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A high-order implicit multidimensional particle-in-cell (PIC) method is developed for simulating plasmas
at solid densities. The space-time arrangement is based on Yee and a leapfrog algorithm for electromagnetic
fields and particle advancement. The field solver algorithm completely eliminates numerical instabilities found
in explicit PIC methods with relaxed time step and grid resolution. Moreover, this algorithm eliminates the
numerical cooling found in the standard implicit PIC methods by using a pseudo-electric-field method. The
particle pusher algorithm combines the standard Boris particle pusher with the Newton-Krylov iteration method.
This algorithm increases the precision accuracy by several orders of magnitude when compared with the standard
Boris particle pusher and also significantly decreases the iteration time when compared with the pure Newton-
Krylov method. The code is tested with several benchmarks, including Weibel instability, and relativistic laser
plasma interactions at both low and solid densities.
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I. INTRODUCTION

The particle-in-cell (PIC) method [1] has established itself
as a state-of-the-art method for solving problems in kinetic
plasma physics. The main advantages of the PIC method
are that their memory consumption increases linearly with
the simulated volume and that the runtime is only of order
N (number of used particles). They are also very suitable
for the use of large multiprocessor systems. Nowadays, the
PIC method is the most-used numerical tool in laser-plasma
simulations. The PIC method is employed to provide a great
variety of information of complex and dynamic systems, like
particle acceleration [2–5], x-ray generation [6], and neutron
sources [7].

In recent decades, the rapid development of emerging
research fields [8–13] such as high-energy density physics,
warm dense matter, and laboratory astrophysics impels the
PIC method to be versatile and robust in simulating solid
density plasmas. However, the main disadvantages of PIC
method are high noise levels and high computational require-
ments due to the operation on the shortest time- and length
scales. The plasma frequency needs to be resolved, and the
grid size must be comparable to the Debye length in order
to minimize artificial grid heating and suppress numerical
instabilities. On the positive side, higher-order interpolation
algorithms have been utilized in explicit PIC methods, which
is, to some extent, successful in suppressing artificial grid
heating and suppressing numerical instabilities. However, for
solid density plasmas, usually the electron density can be as
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high as 1024 cm−3. Tremendous challenges still remain for the
present high-order explicit PIC methods.

In this paper, in order to completely get ride of nu-
merical instabilities and significantly reduce the simula-
tion burden, a high-order implicit PIC method is presented.
Based on this method, a new PIC code named laser plasma
interaction for solid (LAPINS), is developed. The space-
time arrangement of the code is based on Yee and leapfrog
algorithm for electromagnetic fields and particle advance-
ment. The field solver algorithm completely eliminates nu-
merical instabilities found in explicit PIC methods with re-
laxed time step and grid resolution. Moreover, this algo-
rithm eliminates the numerical cooling found in the stan-
dard implicit PIC methods by using a pseudo-electric-field
method. The particle pusher algorithm combines the stan-
dard Boris particle pusher with the Newton-Krylov itera-
tion method. This algorithm increases the precision accu-
racy by several orders of magnitude when compared with
the standard Boris particle pusher and also significantly de-
creases the iterations when compared with the pure Newton-
Krylov method. The code is tested with several benchmarks,
including Weibel instability and relativistic laser plasma inter-
actions at both low and solid densities.

The paper is organized as follows. In Sec. II, the basic
algorithms of LAPINS code is introduced. The link between
LAPINS and LAPINE is also brief explained. In Sec. III,
we present several simulation experiments to benchmark
the new code, which include a single-particle benchmark,
laser low-density plasma interactions, Weibel instabilities, and
laser-solid interactions. Summary and discussion are given in
Sec. IV.
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II. NUMERICAL IMPLEMENTATION

A. Governing equations

The PIC method is an approximate solution to the coupled
field-particle system. Before referring to numerical imple-
mentation, it is convenient to normalize all quantities with
laser wavelength and light velocity. Here quantities with prime
are the nondimensional variable. First, length is normalized to
the laser wavelength λ0 with x =: x′λ0, and time is normalized
to the laser period with t =: t ′τ0, where τ0 = λ0/c and c is the
light velocity. Then velocity is normalized to laser speed in
vacuum with v =: v′ · c, mass is normalized to static electron
mass with m =: m′ · m0, and therefore momentum is normal-
ized to u =: u′ · m0c = γ v′ · m0c, where γ = (1 − v′2)−1/2.
Moreover, charge of particle is normalized to electron static
charge with q =: q′e, and numerical density is normalized
to critical density with n =: n′nc, where nc = m0ω

2
0/4πe2.

Therefore charge density ρ is normalized to ρ =: ρ ′enc and
current density is normalized to J =: J′ · ecnc. Finally, elec-
tromagnetic field are normalized to E =: E′ · m0ω0c/e and
B =: B′ · m0ω0c/e, where ω0 is the laser circular frequency.
The normalized Maxwell equations now read

∇′ × E′ = −∂t ′B′, (1)

∇′ × B′ = ∂t ′E′ + 2πJ′, (2)

∇′ · E′ = 2πρ ′, (3)

∇′ · B′ = 0, (4)

and the normalized particle equation of motion is

m′
α

du′
α

dt ′ = 2πq′
α

(
E′ + u′

α

γα

× B′
)

. (5)

The current density and charge density is

J′
α (r) = 1

nc

∑
α

q′
αv′

αW (r′ − r′
α ), (6)

ρ ′
α (r) = 1

nc

∑
α

q′
αW (r′ − r′

α ), (7)

where shape factor satisfies condition
∫

W (r′ − r′
α ) = 1. The

Maxwell equations, Eqs. (1)–(4), are coupled to the particle
equation of motion, Eq. (5), through the current density and
charge density. In the explicit coupling scheme, the current
and charge densities carried by computational particle α are
computed in Eqs. (6) and (7) and then interpolated to update
the Maxwell equations.

In recent decades, Esirkepov [15] proposed a method of
local current density assignment. This method ensures exactly
charge conservation. Moreover, this method allows one to
implement the PIC code without solving the Poisson equa-
tion. Following Esirkepov’s method [15], the laser plasma
interaction (LAPINE) [14] code was developed and in this
code, a second-order FDTD field solver was used to advance
Maxwell equations. Later, the LAPINE code was extended to
a high-order interpolation scheme [16] for both the current
density assignment and FDTD field solver. Moreover, many
advanced physics modules, like field ionization [17], colli-
sion ionization and electro-ion recombination [18], binary

collisions including both elastic and inelastic processes [19],
and some QED effects [20] were developed and linked to the
LAPINE code.

Indeed, the LAPINE code is very successful in a great
variety of research branches. However, for solid density plas-
mas, tremendous challenges still remain for the present high-
order explicit PIC methods. In order to study laser plasma
interaction at solid densities while keeping unphysical effects
to a minimum, recently a new code named LAPINS has
been developed. This code completely eliminates numerical
instabilities found in explicit PIC methods with relaxed time
step and grid resolution. The algorithm of the code is detailed
in the following sections.

B. Basic algorithm of LAPINS code

Petrov and Davis used to propose an implicit particle-
in-cell algorithm [21]. The most significant advantage of
this algorithm is the local solution of all physical quantities.
Such an advantage significantly speeds up simulations, as no
information from other grids is needed for advancing electric
and magnetic fields.

However, some defects remain in their original algorithm,
e.g., (a) the lattice arrangement is not inherently divergence-
free for the magnetic feld, which could possibly lead to un-
physical results; (b) for updating the electric field, relativistic
factor γ n+1/2 at time level t n+1/2 is needed; however, it is
approximated with γ n by adding a one-half push using the
electric field at time level t n. This approximation might bring
inaccuracy of the electric field, especially when the laser
intensity is strong or the laser frequency is high.

Later, a modification of Petrov and Davis’s algorithm [21]
was proposed by Kempf et al. [22]. A reduction of the diver-
gence of the magnetic field by several orders of magnitude
was achieved by replacing the original lattice with a staggered
lattice. However, other defects in Petrov and Davis’s original
algorithm still remain.

We here reorganize this algorithm and eliminate both two
defects by (1) introducing the staggered Yee mesh and (2)
avoiding all inaccuracies of physical quantities by inventing
a new time stepping scheme. Moreover, in order to further
enhance the numerical instability and precision, we also im-
plement the high-order interpolation scheme (widely used in
explicit code) into the implicit PIC code.

The first to construct a PIC code is to choose a spatial
and temporal discretization. In order to optimally exploit the
resolution, and taking into account the symmetries of the
Maxwell equations, we use a Yee lattice (suggested by Kempf
et al. [22]) to stagger the fields. As shown in Fig. 1, the charge
density is located at cell centers. To comply with Gauss’s
law, Eq. (3), the electric fields and the current density, both
entering with the same spatial distribution in Ampere’s law,
Eq. (2), are staggered upward to cell faces, while magnetic
fields, to be consistent with the curl operator in Eq. (2), are
placed at cell edges. With this distribution, the derivatives in
Eqs. (1)–(4) are automatically calculated at the right spatial
positions, and no interpolations are needed. Because of the
spatial staggering, the numerical derivatives commute and the
evolution of magnetic field conserves divergence to round-off
precision. Please note that in the original Petrov and Davis’s
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FIG. 1. Spatial staggering in the LAPINS code. The charge
density is located at cell centers. The electric fields and the current
density are staggered upward to cell faces. The magnetic fields are
placed at cell edges. Please note that in the original Petrov and
Davis’s algorithm, the electric fields, the current densities, and charge
densities are located at the cell center, while the magnetic fields are
placed at cell edges.

algorithm, the electric fields, the current density and charge
densities are located at the cell center, while the magnetic
fields are placed at cell edges. This spatial discretization,
although simple in algorithm programming, probably leads to
a large divergence of the magnetic field.

In our PIC code, the order to do the updates in a time step
is (see Fig. 2) as follows

(1) Update the velocity of the macro particles, from
u′n−1/2

α to u′n+1/2
α , using a new algorithm combining Boris’s

particle pusher and Newton-Krylov iteration method.
(2) Given the velocity of macro particles, u′n+1/2

α , update
the position of macro particles from x′n

α to x′n+1
α with x′n+1

α =
x′n

α + u′n+1/2
α · δt ′.

(3) In the LAPINE code, find the current density J′n+1/2

from the time derivative of the charge density using a charge-
conserving method [15].

tn-1/2 tn+1/2tn tn+1

un-1/2
p Pp

Xn Xp

En En+1

Bn+1/2

p
n+1

n+1/2u1
2
3
4
5

u

FIG. 2. Time staggering and integration order in the LAP-
INS code. Note that t ′n−1/2 = t ′n − δt ′/2, t ′n+1/2 = t ′n + δt ′/2, and
t ′n+1 = t ′n + δt ′.

(4) In the LAPINE code, given the time-staggered current
density J′n+1/2 and magnetic field B′n+1/2, update the electric
field using FDTD field solver from E′n to E′n+1.

(5) Given the electric field E′n+1, update the magnetic field
from B′n+1/2 to B′n+3/2.

(6) Given the electric field E′n+1 and time-centered mag-
netic field B′n+1 = (B′n+1/2 + B′n+3/2)/2, go to step (1).

However, in the newly developed LAPINS code, the elec-
tric field update in Eq. (2) of the Maxwell equations is quite
different. Instead of the two separate steps, i.e., steps (3) and
(4), here the current density and electric field updates are
coupled together [21],

(Î + Ŝn+1/2)E′n+1 = (Î − Ŝn+1/2)E′n

+ (∇′ × B′n+1/2 − 2πJ′n+1/2)dt ′, (8)

where

Ŝn+1/2(r′) =
∑

α

π2n′
αq′2

α dt ′2

m′
αγ

n+1/2
α

T̂ n+1/2
α W

(
r′ − r′n+1/2

α

)
(9)

and

J′n+1/2(r′) =
∑

α

n′
αq′

α

2m′
αγ

n+1/2
α

[
u′n

α + T̂ n+1/2
α

(
u′n

α

+ u′n
α × ∇�′n+1/2

α

)]
W

(
r′ − r′n+1/2

α

)
. (10)

The tensor T̂ n+1/2
α appears in Eqs. (9) and (10) is defined as

T̂ n+1/2
α = 1

1 + ∣∣��
′n+1/2
α

∣∣2

⎡
⎢⎣

1 + ��′2
α,x ��′

α,x��′
α,y + ��′

α,z ��′
α,x��′

α,z − ��′
α,y

��′
α,x��′

α,y − ��′
α,z 1 + ��′2

α,y ��′
α,y��′

α,z + ��′
α,x

��′
α,x��′

α,z + ��′
α,y ��′

α,y��′
α,z − ��′

α,x 1 + ��′2
α,z

⎤
⎥⎦, (11)

where ��′
α = q′

αB′n+1/2
α δt ′/2m′

αγ n+1/2
α is one-half the cy-

clotron frequency times the time step δt ′. Here u′n
α in Eq. (10)

is u′n
α = (u′n−1/2

α + u′n+1/2
α )/2, and r′n+1/2

α is r′n+1/2
α = (r′n

α +
r′n+1
α )/2. Due to the unique time staggering and integration

order, the relativistic factor γ n+1/2 is now rigorously known.
When compared with the original algorithm by Petrov and
Davis [21], this algorithm avoids all inaccuracies of physical
quantities.

Note that the original algorithm by Petrov and Davis [21]
stores electric fields on cell centers and magnetic fields in the
cell edges. The vector quantity J′ and the tensor quantity Ŝ are
deposited on cell centers, as well. This layout was proven to be
not inherently divergence-free, possibly leading to unphysical
results. In the Yee algorithm, the electric fields are stored on
the cell faces. In order to locally solve the electric field, the
vector quantity J′ and the tensor quantity Ŝ stored on cell
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ii-1 2+i2-i i+1

FIG. 3. Red (three point) and blue (five point) shadows define the
particles’ weight functions. These two functions are all accessible in
the code.

centers need to be interpolated linearly for each component
of the electric field.

We also implement the high-order interpolation algorithm
into LAPINS code. Usually, the deposition of J′ and Ŝ on
the cells and the interpolation of E′ and B′ to the particle
positions are achieved via a weighting function. The standard
weighting function is the linear interpolation scheme, while in
our LAPINS code, as shown in Fig. 3, both quadratic spline
(three-point) and quartic spline (five-point) interpolations are
adopted.

Spatial derivatives of the field quantities, in the LAPINS
code, are done by finite differencing on a uniform mesh.
Staggering of the variables on a Yee lattice leads to highly
simplified computations for the difference equations. From
Fig. 1, we see that this computation yields the desired value
exactly where needed, provided that we compute the central
differences at the half-staggered mesh point. A single compo-
nent of the ∇′× operator is illustrated in Fig. 4; this choice of
coefficients (based on a Taylor expansion) for the higher-order
differential operators has enabled us to significantly reduce
the numerical noises appearing in high-density plasmas.

C. Additional refinement of LAPINS code

At present, in the above algorithm, only the Faraday and
Ampere equations were considered, while the two divergence
equations were not taken in account. It is easy to show that
the equation ∇′ × B′ = 0 is always satisfied if it is initially.
Moreover, Gauss’s law ∇′ × E′ = 2πρ ′ is automatically sat-
isfied if the charge continuity equation ∂ρ ′/∂t ′ + ∇′ · J′ = 0
holds true. In fact, the definition of the current density in
Eq. (10) does not rigorously satisfy the charge density conti-
nuity equation. In this case, the method is said not to conserve

-1 +1

ii-1/2 i+1/2

1/24 -9/8 -1/249/8

ii-1/2 i+1/2 2/3+i2/3-i
high order

standard

FIG. 4. Example: Second-order and fourth-order difference op-
eration ∇′× in 1D geometry. Due to the Yee mesh staggered layout of
variables, the central difference is computed exactly where needed.

the charge. Since the implicit algorithms described here are
inherently dissipative, energy is not necessarily conserved.
Some possible causes or mechanisms of nonconservation of
energy is the so-called numerical cooling [23], which is due to
the dissipative nature of the implicit time integration scheme.
As pointed out in Refs. [24,25], Gauss’s law can be regarded
as a conservation principle: It is not a strictly necessary equa-
tion for describing the evolution of electromagnetic fields, but
its violation introduces numerical errors in the simulation and
might lead to unphysical behavior of the simulated plasma.
All the energy-conserving PIC simulations [26], based on
the nonconservative current density definition, have been first
initialized solving Gauss’s law, ensuring there is no error due
to the violation of the charge continuity equation initially.
Then the charge conservation has been constantly checked,
whether the error grows considerably or leads to unphysical
behavior of the simulated plasma.

In the LAPINS code, the numerical error can be
significantly reduced by using the pseudoelectric method
[24,25]. Here F ′n+1 is defined as the violation of Gauss’s law
in the cell at time t n+1, with F ′n+1 = ∇′ · E′n+1 − 2πρ ′n+1.
The additional pseudoelectric field is defined as E′n+1

psd =
2πd ′δt ′∇′F ′n+1, where d ′ is a user-defined dimensionless
parameter. In each time step, the net electric field imposed on
particle is updated by adding the pseudoelectric field E′n+1 =
E′n+1 + E′n+1

psd . The introduced pseudoelectric field method
could significantly eliminate the numerical cooling found in
the standard implicit PIC methods and provides enhanced
energy conservation for plasmas simulations. The numerical
experiments will be detailed in the next section.

To move the macroparticles forward in time, we have to
solve Eq. (5). We need a time-centered value for the velocity
v′n

α = u′n
α /γ n

α , as this gives an implicit equation for momentum
u′n+1/2

α . Traditionally, the Boris particle pusher [27] has been
used. It is formulated that the time-centered proper velocity
is computed as the average, u′n

α = (u′n−1/2
α + u′n+1/2

α )/2, and
from that the three velocity v′n

α is derived. It is still widely
used at present in PIC simulation code. However, Boris’s
particle pushers is of second-order precision, and the accuracy
precision depends on squared time step dt ′2. Here in LAPINS
code, a new particle pusher algorithm is proposed. It combines
the standard Boris algorithm with Newton-Krylov iteration
algorithm. It is shown that this new particle pusher can sig-
nificantly increase the accuracy precision.

For Newton-Krylov algorithm, the aim is to minimize the
bellowing residue,

R = m′
α

2πq′
αδt ′

(
u′n+1/2

α − u′n−1/2
α

)

− E′n − u′n+1/2
α + u′n−1/2

α

γ
n+1/2
α + γ

n−1/2
α

× B′n. (12)

Usually, an initial guess of u′n+1/2
α is put into Eq. (12). Due

to the unique time staggering and integration order in the
LAPINS code, the initial guess of u′

α is calculated by Boris’s
particle pusher, and then it is successively minimized by
Newton-Krylov iterations. This algorithm increases the pre-
cision accuracy by several orders of magnitude when com-
pared with standard Boris’s algorithm and also significantly
decreases the iteration time when compared with pure
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(a) (b)

(c) (d)

FIG. 5. The E × B drift motion for four cases: (a) ω′
cδt ′ = 5,

(b) ω′
cδt ′ = 10, (c) ω′

cδt ′ = 50, and (d) ω′
cδt ′ = 100. The follow-

ing parameters are the same for the simulation cases: u′(t ′ = 0) =
(0.1, 0, 0), B′ = (250, 0, 0), and E′ = (0, 1, 0). Here the (upper)
red lines shows results from Newton-Krylov method, (lower) black
lines are results from Boris’s method, and the dashed lines are the
theoretical predictions.

Newton-Krylov algorithm. In fact, one to two iterations is
enough to reach the tolerance specified for the residual reduc-
tion. We will detail the numerical experiments in also in the
next section.

III. BENCHMARK

Based on the above algorithm, the LAPINS code is de-
veloped, which enables all one dimensional in space-three
dimensional in velocity (1D-3V), two dimentional in space-
three dimensional in velocity (2D-3V) and three dimentional
in space-three dimensional in velocity (3D-3V) and simula-
tion capabilities. In this section, the LAPINS code is tested by
several benchmarks.

A. Single-particle simulation

In order to benchmark the Newton-Krylov method and
compare its performance with the widely used Boris method,
we here calculate a single particle’s orbits [28] with the
Newton-Krylov method and Boris’s method. We have chosen
to explore the feasibility of running with large ω′

cδt ′ using the
standard v × B rotation scheme of Boris. The reason for doing
this, besides simplicity, is that for modeling systems with a
varying electromagnetic field, v × B can vary greatly and δt ′
would need to be restricted by the largest value of ω′

c. We
begin by showing a single particle’s orbits obtained with small
ω′

cδt ′ values. Then we discuss the orbit characteristics when
ω′

cδt ′ becomes large.

Figure 5 shows the E × B drift motion for four cases:
ω′

cδt ′ = 5, ω′
cδt ′ = 10, ω′

cδt ′ = 50, and ω′
cδt ′ = 100. The fol-

lowing parameters are the same for the simulation cases:
u′(t ′ = 0) = (0.1, 0, 0), B′ = (250, 0, 0), and E′ = (0, 1, 0).
The theoretical E′ × B′ drift velocity is 0.004 along the z
direction. For small ω′

cδt ′ values, the particle’s orbits using
Boris’s scheme or the Newton-Krylov method matches per-
fectly with the theoretical predictions. While when ω′

cδt ′ be-
comes larger, for example, ω′

cδt ′ = 100, as shown by (lower)
black lines, particle orbits using Boris’s scheme significantly
departs from correct values. However, we note that under such
conditions, as shown by (upper) red lines, the Newton-Krylov
method is still quite robust.

In Eq. (12), residue R can be regarded as a quantity to
measure the performance of different particle pusher schemes.
Table I shows corresponding residues of the Boris method, a
typical Newton-Krylov method, and the new method combin-
ing Boris and Newton-Krylov. Here one needs to note that the
residue is of 1 × 10−4 for the pure Boris method. For a typical
Newton-Krylov method, the initial guess of momentum is to
set u′ = 0. As indicated in Table I, the residue is decreased
rapidly after two to three iterations. While for the Newton-
Krylov method, the residue can even be reduced to round-
off precision (e.g., 1 × 10−19 in our code). The benchmark
results in Table I show significant advantages when combining
Boris’s method with the Newton-Krylov method. Here, for the
new method, the initial guess of u′

α is calculated by Boris’s
particle pusher, and then it is successively minimized by
Newton-Krylov iterations. Compared with the pure Newton-
Krylov method, only one to two iterations is enough to reach
the tolerance specified for the residual reduction.

Please note that for the Newton-Krylov method, the com-
putational effort when compared with Boris’s method is sig-
nificant. Fortunately, according to our benchmark, only one to
two iterations is needed to reach the usual tolerance specified
for the residual reduction. This new method, which combines
the Boris and Newton-Krylov methods, appears to be an
additional refinement for the standard Boris method in the
LAPINS code. It is encouraged to be opened only when a
particular simulation requires a highlevel of precision.

B. Intense laser plasma interactions

In this benchmark, the interaction of an intense laser with
low-density plasmas is tested by using 1D-3V PIC simu-
lations. Following Ref. [29], the simulation box is chosen
to be along the z direction with a size of 6 μm, which is
divided into 300 uniform grids. Here a helium gas is located
at 1 μm < z < 5 μm. The laser is normally focused on
the gas target of helium. The normalized laser amplitude is
of E ′ = 1, and the polarization of the laser is along the x

TABLE I. The residues, following Eq. (12), of Boris’s method, typical Newton-Krylov method, and the new method combining Boris and
Newton-Krylov. The parameter is u′(t = 0) = (0.1, 0.0, 0.0), B′ = (250, 0, 0), and E′ = (0, 1, 0). Here we fix ω′

cδt ′ = 5.

Iteration 0 1 2 3 4 5 6

JFNK 1.524 3.34e-4 8.97e-5 4.22e-9 4.12e-09 1.96e-13 1.57e-13
Boris+JFNK 3.45e-4 3.16e-5 1.34e-8 4.25e-10 1.15e-13 1.96e-14 3.46e-19
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)c1()b1()a1(

)c2()b2()a2(

FIG. 6. The first row shows energy distribution of electromagnetic fields as functions of the time and positions. The second row shows the
value of F ′

n (see text for explanation) as functions of time and positions. The first, second, and third columns correspond to the results carried
out by LAPINS code with d ′ = 0.0, d ′ = 0.5, and d ′ = 1, respectively.

direction. This laser consists out of a sin2 rising in front of
5T0 following by a cos2 declining end also of 5T0, where T0

is the laser-wave period. The central wavelength of this laser
is 1 μm, and therefore the laser period T0 equals 3.33 fs. The
simulation time step is 0.04 fs. The helium density is 0.65nc,
where nc = 1.1 × 1021 cm−3 is normalized by meω

2
0/4πe2.

The initial temperature of helium gas is room temperature,
and the initial ionization degree of helium is Z ′ = 0. In the
simulations, absorbing boundary conditions are applied for
both particles and laser fields.

As the implicit numerical scheme used in LAPINS code
does not exactly ensure Gauss’s law, we therefore apply an
additional pseudoelectric field to reduce the numerical er-
rors. This pseudo field is defined as E′n+1

psd = 2πd ′δt ′∇′F ′n+1,
where d ′ is a user-defined dimensionless parameter. In this
benchmark, three simulation cases are carried out, with differ-
ent values of d ′ = 0, d ′ = 0.5, and d ′ = 1.0, respectively.

In Fig. 6, the first row shows the energy distribution of
electromagnetic fields as functions of the time and positions.
In the LAPINS code, F ′

n is defined as F ′
n = ∇′ · E′ − 2πρ ′.

For the second row, the distribution of F ′
n as functions of

the time and position is presented. When d ′ = 0.0, i.e., no
pseudoelectric field is applied, Fig. 7(a) indicates there is
a slight violation of Gauss’s law, which appears at latter
time of simulation. When we set d ′ = 0.5 and d ′ = 1.0, as
shown in Figs. 6(2b) and 6(2c), this violation is significantly
eliminated.

The correlation between violation of Gauss’s law and vio-
lation of energy conservation is shown in Fig. 7. In this figure,
the residue charge and the energy conservation as a function

of time, are simultaneously presented. Thick blue, dashed
red, and black lines refer to three different simulations with
d ′ = 0.0, d ′ = 0.5, and d ′ = 1.0, respectively. The residue
charge at each time step is calculated by summarizing F ′

n over
all computational grids. The advantage of pseudoelectric field
method appears, as shown in Figs. 7(a) and 7(b), when we
compare residue charge and the energy conservation as a func-
tion of time. By adding a pseudoelectric field with d ′ = 0.5 or
d ′ = 1.0, the violation of Gauss’s law is significantly elimi-
nated, and in the meantime, the numerical cooling found in the
standard implicit PIC methods is also eliminated, which pro-
vides enhanced energy conservation for plasma simulations.

C. Weibel instability

The motivation for this benchmark lies in the generic
nature of Weibel instabilities. It is of fundamental importance
to fusion physics, laser particle acceleration, astrophysical
shock generation, γ -ray bursts, and solar flares physics. Fol-
lowing Refs. [30–32], we summarize the initial configuration:
Homogeneous, collision-less, and charge- and current-neutral
systems. We study the transverse dynamics of two initially
uniform currents; the former is a relativistic beam, whereas
the second is a return current which guarantees initial charge
and current neutrality. The plasma is characterized by density
np0 = 1 × 1021 cm−3, while the beam has density nb0/np0 =
0.1 and Lorentz factor γb0 = 2.5. We also assume that elec-
trons have a Maxwellian distribution with thermal velocity
10−4 times smaller than the beam velocity, while the ions are
initially at rest. We here carry out 2D-3V PIC simulations.
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(a)

(b)

FIG. 7. (a) The residue charge, i.e., integrating F ′
n over the whole

space, as a function of time. (b) The energy conservation as a
function of time. Here (thick) blue line, (dashed) red line, and black
line refer to results carried out by LAPINS code with d ′ = 0.0,
d ′ = 0.5, and d ′ = 1, respectively.

The simulation plane is transverse to the beam propagating
direction, where the coupling of the Weibel-type instability
with the two stream instability is excluded. In following
simulations, the simulation time and length are normalized
to 3.33 fs and 1 μm. The size of the simulation box is
4 μm × 4 μm with 400 × 400 cells. The simulation time step
is 0.08 fs. Periodic boundary conditions are applied in both
two directions and 25 particles per cell are used.

In Fig. 8, the electromagnetic field energies, i.e.,
(1/2)

∑
(E′2 + B′2)δx′δy′δz′, as a function of time are pre-

sented. It is apparent that the relativistic beam electrons trans-
fer energy and heat the plasma until nonlinear mechanisms
dominate the dynamics. The magnetic energy exhibits an
exponential behavior as predicted from the linear theory. Un-
der this circumstance, the dispersion relation is Z ′(ω/kvth ) =
−(vth/vb)2(ω2

p + k2c2)/v2
th [30]. The linear growth rate of our

simulation coincides well with theoretical prediction [30] and
other existing simulations [31,32].

In Fig. 9, we show time development of the beam, plasma
electron density, and plasma ion density. The purely growing
perturbations center on points of enhanced beam density,
which magnetically attract nearby beam electrons and repel
plasma electrons. Thus, the beam splits into filaments, each
of which self-pinches. When nb reaches nb0 + np0, plasma
electrons are totally excluded from the filaments.

In order to benchmark the robustness of the new
LAPINS code, we here apply second-order LAPINE,

FIG. 8. The energy (transfer) as a function of time. Data are
shown for plasma electron kinetic energy (dashed red), ion kinetic
energy (black), and electromagnetic energy (thick blue). Here the
electromagnetic energy is defined as (1/2)

∑
(E′2 + B′2)δx′δy′δz′.

The straight line shows the analytical growth rate.

fourth-order LAPINE, and recently developed LAPINS codes
to the same beam plasma system. For following four groups
of simulations, simulation time and length are normalized to
3.33 fs and 1 μm. The size of all simulation box is fixed
at 5 μm × 5 μm with 100 × 100 cells. The simulation time
step is fixed at 0.08 fs. The plasma densities are set up to
1 × 1021 cm−3 (for group 1), 1 × 1022 cm−3 (for group 2),
1 × 1023 cm−3 (for group 3), and 1 × 1024 cm−3 (for group 4).
The beam has density nb0/np0 = 0.1 and Lorentz factor γb0 =
2.5. In Fig. 10, the energy density distribution of electro-
magnetic field is shown at t = 15. From the first row in
Fig. 10, we can see that when the density of background
plasma is of np = 1 × 1021 cm−3, the calculated instability
patterns coincide with each quite well for second-order LAP-
INE, fourth-order LAPINE, and the newly developed LAPINS
codes. From the second row, when we increase the density
of background plasma to np = 1 × 1022 cm−3, we can see,
although the calculated instability patterns show some slight
differences, that the filament distribution and size are still
of the same for all three codes. While from the third row,
when we increase the density of background plasma to np =
1 × 1023 cm−3, we can see the calculated instability pattern
from the second-order LAPINE code is completely swallowed
by numerical noise; the calculated instability pattern from the
fourth-order LAPINE code is already disturbed slightly; and,
in contrast, the calculated instability pattern from the LAP-
INES code still shows distinct filament structures. Finally,
when we further increase the density of background plasma
to np = 1 × 1024 cm−3, as shown in the fourth row, only the
LAPINS code survives.
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(1a)  (1b)  (1c)

(2a)  (2b)  (2c)

(3a)  (3b)  (3c)

(4a)  (4b)  (4c)

t=0

t=10

t=20

t=30

FIG. 9. The evolution of plasma electron density (first column), beam density (second column), and plasma ion density (third column) as
a function of time. The densities are in units of 1 × 1021 cm−3, and time is in units of 3.33 fs. For all simulations, the size of the simulation
box is fixed as 4 μm × 4 μm with 400 × 400 cells and the time step is fixed the same. See text for the detailed explanation.

D. Relativistic intense laser-solid interactions

In this section, we have carried out 2D-3V PIC simulations
to benchmark the laser plasma interaction at solid densities.

Here, a gold (Au, density of 19.32 g/cm3) target is selected
as an example in this simulation. The target is modeled as
a uniform slab of 3 μm thickness with a small preplasma
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(1a) (1b) (1c)

(2a) (2b) (2c)

(3a)

(4a) (4b) (4c)

(3b) (3c)

   

FIG. 10. The energy density distributions of electromagnetic fields at t = 15. Here the electromagnetic energy density is defined as
(1/2)(E′2 + B′2). The different rows, (a), (b), (c), and (d), correspond to different simulation cases with background plasma densities
np = 1 × 1021 cm−3, np = 1 × 1022 cm−3, np = 1 × 1023 cm−3, and np = 1 × 1024 cm−3, respectively. The first column is run by LAPINE
code, the second column is run by high-order LAPINE code, and the third column is run by recently developed LAPINS code. For all
simulations, the size of the simulation box is fixed as 5 μm × 5 μm with 100 × 100 cells and the time step is fixed the same. See text for the
detailed explanation.
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FIG. 11. The energy (transfer) as a function of time.
Data are shown for laser energy entering into the simulation
box (black), electromagnetic energy (dashed red), and particle
kinetic energy (thick blue).

in front of the target. The initial temperature of Au solid is
chosen to be 0.1 eV. The initial ionization degrees of Au is
Z ′ = 5. The simulations were carried out in the Z − Y
Cartesian geometry with laser propagation in the Z direc-
tion. The size of the simulation box is chosen to be Z
(5 μm) × Y (10 μm), which is divided into 500 × 500 uni-
form grids. The laser pulse has a predefined profile of form
e−r2/r2

0 sin2(πt/2τ0), with intensity 2.5 × 1019 W/cm2, r0 =
2.5λ0, r0 = 2.5λ0, τ0 = 5T0 where T0 is the laser cycle. The
central wavelength of the laser is λ0 = 1 μm, and therefore
laser period T0 equals 3.33 fs. The laser pulse is normally

incident on the target. In the Z and Y directions, absorbing
boundary conditions are applied for both particles and laser
field. We here also take advantage of the recently developed
ionization [17,18] and collision dynamics [19] models that
help calculate the ionization charge state and conductivity
of target quite precisely according to the local plasma and
electromagnetic fields conditions within the simulations.

Figure 11 shows the temporal evolution of energy (trans-
fer) into the simulation box, including laser energy entering
(black), electromagnetic field energy (dashed red), and the
particle kinetic energy (thick blue). From this temporal evolu-
tion, the energy conservation of the code is well benchmarked
for laser-solid interactions. Moreover, based on their time
evolution, we obtain further insights into the whole laser-solid
interaction processes. Note that the laser energy enters into
the simulation box is calculated as E ′

pyt = ∑
(E′ × B′)δy′δt ′,

where δt ′ is the time step of the simulation box. We find
that E ′

pyt first increases and then arrives at the maximum
value at t = 20 fs, when the whole laser is entirely injected
into the simulation box. Afterward, to t = 35 fs, we find
that there is a strong energy transfer from the electromag-
netic energy to the particle-kinetic energy, which we briefly
refer to as the laser plasma interaction stage in front of
the target. Afterward, to the end of simulation, the energy
transfer from electromagnetic fields to particles is slow, which
we refers to as the hot electrons’ transport stage within the
target.

In Fig. 12, the electron kinetic energy density, free elec-
tron density, and static magnetic field (averaged over 3.3 fs)
are presented at t = 35 fs and t = 50 fs, respectively. In

)c1()b1()a1(

)c2()b2()a2(

FIG. 12. The distribution of electron kinetic energy, electron density, and static magnetic field. The first row shows values at t = 35 fs and
the second row shows at t = 50 fs. This simulation is produced by LAPINS code.
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(1a)((1a) (1b) (1c)

(2a) (2b) (2c)

FIG. 13. The distribution of electron kinetic energy, electron density, and static magnetic field. The first row shows values at t = 35 fs and
the second row shows at t = 50 fs. This simulation is produced by high-order LAPINE code approximated with the layered-density method.

Fig. 12(1a), we find several bunches of energetic electrons.
Such energetic electrons are produced in front of the target
by direct laser acceleration [33–35]. When passing through
the target, abundant plasma and atomic interactions take place
therein. As shown in Fig. 12(2a), the remaining target is
significantly heated up. Moreover, collision ionization would
dramatically increase the electron density. Typically, the ion-
ization and plasma energy density decrease rapidly along the
electron propagation direction. In Fig. 12(b), we notice some
filamentation structures for electron density. In Fig. 12(c),
strong static magnetic fields are produced, and some fila-
mentation structures also appear on the magnetic fields. As
we have shown in the last benchmark, this filamentation is
due to Weibel instabilities, when energetic electron beams
pass through high-density plasmas. While Weibel instabili-
ties alone cannot explain why such static magnetic field is
so strong, there is another source that might induce strong
magnetic fields [36], −∂B′/∂t ′ = ∇′ × E′. When such ener-
getic electron beam propagates through the solid, the forward
J′

e is quickly neutralized by the return current. A resistive
electric field E′

z = η′J′
e might be produced, where η′ is the

target resistivity. Such a resistive electric field then induces a
resistive magnetic field.

We here have presented a full physics simulation of intense
laser plasma interaction for a Au target. As the new code
LAPINS completely eliminates numerical instabilities found
in explicit PIC methods, the calculation burden is signifi-
cantly reduced. For such a simulation, only 1000 CPU h are
consumed. For typical PIC code, a full physics simulation
of laser-solid Au interactions is a great challenge. Here we

need to note that in our previous work, we used to propose
a layered-density method, which was especially designed for
laser-solid interactions. For a detailed explanation, one can
refer to Ref. [16]. In Fig. 13, the electron kinetic energy
density, electron density, and static magnetic field are also
presented at t = 35 fs and t = 50 fs, respectively. When we
compare Fig. 12 and Fig. 13, two simulation results coincide
with each other quite well.

IV. SUMMARY AND DISCUSSION

A high-order implicit multidimensional PIC method is
developed for simulating plasmas at solid densities. The field
solver algorithm completely eliminates numerical instabilities
found in explicit PIC methods. Moreover, this algorithm
eliminates the numerical cooling found in the standard
implicit PIC methods by using a pseudoelectric field method.
The particle pusher algorithm combines the standard Boris’s
particle pusher with a Newton-Krylov iteration method. This
algorithm increases the precision accuracy by several orders
of magnitude when compared with a standard Boris particle
pusher and also significantly decreases the iteration time
when compared with the pure Newton-Krylov method. The
code is tested with several benchmarks, including Weibel
instability, and relativistic laser plasma interactions at both
low and solid densities.

In the future, the LAPINS code will be intensively
compared with experiments and applied to uncover the
material dependence feature of laser-solid interactions,
including laser-driven ion acceleration, fast ignition inertial
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confinement fusion, laser-driven x- and γ -ray sources, and
the production of warm dense matter. Moreover, it is also
planned to predict new physics that are not well revealed but
strongly related to applications.
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