilibrium process can find very large ISs with ρ > ρd .

Recently, it has been proposed to enhance the weight
of deep large states in an efficient way by coupling some
replicas of the system, for example, in an SA algorithm
[19]. The replicated SA (RSA) has been seen to enhance the
performances of learning in some models of neural networks.
Here we apply RSA to the problem of finding the largest IS
problem, discovering indeed that this algorithm is able to find
solutions when the standard SA is not able to, well beyond ρd .
However, this seems to be true only if the transition is strongly
discontinuous (RFOT). In the case where the transition is
weakly discontinuous (or continuous), RSA and SA show
similar performances.

Finally, we will analyze the behavior of parallel tempering
(PT). Although PT has been invented to sample at equilibrium
the very rough energy landscape of disordered systems and
posterior distributions [20,21], it can be used in the out-of-
equilibrium regime to try to reach some of the lowest-energy
configurations [22]. Recently, PT has been applied to the
planted IS problem, allowing one to find the planted configu-
ration in the supposedly hard regime (i.e., when the planted IS
is very small) in a time that seems to scale polynomially with
the system size [23]. In the random case, we show here that PT
is able to find solutions above the algorithmic threshold of the
SA and of all the other analyzed algorithms, included belief
propagation with reinforcement, which is usually the best-
performing message passing algorithm in other optimization
problems, able to go beyond the rigidity transition [24]. We
will measure the scaling of the convergence time for PT,
showing that indeed it stays polynomial for ρ > ρd .

II. DEFINITION OF THE PROBLEM AND DESCRIPTION
OF ALGORITHMS ANALYZED

In this section we report the details of the problem and of
the algorithms whose performances are analyzed in the rest of
the paper.

The optimization problem we try to solve is to find the
largest IS in a given RRG. Since K is the size of an IS, we
call ρ = K/N its density. Finding the largest IS problem is
clearly a zero-temperature problem since it imposes strong
constraints on any pair of nearest-neighbor vertices not to be
in the IS. As usual in a statistical mechanics approach, we can
add a temperature parameter T = 1/β and relax the strong
constraints into soft ones. The probability measure can be
written as

P(n) ∝ exp

⎡
⎣μ

N∑
i=1

ni − β
∑

(i j)∈E

nin j

⎤
⎦, (1)

where ni ∈ {0, 1}. In the T → 0 limit, vertices with ni = 1
form the IS and the largest IS can in principle be achieved by
sending μ → ∞ afterward.

In practice, we are going to approach such a limit (T → 0
and μ → ∞) in two different ways. In the first way, we fix
the IS size K such that the first term in the measure in Eq. (1)
is constant and can be ignored and we study the problem
in temperature. In the second way we fix T = 0, making
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constraints hard, that is, we rewrite the measure as

P(n) ∝ exp

[
μ

N∑
i=1

ni

] ∏
(i j)∈E

(1 − nin j ), (2)

and we study the problem by increasing μ.
We will use many different algorithms, described in the

following. Each algorithm will show its own algorithmic
threshold ρalg above which that algorithm is not able to find
the IS.

Greedy algorithm (GA). Greedy algorithms are linear time
algorithms where variables are set just once during the process
of finding an IS. They differ according to the rule which is
used to select the next vertex to include in the growing IS.
Schematically, they work as follows.

(i) Start with all ni = 0.
(ii) At each step choose a vertex v from the graph and add

it to the IS, i.e., set nv = 1.
(iii) The vertex is chosen uniformly at random in the

random vertex version and so as to have the smallest degree
in the minimum degree version.

(iv) All the neighbors of the chosen vertex are removed
from the graph.

The random vertex version has been designed by Karp
and Sipser [25] and produces with high probability an IS of
size N log(d + 1)/d at both finite and large d . The minimum
degree version has been introduced in Ref. [26] and gives
better results, at least for finite d , while it has the same scaling
at large-d values. The computational time of the greedy
algorithm scales as O(dN ), which is linear in the graph size.

Monte Carlo in temperature (βMC). We fix the size K of
the IS we would like to find and the temperature T = 1/β

to be used in the Monte Carlo algorithm. The algorithm will
sample configurations with exactly K variables set to n = 1,
that is,

∑
i ni = K ; each of these configurations can be equiv-

alently described in terms of the subset of vertices containing
a particle I ≡ {i ∈ V : ni = 1}. With each configuration we
associate the energy E (n) = ∑

(i j)∈E nin j counting how many
pairs of nearest neighbors are filled (n = 1). A configuration
of zero energy is an IS of size K .

We start by choosing I as a random subset of K vertices of
V . At each step of the algorithm we propose to move a ran-
domly chosen particle to a randomly chosen empty vertex; the
particle and the empty vertex do not need to be nearest neigh-
bors, so the algorithm is not standard diffusion. Calling n the
current configuration and n′ the proposed configuration, we
follow the standard Metropolis rule for accepting the proposed
configuration, that is, we accept the change with probability
1 if E (n′) � E (n) and with probability exp[β(E (n′) − E (n))]
otherwise. As done conventionally, we define a Monte Carlo
sweep (MCS) as the attempt to move a randomly chosen
particle, repeated K times. We stop the algorithm when a con-
figuration nIS with E (nIS) = 0 is found, which corresponds to
an IS.

Parallel tempering in temperature (βPT ). We consider Nβ

replicas, each one with exactly K variables set to n = 1 as
in the βMC method discussed above. Each replica under-
goes a standard Metropolis evolution at inverse temperature
βi = βmax − i�β, i ∈ [0, Nβ − 1]. Every five steps of βMC
a temperature swapping step is attempted for each pair of

configurations at nearby temperatures βi and βi+1; the tem-
perature swap is accepted with probability

p = min(1, e(βi−βi+1 )(Ei−Ei+1 ) ), (3)

where Ei is the current value of the energy of the ith replica.
The algorithm is stopped when a replica (usually the one with
the lowest temperature) reaches a zero-energy configuration.

Simulated annealing in chemical potential (μSA). Working
directly at zero temperature, i.e., sampling the measure in
Eq. (2), we run a simulated annealing scheme in the following
way. We start from the empty configuration ni = 0 ∀ i that
certainly satisfies all the constraints and from a null chemical
potential μ = 0. At each step of the SA algorithm we increase
the chemical potential by �μ and we do a Monte Carlo sweep,
which corresponds to the attempt to update each of the N
variables ni following the usual Metropolis rule: In practice,
if ni = 0, we set ni = 1 only if all the nearest neighbors are
empty, and if ni = 1, we set ni = 0 with probability exp(−μ).
We stop the SA algorithm at a value μmax where we observe
the IS density ρ = ∑

i ni/N no longer increasing on any
reasonable timescale. The algorithm, at fixed parameter �μ,
is linear in the size N .

Replicated simulated annealing in chemical potential
(μRSA). In Ref. [19] a replicated version of the SA was
proposed to sample with higher probability states with larger
entropy. To define the replicated SA, we introduce R replicas
of the variables on the same RRG and a coupling between the
different replicas according to the following measure:

P(n1, . . . , nR) ∝ exp

[
μ

R∑
a=1

N∑
i=1

na
i + γ

∑
a<b

N∑
i=1

na
i nb

i

]

×
R∏

a=1

∏
(i j)∈E

(
1 − na

i na
j

)
. (4)

We then run the SA algorithm on this replicated system, fixing
the value of γ and incrementing the value of μ as in the μSA.
At variance with numerical experiments in Ref. [19], where
γ is incremented during the annealing, we prefer to keep γ

fixed as we have seen that varying γ does not improve the
final result.

Parallel tempering in chemical potential (μPT ). We con-
sider Nμ replicas of the system, each replica being at a dif-
ferent chemical potential: μi = μmax − i�μ, i ∈ [0, Nμ − 1].
For each replica, we run five Metropolis Monte Carlo sweeps
at the corresponding chemical potential and then we try to
swap configurations between close by values of the chemical
potential with probability

p = min(1, e(μi−μi+1 )(−Ki+Ki+1 ) ), (5)

where Ki is the actual number of variables set to 1 in the ith
replica. We stop the simulation if a replica (usually the one of
index 0) reaches the IS size K we aim at.

Belief propagation with reinforcement (BPR). The belief
propagation (BP) equations for the present problem were
already derived in Ref. [10],

πi→ j = eμ
∏

k∈∂i\ j (1 − πk→i )

1 + eμ
∏

k∈∂i\ j (1 − πk→i )
, (6)
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TABLE I. Relevant physical thresholds ρd , ρc, and ρmax, computed in the thermodynamic limit via the 1RSB ansatz in Ref. [10] and the
algorithmic thresholds found in this work for many different algorithms searching for the largest IS in a RRG of degree d = 20 and d = 100.
The random vertex (RV) and minimum degree (MD) are two versions of a greedy algorithm (GA) whose computational time scales as O(dN ).
In this case ρalg has been estimated for size N = 106, which is large enough that finite-size effects are not present. For the Monte Carlo–based
algorithms (βMC, βPT, μSA, μRSA, and μPT), a linear dependence on N is hidden in the single MCS. In addition to this, for βMC, βPT,
and μPT one should study the number of MCSs needed to reach the wanted solution to understand their computational complexity. For βMC
we did not perform a detailed study because it is a suboptimal algorithm; we just extracted ρalg for sizes N = 5 × 104 for which finite-size
scaling is no longer present (see Fig. 1 and Table II). For βPT and μPT, the extrapolation of ρalg has been done by fitting data with Eq. (10),
which includes a power-law dependence of the convergence time both on ρ and on N (see Figs. 2 and 6 and Table III). In our approach μSA
and μRSA are linear algorithms because we use a rate �μ = 10−7 independent of N . Here ρalg is extracted as the average maximum density
reached for μ → ∞ for size N = 5 × 104, which is large enough to not have finite-size effects.

d ρd ρc ρmax RV GA MD GA βMC βPT μSA μRSA μPT BPR

20 0.1830 0.1833 0.1948 0.1512(1) 0.1737(1) 0.1906(4) 0.1943(2) 0.1937(1) 0.19370(5) 0.1945(1) 0.1933(1)
100 0.0638 0.0664 0.0674 0.0447(1) 0.0572(2) 0.0642(1) 0.0657(1) 0.06470(3) 0.06479(1) 0.0655(1) 0.0650(1)

where πi→ j is the probability to have ni = 1 in a modified
graph where edge (i j) has been removed. These equations for
μ < μc converge to a homogeneous paramagnetic fixed point
(FP). To turn the BP equations into a solver, one can add a
reinforcement term, initially introduced in Ref. [27], with two
parameters γ and dt that tune, respectively, the strength and
the speed of update of the reinforcement term. Practically, the
equations for the update of the messages becomes

π t+1
i→ j = eμ[θi(t )]1−γt

∏
k∈∂i\ j

(
1 − π t

k→i

)
1 + eμ[θi(t )]1−γt

∏
k∈∂i\ j

(
1 − π t

k→i

) , (7)

with θi(t ) = ∏
k∈∂i(1 − π t−1

k→i ) and γt = γ �t dt�.
The FP reached when reinforcement is present is a com-

pletely magnetized one, that is, the marginal probabilities for
the values of ni are such that P[ni = 1] ∈ {0, 1}, and thus each
variable is surely in the IS or surely outside of it. Thus the FP
reached by BPR does correspond to an IS.

The attentive reader probably notices that the above-
discussed algorithms do not include all possible Monte Carlo
schemes: For example, (replicated) simulated annealing in
temperature and simple Monte Carlo in chemical potentials
are missing. For this reason, we briefly discuss our choice of
the analyzed algorithms and explain how the present work is
organized.

The first algorithms discussed are greedy algorithms. They
are clearly suboptimal and have been run just to give an idea
of the IS size, which is very easy to find in linear time. This
information will also be useful to set the parameters of more
refined algorithms as PT. The algorithmic thresholds for the
GA, as for all the other analyzed algorithms, are reported in
Table I.

We then analyze in Sec. III the algorithms at fixed density,
βMC and βPT. In these algorithms, the size of the IS one is
looking for is fixed to K and what is changed is the inverse
temperature parameter β, which in turn varies the number of
links within the set I representing the putative IS. Naturally,
in the limit β → ∞, no more links inside I are allowed and
we obtain a true IS. We start the discussion about stochastic
algorithms with the analysis of βMC because this is an
adaptation of the IS problem of commonly used local search
algorithms, e.g., WALKSAT or ASAT [28,29], which have
been applied with success to problems like random K-SAT or

random graph coloring, the main difference being that βMC
respects the detailed balance condition, while WALKSAT or
ASAT do not. We then study the βPT algorithm because this
is the most common way to improve Monte Carlo sampling
methods in glassy systems. This algorithm seems to scale
superlinearly, but still polynomially, with the problem size N
as shown in detail in Sec. III.

Then in Sec. V we analyze stochastic algorithms that work
directly at zero temperature, μSA, μRSA, and μPT, where
links inside I are not allowed and the tuning parameter is
the chemical potential μ. We do not study the βSA because
the extrapolation of the algorithmic threshold in that case is
a long and difficult task [30]: One should find the threshold
for any given μ and then extrapolate in the μ → ∞ limit.
The extrapolation of the algorithmic threshold is instead direct
for the μSA algorithm, and for this reason, we prefer to
study this version of SA. We will see that the μPT has an
algorithmic threshold similar to the βPT one, thus showing
that the performances of PT are rather robust.

Finally, in Sec. VI we compare the results obtained via
the stochastic algorithms with the outcome of BPR, which is
a powerful message passing algorithm, widely used to solve
problems defined on random graphs.

We will mainly analyze the problem at d = 20, where the
transition is still near the continuous one, and d = 100, where
the transition is distinctly 1RSB. In Table I, the values for ρd ,
ρc, and ρmax, together with the thresholds for the maximum
density reached by the analyzed algorithms, are reported.

III. MAXIMUM DENSITY REACHED BY
FIXED-DENSITY ALGORITHMS

In this section we look at the performances of the fixed-
density algorithms, namely, βMC and βPT. For these algo-
rithms, if we measure the running time in MCSs, a linear
dependence on N is hidden in the single MCS (which takes
a time proportional to N) and we can limit ourselves to
measuring the number of MCSs needed to reach the wanted
solution in order to understand the computational complexity
of this class of algorithms. In Fig. 1 we show the number
of MCSs needed by βMC and βPT to converge to an IS of
a given density ρ. Also, the results for μPT are shown for
comparison.
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FIG. 1. Convergence time for βMC (with parameter β = 11), βPT (with parameters βmax = 11, �β = 0.4, and Nβ = 20), and μPT
algorithm (with parameters μmax = 6, �μ = 0.2, and Nμ = 20) for N = 5 × 104 and (a) d = 20 and (b) d = 100. The vertical lines show
the theoretical thresholds for comparison.

For what concerns βMC, the optimal value of β maxi-
mizing the probability of reaching an IS, i.e., a zero-energy
configuration, is likely to depend on N . Consequently, the
convergence time will depend on N , since we expect the
Monte Carlo dynamics to slow down when the temperature
is decreased. Nevertheless, we are not going to make this
detailed study because, as shown in Fig. 1, a standard Monte
Carlo run at a single temperature is easily outperformed by
parallel tempering.

The time to find an IS of a given density ρ is clearly
diverging approaching the algorithmic threshold ρalg. In order
to estimate the algorithmic threshold we need to perform an
extrapolation. The best data interpolation is obtained via a
power-law divergence

τ = C

(ρalg − ρ)ν
, (8)

where C, ν, and ρalg are the fitting parameters (specific to each
different algorithm). The best-fitting curves are shown with
solid lines in Fig. 1. The extrapolated algorithmic thresholds
are reported in Table I, while the best-fitting values for the ν

exponent can be found in Table II. Data in Fig. 1 are for size
N = 5 × 104, which is large enough that finite-size effects are
not present in the estimation of ρalg. The dependence of C and
ν on the size will be discussed in Sec. III. We notice that both
versions of PT (in temperature and chemical potential) have
very similar algorithmic thresholds. This suggests that at that

TABLE II. Best-fitting values for ν. The divergence of the con-
vergence time shown in Fig. 1 is fitted via the power law τ =
C(ρalg − ρ )−ν .

d βMC βPT μPT

20 4.2(2) 3.12(4) 3.34(7)
100 4.0(1) 4.2(2) 3.2(1)

density value there is some unavoidable hardness that affects
both versions of PT. Our PT scheduling is not particularly op-
timized on purpose, because we believe that if an unavoidable
algorithmic barrier arises at a certain density value, this should
affect any version of Monte Carlo–based algorithms. The only
parameter that we decide to fix in an (almost) optimal way
is βmin, i.e., the lowest value for the inverse temperature:
Indeed, a too low βmin requires a larger running time without
any performances improvement (too many replicas at high
temperature are useless), while a too large βmin does not allow
the configurations to decorrelate fast enough. We find that
a very good choice for βmin is the inverse temperature such
that the actual density of the larger IS among the K variables
with n = 1 is almost the maximum IS density reached by the
best greedy algorithm. This means that the replica at βmin can
easily travel in the whole configurational space and this is
enough for the PT algorithm to work properly.

Scaling with N for βPT

We have seen that the PT algorithm is able to find solutions
in a region of ρ where other algorithms fail. The next impor-
tant question to answer is how the number of PT iterations
needs to be scaled with N in order to find an IS of density
ρ. The issue is particularly relevant above ρd and approach-
ing ρalg where the convergence time diverges. To analyze
the scaling with N , we implement an optimized choice of
the temperatures in the PT algorithm, whose derivation is
in the Appendix. The optimized temperatures scheduling
requires a number of replicas in a range β ∈ [0, βmax] that
scales as

√
N . However, the replicas in the range β ∈ [0, βmin]

are useless and can be safely ignored without altering PT
performances. In practice, we end up with Nβ ∼ 40 in the
worst case studied (d = 100, N = 105, and ρ = 0.0646).

To study the size dependence of the convergence time, we
run all our βPT simulations with the temperature set defined
in Eq. (A4) with r = ropt, between βmin and βmax. In Fig. 2
we show for d = 100 the results in a wide range of densities
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FIG. 2. (a) Number of MCSs to find a solution for d = 100 for different values of ρ as a function of the size N of the graph for the
optimized βPT. Errors are smaller than points. The fits are of the kind τ (N ) = aNb. (b) Dependence of the exponent b on the distance from
the algorithmic threshold ρalg − ρ. The fit is of the type b = c1 + c2 log(ρalg − ρ ). The right border of the plot corresponds to ρ = 0.

(similar behavior is observed for d = 20). The running times
grow as a power law in N ,

τ (N ) = a(ρ)Nb(ρ), (9)

where the main ρ dependence is in the prefactor a(ρ) that
diverges at ρalg as in Eq. (8). However, there is also a slight
dependence on ρ in the exponent b. We plot b as a function
of ρ in Fig. 2(b), together with a fit of the type b(ρ) =
c1 + c2 log(ρalg − ρ), which interpolates nicely the data. We
notice that this behavior is the one to make Eqs. (8) and (9)
compatible, since they are particular cases of the more general
expression

log[τ (ρ, N )] = log(c) − ν ′ log(ρalg − ρ) + c1 log(N )

+ c2 log(N ) log(ρalg − ρ). (10)

For a fixed value of N we recover Eq. (8) with C = cNc1 and
ν = ν ′ − c2 log(N ).

From the data shown in Fig. 2 it is evident that the exponent
b is positive even in the “easy” region and it seems to go
to zero only for ρ � 0. This means that using PT to find IS
always requires a running time growing more than linearly
in N . We think this is due to the fact that PT is a sophisti-
cated algorithm developed to find solutions when the energy
landscape is complex. For ρ < ρd , when there is just a single
state, PT is thus suboptimal. (Maybe with a different choice of
parameters it could become a linear algorithm in this region;
this kind of optimization is however beyond our scope: We
introduced PT to reach solutions in the hard region.)

The time divergence as a power law approaching a given
density, as in Eq. (8), is reminiscent of what happens in a first-
order phase transition, thus suggesting that at ρalg an extensive
barrier develops that makes it impossible to reach states with
ρ > ρalg in polynomial time. The weak dependence on N in-
stead suggests that some long-range correlations may develop
in the states in which the dynamics fall for ρ < ρalg (this is
discussed in the next section).

IV. FREEZING

As already mentioned, it has been conjectured for other
optimization problems that the threshold for the appearance
of hardness in polynomial time algorithms corresponds to the
freezing threshold, which is the lowest density such that all
clusters are frozen. We want to check this conjecture in the
present problem.

For practical purposes let us define a cluster as the set
of solutions (i.e., valid ISs) that are “connected” via paths
where each step is the flip of just two variables. A cluster
of solutions is frozen if it contains frozen variables, that is,
if there is at least one variable fixed to a given value in all
the configurations of the cluster. Above the rigidity threshold
almost all the dominant clusters are frozen (but clusters with
larger internal entropy might be not frozen). The freezing
threshold corresponds to the density at which each cluster of
solutions is frozen.

In this section we study the escape time tesc, which is
the time needed by an algorithm that moves only between
solutions to go away from the initial configuration. More
precisely, we first find a solution with a given algorithm, then
we apply the βMC algorithm at β = ∞ (that is a kind of
diffusive dynamics at fixed zero energy and fixed size of the
IS), and we measure the time needed to “free” each variable
from its starting value, that is, to find that variable in a value
different from the starting one. Looking at Fig. 3, the first
important observation is that all the analyzed algorithms show
the same tesc at a fixed density of the IS. This means that they
all find the same kind of solutions (when they can find one).

The escape time diverges as a power law at a threshold
density ρr (see the fits in Fig. 3). From the data we estimate
ρr (d = 20) = 0.1890(6) and ρr (d = 100) = 0.0639(2). The
observation that the same threshold holds for different kind
of algorithms suggests the conjecture that ρr does actually
correspond to the rigidity threshold, which is the density
where the typical clusters become frozen and the escape time
from it thus diverges.
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FIG. 3. Escape time from the solution reached by different algo-
rithms (d = 20 and N = 5 × 104).

The values of ρr are compatible with the thresholds for
the βMC algorithm, while βPT and μPT can find solutions
of densities greater than ρr . At this point, it is natural to
check whether the solutions found by the PT algorithms at
densities larger than ρr are frozen or not. To answer this
question we find a solution at density ρ > ρr with the βPT
algorithm, then we run the βMC algorithm at β = ∞ (the
diffusive algorithm), and we look at the persistence, that is, the
fraction of variables that have not changed during the diffusive
dynamics.

The results are shown in Fig. 4 for a single sample: The
fraction of frozen variables seems to decrease in an extremely
slow way, mostly logarithmically in time with evident jumps
(corresponding to avalanches of variables that are set free
altogether). It is worth noticing that the slowness of the
diffusive dynamics around the initial solution found by PT is
only due to entropic effects, given that the diffusive dynamics
keeps the energy constant.

In Fig. 4 we also notice some interesting finite-size ef-
fects. For the largest sizes, the diffusive dynamics eventually
makes every variable unfrozen, although the escape time
is several orders of magnitude larger than the time needed
by PT to reach that particular solution (suggesting that PT
follows a smart path that is not affected by entropic barri-
ers). For smaller sizes, frozen variables persist longer and
eventually we observe that the diffusive dynamics is not
able to leave the cluster: The fraction of frozen variables
becomes constant in time. This is strong evidence that the
ISs found by PT for small enough N belong to frozen
clusters (a similar phenomenon has been observed also in
other models when solved, for example, via the reinforcement
algorithm [31]).

The above observations support the following scenario:
The PT algorithm is able to find ISs beyond the rigidity
threshold ρr and in this rigid phase, for small enough sizes,
there is a nonzero probability that PT finds a solution in a
rare frozen cluster. However, for large N , the solutions found
by PT seem to be all unfrozen and thus we deduce that the
PT algorithmic threshold is bounded above by the freezing
threshold. We are strongly tempted to conjecture that the two
thresholds, ρalg for PT and ρ f , do actually coincide, but we do
not have firm arguments in support.

We also check that the solutions found by the PT algo-
rithms above ρd are not equilibrium solutions. To do this, we
find a solution at ρ > ρd with the βPT or μPT algorithms. We
then initialize BP on that solution and we check whether BP
converges to a fixed point close to the solution found by PT. If
it is so, this means that the PT solution lies inside one of the
states (and replica symmetry holds within a state) that form
the 1RSB structure that characterizes the equilibrium measure
for densities slightly above ρd . However, we find that BP does
not converge (either to the paramagnetic fixed point or to a
fixed point close to the PT solution). This lack of convergence
suggests that the solution found by PT is probably inside a
state that is not replica symmetric, but probably FRSB, as
found in other models [18]. Indeed, it is well known that states
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FIG. 4. Starting from an IS of density ρ found via the βPT algorithm, we measure the fraction of variables that have not changed their
value during a pure diffusive dynamics (βMC algorithm with β = ∞). Results are for (a) d = 20 and (b) d = 100 and a single sample of the
size indicated in the legend.
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reached by the out-of-equilibrium dynamics may be FRSB
even when equilibrium states are 1RSB [32,33].

V. ZERO-TEMPERATURE ALGORITHMS

In this section we analyze a different kind of algorithms,
the ones running directly at zero temperature. This means
that links inside I are not allowed, i.e., the algorithm always
works with a valid IS. For this class of algorithms, the varying
parameter is the chemical potential μ that changes the average
density of the IS. The limit μ → ∞ should correspond to the
largest possible IS.

First of all, we run μSA. It is a common belief that a
slow enough SA should reach the bottom of the equilibrium
states at ρd . The algorithmic thresholds, computed as the
average over 100 samples of the maximum density ρ reached
when μ → ∞ in a SA with �μ = 10−7 and N = 5 × 104, are
reported in Table I. As one can notice, for d = 20 the inequal-
ities ρalg > ρc > ρd hold, implying that the states that domi-
nate the measure at ρd can be followed way beyond ρc. This
is compatible with the fact that at d = 20 the transition is still
nearly a continuous FRSB one and thus the ergodicity break-
ing is less pronounced. For d = 100 instead, ρalg < ρc, con-
sistently with the fact that the transition is distinctly 1RSB and
ergodicity breaking takes place in a much more marked way.

We now analyze the μRSA algorithm. We take inspiration
from Ref. [19], where a replicated version of the SA was
proposed to sample with higher probability states with larger
entropy. In the context of ISs, one can identify a state in the
following way: Starting from a maximal IS, that is, an IS that
cannot be increased any further by just adding vertices to the
IS itself, and considering this maximal IS as the “bottom of
a valley” in a usual energy landscape, one can build a state
by the set of ISs which are a subset of the maximal one (the
construction has to be refined when one finds ISs which are a
subset of more than one maximal IS, but we do not need such
a detailed description for the present argument). According to
this construction, it is likely that states corresponding to the
largest IS are also those of largest entropy. So the use of an
algorithm that favors states according to their entropy is likely
to be beneficial also in the search for the largest IS.

We run μRSA with parameters R = 3 and γ = 1. In Fig. 5
its performances are compared with those of μSA in the case
d = 100 (their algorithmic thresholds can be found in Table I).
It is remarkable that the improvement of RSA with respect to
SA is practically null for d = 20 and very tiny for d = 100.
While for d = 20 one may claim that the improvement is ab-
sent because the model has a very weakly discontinuous phase
transition (the range where the phase transition is continuous
is very close by), for d = 100 the 1RSB scenario clearly
holds, but we do not see any improvement by reweighting
states according to their internal entropy. This observation
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FIG. 5. Comparison between μSA and μRSA for 50 samples of
size N = 5 × 104 and d = 100 (the parameters are �μ = 10−7, R =
3, and γ = 1).

raises some doubts about what RSA is actually doing and
why it is not working as expected. Moreover, given that the
performances of RSA are clearly worse than those of PT
(see their algorithmic thresholds in Table I), we arrive at the
conclusion that there are both more efficient and less efficient
ways to couple replicas.

We move now to the analysis of the μPT algorithm. We
use Nμ = 21 replicas evenly spaced by �μ = 0.2 in the range
μ ∈ [2, 6] for d = 20 and Nμ = 31 replicas evenly spaced by
�μ = 0.15 in the range μ ∈ [2, 6.5] for d = 100.

We have already anticipated in Sec. III that the behavior
of μPT is equivalent to that of βPT and in particular the
algorithmic thresholds of the two algorithms are compatible.
In Fig. 6 we show that also the scaling of their running times
with N is similar, as the time needed to reach a solution of
a given density scales as τ = aNb. In Table III we make the
comparison between the exponent b of the two algorithms at
the same values of d and ρ. These data confirm that the PT
algorithm is a very robust one.

VI. COMPARISON WITH ADVANCED MESSAGE
PASSING ALGORITHMS

We have seen that Monte Carlo–based algorithms easily
outperform greedy algorithms and can reach densities well
above the dynamical threshold ρd , passing also the rigidity
threshold ρr and for d = 20 even beyond the condensation
threshold ρc, thus approaching closely the maximum density
ρmax. This looks like a great result, but in order to put it
under the right light, we need a comparison with some other
algorithm that is expected to work efficiently on this kind

TABLE III. Comparison between values of b for βPT and μPT. The convergence time in Fig. 6 diverges as τ (N ) = aNb.

Algorithm d = 20, ρ = 0.190 d = 20, ρ = 0.192 d = 100, ρ = 0.064 d = 100, ρ = 0.0646

βPT 0.339(8) 0.69(7) 0.357(7) 0.42(2)
μPT 0.40(1) 0.68(1) 0.336(8) 0.44(3)
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FIG. 6. Number of iterations to find a solution for d = 20 and ρ = 0.19, 0.192 as a function of the problem size N for the optimized
(a) βPT and (b) μPT algorithms. The behavior of the two algorithms is very similar.

of optimization problem. Since the problem is defined on a
random graph, we expect message passing algorithms to be
particularly well suited. For this reason, we have run also BPR
on this problem.

In Fig. 7 we show the average density of IS found by the
BPR algorithm, as a function of the chemical potential μ, for
different values of the BPR parameters. Let us just mention
that below a certain chemical potential μL, the solutions found
by the BPR algorithm are always ni = 0 ∀ i. The value of
μL is the one that generates, using the RS solution of the
model from [10], a density ρL that roughly corresponds to the
threshold density for the random vertex GA [for both d = 20
and d = 100 we have μL = 2.15(5)].

We have run the BPR algorithm in a broad range of chemi-
cal potentials and for different choices of the BPR parameters.
The best results have been obtained with the choice γ = 0.999
and dt = 10. The maximum density reached can be deduced
from the data shown in Fig. 7 and it is clearly lower than

the thresholds for the PT algorithms. Our best estimates are
reported in Table I. We notice that the threshold density for the
BPR algorithm is very similar to the one of the RSA algorithm
and this is expected from Ref. [19].

VII. CONCLUSION

We have done a comparative study of algorithms to find the
largest IS in a RRG of degree d = 20 and d = 100. Our aim
was to understand the actual performances of different kinds
of algorithms (greedy, message passing, and especially Monte
Carlo based) and to connect their algorithmic thresholds with
thermodynamical phase transitions. For both values of d the
set of ISs undergoes a RFOT varying the IS density ρ;
however, for d = 20 the transition is weakly discontinuous
because of the proximity to the range where the transition is
continuous (d < 16); for d = 100 the transition is markedly
discontinuous as in the large-degree limit.
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While Table I summarizes thermodynamical and algorith-
mic thresholds, we list below the most relevant conclusions
that we achieved.

(i) Only greedy algorithms get stuck below the dynamical
threshold, while all the other algorithms easily pass beyond
ρd ; the relevance of the dynamical threshold for smart opti-
mization algorithms seems very limited.

(ii) The condensation threshold at ρc seems to play no role
at all in describing the performances of the best optimization
algorithms.

(iii) The simplest version of Monte Carlo algorithms seems
to work roughly until the rigidity threshold at ρr , defined as
the density where the time to diffuse away from a typical IS
diverges.

(iv) More sophisticated Monte Carlo schemes (SA and PT)
find ISs beyond ρr , but without frozen variables, thus showing
the ability of finding ISs in atypical unfrozen states.

(v) Replicated SA does not show any sensible improvement
over standard SA for this problem, especially for d = 20.

(vi) Belief propagation with reinforcement has an algorith-
mic threshold similar to replicated SA.

(vii) Parallel tempering is by far the best algorithm for
solving this problem and can find ISs of a very large density
that no other algorithm can find.

(viii) Different versions of PT (in temperature and chem-
ical potential) show almost the same algorithmic threshold,
and this strongly suggests a universal behavior linked to an
underlying phase transition. We conjecture the PT algorithmic
threshold to coincide with the freezing threshold, i.e., PT, is
able to find an unfrozen IS as long as there is one.

(ix) Running times of PT are superlinear, but still polyno-
mial in N . Algorithmic thresholds for superlinear algorithms
are likely to be larger than those for linear algorithms, but a
theory for the former is completely lacking.

Our results clearly show the need for a theory for advanced
Monte Carlo algorithms, like parallel tempering, which is
at present lacking. Only by understanding analytically this
class of algorithms can we hope to approach the ultimate
algorithmic threshold for a broad class of hard optimization
problems.

ACKNOWLEDGMENTS

We thank Scott Kirkpatrick, Raffaele Marino, and Andrea
Montanari for very interesting discussions. This research
was supported by the European Research Council within
the European Unions Horizon 2020 Research and Innovation
Programme (Grant No. 694925, Project LoTGlasSy).

APPENDIX: OPTIMIZING THE CHOICE OF
TEMPERATURES IN THE PT ALGORITHMS

Here we explain how we have implemented an optimized
choice for the temperatures in the parallel tempering algo-
rithm. We assume that the energy is close to its equilibrium
value that can be computed via the RS solution. For the βMC
algorithm at a fixed density ρ, the RS mean energy can be
computed by noting that the RS marginals are equal for each
site and assuming the value pRS(σ ) = ρ δσ,1 + (1 − ρ)δσ,0,

thus getting

e(β ) = d

2

ρ2e−β

ρ2e−β + (1 − ρ2)
. (A1)

In the large-N limit we can assume that the extensive en-
ergy at inverse temperature β is a Gaussian variables with
mean E (β ) = Ne(β ) and variance σ 2(β ) = −Ne′(β ). This
Gaussianity assumption (which is rather well satisfied, but
in the vicinity of the ground state) allows us to compute the
probability of swapping two replicas at inverse temperatures
β1 and β2,

pswap(β1, β2) =
∫

dz1dz2
e−z2

1/2−z2
2/2

2π

× min(1, e(β2−β1 )[E (β2 )+σ (β2 )z2−E (β1 )−σ (β1 )z1] ).

(A2)

In the limit �β = β2 − β1 � 1 we can approximate E (β2) −
E (β1) � Ne′(β )�β with β = (β1 + β2)/2 and σ (β1) �
σ (β2) � σ (β ) = √−Ne′(β ), thus getting

pswap(β,�β ) =
∫

dz1dz2
e−z2

1/2−z2
2/2

2π

× min(1, e�β[Ne′(β )�β+√−Ne′(β )(z2−z1 )] )

= erfc

(
�β

√−Ne′(β )

2

)
. (A3)

The best way to allow replicas to wander fast between temper-
atures is to fix a constant pswap between any pair of successive
temperatures and this can be achieved with the choice

βn+1 = βn + r√
N |e′(βn)| , (A4)

implying pswap = erfc(r/2). The optimal value for r can be
obtained by maximizing the mean squared distance traveled
by a random walker performing jumps of size r with proba-
bility erfc(r/2), that is,

ropt = argmax

[
erfc

(
r

2

)
r2

]
� 1.683 76, (A5)

leading to an optimal swapping rate equal to erfc(ropt/2) �
0.233 81 (this is the well-known 0.23 rule [34]).

With the set of temperatures defined in Eq. (A4), the
optimized PT would require O(

√
N ) replicas. However, we

empirically observe that the time of convergence of the algo-
rithm does not change if replicas in the range β ∈ [0, βmin]
are removed. We find empirically that the largest possible
value for βmin roughly corresponds to the inverse temperature
at which the equilibrium magnetization coincides with the
maximum IS density reached by the greedy algorithm ρGA.
This is very reasonable; indeed, for ρ < ρGA we do not expect
any relevant barrier to be present and so the PT replicas at βmin

can easily travel the entire configurational space.
For βmax we choose the lowest inverse temperature at

which the condition E (β ) − √
N |e′(β )| < 0 is satisfied, im-

plying that a typical spontaneous fluctuation can lead the
algorithm to find a configuration of zero energy.
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We observe that the optimized version of βPT finds so-
lutions up to ρmax(d = 20) = 0.1941(5), compatible with
the nonoptimized version, but with a smaller exponent b =
2.4(3). For d = 100 the optimized βPT algorithm reaches
ρmax(d = 100) = 0.065 72(9) with b = 3.2(1).

Things are different for the μPT algorithm. For this algo-
rithm, the RS magnetization is the one written in Eq. (6) of
Ref. [10]. However, in the hard region, the real magnetization
it is quite different and so we cannot use the RS result to
optimize the μPT algorithm.
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