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The dynamic structure factor (DSF) of the Yukawa system is here obtained with highly converged molecular
dynamics (MD) over the entire liquid phase. The data provide a rigorous test of theoretical models of ion-acoustic
wave-dispersion relations, the intermediate scattering function, and the high-frequency response. We compare
our MD results with seven diverse models, finding good agreement among those that enforce the three basic sum
rules for dispersion properties, although one of the models has previously unreported spurious peaks. The MD
simulations reveal that at intermediate frequencies ω, the high-frequency response of the DSF follows a power
law, going approximately as ω−p, where p > 0, and p shows nontrivial dependencies on the wave vector q and
the plasma parameters κ and �. In contrast, among the seven comparison models, the predicted high-frequency
response is found to be independent of {q, κ, �}. This high-frequency power suggests a useful fitting form.
In addition, these results expose limitations of several models and, moreover, suggest that some approaches
are difficult or impossible to extend because of the lack of finite moments. We also find the double-plasmon
resonance peak in our MD simulations that none of the theoretical models predicts.
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I. INTRODUCTION

The dynamic structure factor (DSF) plays a central role
in our understanding of strongly coupled plasmas because it
provides a clean description of the equilibrium dynamics of
correlations that occur in white dwarfs [1], giant planets [2],
dusty plasmas [3], ultracold plasmas [4], and dense plasmas
[5]. In particular, the DSF contains dynamical information
needed to properly describe and model collective modes and
transport [6–9], while also providing information on stopping
power [10,11], neutron scattering [12], x-ray Thomson scat-
tering (XRTS) [13], and microfields [14]. Increasingly accu-
rate DSF models improve our understanding of dynamical
correlations and provide an additional rationale for the use
of XRTS as an experimental diagnostic, as well. A survey of
extant DSF models reveals a wide diversity of approaches,
including early work on memory functions by Hansen and
coworkers [15,16], the dynamic local field correction (DLFC)
models of Tanaka and Ichimaru [17] and Hong and Kim [18],
the sum-rule approaches of Adamjan et al. and others [19–23],
Mermin’s relaxation-time approximation [24], and Murillo’s
modified Navier-Stokes equation [6], to name only a few.

A comprehensive comparison across diverse models and
detailed molecular dynamics (MD) validation are needed
to exclude less accurate models from consideration and to
suggest research directions with the largest potential impacts
on applications. Several reports have compared theoretical
models with MD data, but, to our knowledge, all such studies
used a specific set of plasma parameters or very limited
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plasma regimes and examined at most three models [25–28].
Here, we compare seven models with new, highly accurate
MD simulations across the entire liquid phase. We find that
for some quantities, many models are in agreement, but for
other properties, none of the models are accurate.

Most models of the DSF are formulated with pair potentials
to avoid dependencies on spatial correlations that are of
higher order than the order of the radial distribution function
g(r); therefore, we similarly limited our study to systems
described by pair potentials, and we also considered only
three-dimensional plasmas. We chose the Yukawa potential
both because it is the most widely used pair potential and
because it very accurately describes ultracold plasmas [29],
dusty plasmas [30], dense plasmas [31,32], and white dwarfs
[1]. The Yukawa potential is

φ(r) = Q2

r
exp(−r/λs), (1)

where Q is the effective ion charge and λs is an appropriate
screening length associated with free-electron polarization.
In equilibrium at temperature T , the Yukawa system is de-
scribed through two dimensionless parameters, the screening
parameter κ = a/λs and the coupling parameter � = Q2/aT ,
where a = (3/4πn)1/3 is the ion-sphere radius in terms of the
ionic density n; the one-component plasma (OCP) model is
the κ = 0 case. For this study, we examined a wide range of
(κ, �) pairs, with κ = 0–3 and � = 10–1510; this parameter
space covers long- and short-range interactions, as well as
moderate to strong coupling. Because the plasmas we model
are in equilibrium, it is not necessary to include dynamical
corrections [33] to the Yukawa potential, as the ions always
move more slowly than the electron thermal velocity. In
some scenarios, modifications of the Yukawa potential may
be beneficial, for example, when considering wake potentials
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[34] in dusty plasmas near sheath regions; however, we do not
include such field-specific corrections to keep our results as
general as possible.

The rest of this paper is organized as follows. In Sec. II,
several theoretical models, together with our methods, are
described. In Sec. III, we discuss our numerical simulations
in detail. Simulation parameters that we obtained by testing
a variety of simulation conditions are given in Sec. IV. In
Sec. V, we compare the theoretical models with our numerical
simulations, and finally, we offer our conclusions in Sec. VI.

II. MODELS AND METHODS

MD plays a key role in establishing our confidence in
models for the DSF [16,35,36]. MD simulations have been
performed here using standard methods (e.g., velocity-Verlet
integration), with the addition of an efficient generalization of
the particle-particle particle-mesh (PPPM) method to Yukawa
interactions [36]. We carefully examined convergence issues
related to particle number, time step, and number of time
steps, using primarily N = 10 000, �t = 0.01, and Nsteps =
80 000. The Fourier-transformed density n(q, t ) was extracted
from simulation data to form the intermediate scattering func-
tion (ISF) F (q, t ) and its Fourier transform, the DSF S(q, ω).
Wave vectors q = 2π l̂/L, where l̂ is a vector formed from
integers, were chosen based on periodicity constraints set by
the simulation cell size, which is indirectly determined by
the density and number of particles through L = (N/n)1/3.
Because the plasmas we consider are isotropic, we computed
quantities in several directions and averaged to improve the
statistics. We use reduced units in which the wave number q
is in units of a−1, the frequency ω is in units of ωp, with the
ion plasma frequency ωp = (4πnQ2/m)1/2 for ionic mass m,
and the time t is in units of ω−1

p . With these quantities, the
DSF and its frequency moments are defined as

S(q, ω) =
∫ ∞

−∞
dt F (q, t )eiωt , (2)

Sl (q) =
∫ ∞

−∞

dω

2π
ωl S(q, ω), l = 0, 2, 4 . . . . (3)

The odd-order moments vanish because of the symmetry of
the DSF. If several of the Sl (q) are known, models of S(q, ω)
can be constrained; with only g(r) as an input, three frequency
moments can be constructed that constrain the area, mean, and
variance of S(q, ω). For the Yukawa model, these constraints
yield the sum rules

S0(q) = S(q),

S2(q) = q2/3�,

S4(q) = S2(q)

[
q2

q2 + κ2
+ q2

�
+ I (q)

]
,

I (q) = 1

12π

∫ ∞

0
f (q, q̃)(1 − S(q))q̃2d̃q,

f (q, q̃) = 2(3q2 − κ2 − q̃2)

q2
+ (q2 − κ2 − q̃2)2

2q3q̃

× ln

(
κ2 + (q + q̃)2

κ2 + (q − q̃)2

)
− 8q̃2

3(κ2 + q̃2)
, (4)

where S(q) is the static structure factor and I (q) is the static
local field correction in the high-frequency limit.

We now describe seven theoretical approaches that we will
compare with our MD simulations. We begin with Mermin
(M) [24], who proposed a relaxation-time approximation to
include collisions in the susceptibility χ (q, ω). The M model
satisfies only S2(q) = q2/3�, the “ f -sum rule,” and it can be
written as

χ (q, ω) =
(

1 − iω

ν

)
χRPA(q, ω + iν)χRPA(q, 0)

χRPA(q, ω + iν) − (iω/ν)χRPA(q, 0)
,

(5)

where ν is a collision frequency, the only input, and χRPA is the
random-phase approximation (RPA) susceptibility. The DSF
is obtained through the fluctuation-dissipation theorem,

S(q, ω) = −2T

nω
χ ′′(q, ω), (6)

where χ ′′(q, ω) is the imaginary part of χ (q, ω). The M model
contains no information about correlations beyond the mean
field. The appeal of the M model is that it includes collisions
beyond the mean field without violating particle conservation;
however, inclusion of other conservation laws reveals [10,37]
that particle conservation alone may decrease accuracy. Here,
because of our interest in the functional form of the model, we
fit M to the MD data to obtain the “best” value for ν.

Next, we review three models that exploit the frequency-
moment sum rules. Because the models exploit the same three
sum rules, they yield very similar predictions. The promise
of such models is that, in principle, more sum rules can be
included to systematically improve accuracy. However, this
approach fails when no moments exist; such situations are
discussed below. Staying within a susceptibility model, the
dynamic local field correction G(q, ω) can be used to model
both collisions and correlations through

χ (q, ω) = χ0(q, ω)

1 − v(q)[1 − G(q, ω)]χ0(q, ω)
, (7)

where χ0(q, ω) is the susceptibility of the ideal gas, and v(q)
is the Fourier transform of the pair potential. The DLFC is de-
fined such that when G(q, ω) = 0, one obtains the mean-field
(RPA) result. Simple models for the DLFC can be obtained by
replacing it with the static local field correction G(q) or with
its high-frequency limit, I (q) ≡ G(q, ω = ∞). However, it is
well known that these simpler models are accurate only under
limited conditions [38–40].

Tanaka and Ichimaru (TI) developed a model that includes
high- and low-frequency limits using a viscoelastic formalism
[17], writing

G(q, ω) = G(q) − iωτM (q)I (q)

1 − iωτM (q)
, (8)

where τM (q) is the viscoelastic relaxation time. This model
satisfies the three moment relations, which are not sufficiently
constraining to obtain τM (q). TI suggest either a Gaussian or
Lorentzian form for τM (q); here, we fit to the MD data for
each q, and this approach allows us to examine the TI ansatz
for the “best” possible τM (q).

Hong and Kim (HK) proposed a related model [18]
that also enforces the three moments. They adopted the
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TABLE I. Summary of the theoretical models. M, Mermin’s collision approach; TI, Tanaka and Ichimaru’s DLFC model; HK, Hong and
Kim’s DLFC model; A, Arkhipov et al.’s momentum approach; MNS, Murillo’s modified Navier-Stokes model; G, Gaussian memory function;
and E, exponential memory function.

Model Source Key physics Focus Moments Asymptotic power of ω

M [24] Collisions χ (q, ω) 2 −4
TI [17] Viscoelastic formalism G(q, ω) 0, 2, 4 −6
HK [18] Recurrence relation method G(q, ω) 0, 2, 4 Exponential decay
A [23] Nevanlinna S(q, ω) 0, 2, 4 −6
MNS [6] Structure and viscosity S(q, ω) 0, 2 −4
G [15,16] Memory function S(q, ω) 0, 2, 4 Exponential decay
E [41,42] Memory function S(q, ω) 0, 2, 4 −6

first-, second-, and third-order approximation parameters to
obtain the DLFC. The first-order approximation is to replace
G(q, ω) with G(q). The second-order approximation is to set
η3 = 0. The third-order approximation is

G(q, ω) = G(q) − q2 + κ2

3�

[η2 − η3R(x)]Q(x)

1 + η3R(x)
, (9)

where x =
√

3�
2

ω
q , Q(x) = 1/Z (x) + 2x2 − 1, R(x) = 1 −

1
2 Q(x), Z (x) = [1 − 2xD(x)] + i

√
πx exp(−x2), D(x) is the

Dawson function, η2 = (3�)/[2(q2 + κ2)][G(q) − I (q)], and
η3 involves the sixth moment of the DSF, S6(q). Because
theoretical calculation of S6(q) requires correlation informa-
tion beyond g(r), HK treated η3 as a fitting parameter. Note
that, because χ0(q, ω) appears in the numerator of the M, TI,
and HK models, there is an exponential decay in the weakly
coupled limit, allowing an arbitrary number of moments to
be used; this property is lost, however, when collisions are
included, as we will see below.

Adamjan et al. developed another sum-rule approach,
based on the Nevanlinna formula of the classical theory of
moments method, to construct the OCP DSF [19], and this
approach has been explored for hydrogen-like two-component
plasmas [20–22]. Recently, Arkhipov et al. (A) expanded this
sum-rule approach to Yukawa OCPs (YOCPs) [23], finding

S(q, ω)

S(q)
=

√
2ω3

1ω
2
2

(
ω2

2 − ω2
1

)
2ω2ω2

1

(
ω2 − ω2

2

)2 + ω4
2

(
ω2 − ω2

1

)2 , (10)

where ω2
1(q) = S2(q)/S(q), and ω2

2(q) = S4(q)/S2(q). While
this form satisfies the same sum rules as the M, TI, and HK
models, it does not contain the RPA or ideal-gas limits.

Murillo constructed a modified Navier-Stokes equation
(MNS) model [6] that yields

S(q, ω) = 8
√

3ωE

9�

q4η̃(
ω2 − q2

3�S(q))

)2 + ( 4
√

3ωE
3 q2ωη̃

)2
,

(11)
where η̃ is the dimensionless viscosity and ωE is the
Einstein frequency in units of ωp, where ωE = κ2

3

∫ ∞
0

r exp(−κr)g(r)dr for the YOCP and ωE = 1
3 for the OCP.

While this model has the correct hydrodynamic limit and
includes correlations and collisional damping, it does not

describe the ideal-gas limit; it also does not satisfy the high-
frequency sum rule [1].

Finally, the DSF can also be obtained from generalized
hydrodynamics [15,16,41] by modeling the memory function,
giving

S(q, ω)

S(q)
= 2ω2

1q2φ′
MF (q, ω)[

ω2 − ω2
1 − ωq2φ′′

MF (q, ω)
]2+[ωq2φ′

MF (q, ω)]2
,

(12)

where φ′
MF (q, ω) and φ′′

MF (q, ω) are the real and imagi-
nary parts of the Laplace transform of the memory function
φMF (q, t ), respectively. For φMF (q, t ), either the Gaussian (G)
or exponential-function (E) model is usually used. Note the
resemblance to the MNS model given in Eq. (11).

Table I summarizes properties of the seven models dis-
cussed above, including the moments that each satisfies and
the predicted form of the high-frequency tail. The seven
models yield three—significantly different—predictions of
the form of the tail: exponential decay and two power-law
(ω−p, p = 4 and p = 6) forms of decay. Even though the
TI and HK models use the DLFC, they show very different
asymptotic powers, because G′′(q, ω), the imaginary part of
the DLFC, is proportional to ω−1 in the TI model, while it
decays exponentially in the HK model at high frequencies.

If the DSF is available, we can obtain the susceptibility via
Eq. (6) and the Kramers-Kronig relations

χ ′(q, ω) = P
∫ ∞

−∞

dω̃

π

χ ′′(q, ω̃)

ω̃ − ω
,

χ ′′(q, ω) = −P
∫ ∞

−∞

dω̃

π

χ ′(q, ω̃)

ω̃ − ω
. (13)

However, in reality, it is very difficult to obtain the suscep-
tibility via the Kramers-Kronig relations using the DSF from
the MD data because of noise. For the MD results, we can
obtain the susceptibility via the Laplace transform of F (q, t ),

g(q, ω) ≡
∫ ∞

0
dtF (q, t )eiωt

=
∫ ∞

−∞
dtF (q, t )H (t )eiωt

= g′(q, ω) + ig′′(q, ω),

(14)
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FIG. 1. The (κ , �) pairs for which the DSF was computed using
MD simulations. The solid blue and dashed green lines are the lower
and upper limits of the liquid regime, respectively, and red dots
indicate data points used in this study. Note that the points were
chosen to span the strongly coupled liquid regime, and they roughly
follow contours of constant effective coupling.

where H (t ) is the Heaviside step function, and

g′(q, ω) = 1

2
S(q, ω),

g′′(q, ω) = 1

2π

∫ ∞

−∞
dω̃

S(q, ω̃)

(ω − ω̃)
. (15)

From Eqs. (6), (15), and the Kramers-Kronig relations in
(13), we can express g(q, ω) as

g′(q, ω) = − T

nω
χ ′′(q, ω),

g′′(q, ω) = 1

ω
S(q) + T

nω
χ ′(q, ω). (16)

III. SIMULATIONS

We used a range of (κ, �) pairs across coupling regimes:
(κ = 0, � = 10, 50, 150), (κ = 1, � = 14, 72, 217), (κ =
2, � = 31, 158, 476), and (κ = 3, � = 100, 503, 1510).
Figure 1 shows the (κ, �) pairs, together with the lower and
upper boundaries of the liquid regime [6]. The (κ, �) pairs
were chosen to approximately follow contours of constant
effective coupling.

Our MD simulations employed standard methods, includ-
ing velocity-Verlet integration using a PPPM Yukawa force
algorithm [36]. For all results presented, we ran 20 simula-
tions of 104 particles, giving the required convergence at long
wavelengths. For the PPPM algorithm, the Ewald parameter
was 0.46 (distances are in units of a−1). For the particle-
particle portion of the calculation, the cutoff radius was 7.8;
for the particle-mesh portion, the grid dimensions were 64 ×
64 × 64, and B-splines were of order 6. These parameters
correspond to an error of ≈10−6 (e2/a2) in the computed
forces. The simulations were carried out with the Berendsen
thermostat for the first 10 000 steps to reach the equilibrium
state. For the next 80 000 steps, we turned off the thermostat
and collected data. For a whole simulation time span, the time
step �t was chosen to be 0.01 (times are in units of ω−1

p ) to
ensure the required energy conservation. The time step was
dictated by the lowest � at κ = 0 because hard collisions

FIG. 2. S(q) and I (q) calculated from the MD and HNCB results.
S(q) is shown in the left panels, and I (q) is shown in the right panels.
The MD results are shown with solid lines, the HNCB results are
shown with dashed lines, and dotted lines indicate the HNCB results
with Gaussian random noise added to mimic the MD simulations.
Panels (a) and (c) show that the static structure factor from the MD
and the HNCB results are in close agreement, and the addition of
noise results in even better agreement. Panels (b) and (d) show that
I (q) obtained from the MD simulations is very different from I (q)
from the HNCB results at large q. Adding noise to the HNCB results
yields an I (q) similar to the MD results at large q, revealing the large
sensitivity to statistical averaging; moreover, these results show that
the addition of noise can either reduce or increase I (q).

are more prominent at smaller � for a given κ . The quality
of energy conservation was quantified using an error metric
defined as �E (%) = 100

M

∑M
j=1 |E (t j )

E (0) − 1|(%), which is the
percentage error accumulated in time with respect to the initial
energy of the system after equilibration. Energy conservation
was excellent for all of the simulations, with �E ∼ 10−6%.

To evaluate the theoretical models, it is necessary to esti-
mate the static structure factor S(q); in general, we attempted
to obtain S(q) directly from a frequency integration of S(q, ω),
which was obtained from the Fourier-transformed density
[36]. However, when q is very small, the DSF has a very
narrow peak, and therefore, there is a possibility that S(q)
obtained from MD is not accurate. To compensate for this
inaccuracy, we also employed the hypernetted-chain approxi-
mation with a bridge function (HNCB) [43] to obtain S(q) at
small q.

Most theoretical models in this study require three sum
rules, S(q), S2(q), and S4(q). S(q) can be calculated easily
from the DSF, and S2(q) = q2/3�. S4(q) is a function of I (q)
and S(q). However, the behavior of I (q) is rarely described.
Here, we present S(q) and I (q) from MD simulations; our
results are shown in Fig. 2. In addition, we used the HNCB
[43] to obtain S(q), and we compare the MD and HNCB
results. In Fig. 2, our MD simulations are shown with solid
blue lines, our HNCB results are shown with dashed red lines,
and the HNCB results, with Gaussian random noise added to
mimic the MD simulations, are shown with dotted green lines.
Figures 2(a) and 2(c) show that the MD and HNCB results
yield very similar static structure factors, and the addition of
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noise results in even closer agreement. Figures 2(b) and 2(d)
show I (q) obtained from S(q). We can see that the HNCB and
MD approaches give very different I (q) for large q. However,
the addition of noise to the HNCB results moves them much
closer to the MD simulations at large q. Moreover, we see
that adding noise to the HNCB results may either reduce
or increase I (q); this suggests that a very large number of
particles are required to obtain accurate I (q) at large wave
numbers.

IV. MD CONVERGENCE TESTS

To obtain accurate MD simulation results, it is important
to determine reasonable simulation parameters, including the
number of particles (N), the time step (dt), and the times-
pan (Ts = Nstep × dt). In this section, we present the results
of convergence tests for our MD simulations under various
conditions. All simulations were performed with κ = 3 and
� = 1500, and all results are averaged over 20 runs. The
frequency bin size dω is 2π/T .

Figure 3 shows the DSFs for three different numbers
of particles for q = 1.86 and q = 3.40. Because we use
periodic boundary conditions (PBCs), direct calculation of
the DSFs when q = 1.86 and q = 3.40 is not possible for
N = 5000 and N = 10000; therefore, the DSFs for each
wave number when N = 5000 and N = 10 000 were obtained
through a linear interpolation of DSFs at the nearest available
wave numbers. These interpolated DSFs are compared with
the DSFs for N = 2000. The solid (N = 10 000), dashed
(N = 5000), and dotted (N = 2000) lines in Fig. 3 indicate
smoothed results obtained using a Savitzky-Golay filter [44],
with the window length set to 13 and the polynomial order
set to 3. Figure 3 shows that the simulations for all three
numbers of particles are in good agreement; small differ-
ences in the results for different numbers of particles may
be due to statistical noise and fluctuations resulting from
small dω. These results show that 10 000 particles are suffi-

FIG. 3. The DSF for three different numbers of particles: N =
2000, 5000, and 10 000. All simulations were performed with the
plasma parameters (κ = 3, � = 1500), and the wave number was
set to either q = 1.86 (left panel) or q = 3.40 (right panel). The
results of all three simulations are in good agreement, indicating
convergence of the simulations at a modest particle number. The
raw data are shown as individual points in both panels. The solid
(N = 10 000), dashed (N = 5000), and dotted (N = 2000) lines are
smoothed using a Savitzky-Golay filter.

FIG. 4. The DSF for three different numbers of time steps. All
simulations were performed with plasma parameters (κ = 3, � =
1500), and the wave number was set to either q = 0.54 (left panel)
or q = 1.81 (right panel). The results of all three sets of simulations
exhibit very close agreement. These results reveal the importance of
long runs for capturing the correct peak value of the DSF.

cient to describe the dynamic characteristics of the Yukawa
potential.

Figure 4 shows the DSF for three different numbers of
time steps. We chose Nstep = 40 000, 80 000, and 1 60 000.
The time step dt and the number of particles were fixed
for all three simulations, with dt = 0.01 and N = 10 000.
Small differences in the DSF can be observed for the different
numbers of time steps primarily near the peaks, which occur
at ω ∼ 0.1 for q = 0.54 and at ω ∼ 0.27 for q = 1.81. These
differences occur because dω is determined by Nstep such that
dω = 2π/(Nstepdt ). Away from this peak region, the results
for Nstep = 80 000 and Nstep = 1 60 000 are in very good
agreement. Because determining the precise peak amplitude
of the DSF is beyond the scope of this work, we chose Nstep =
80 000 for simulations, as the DSF converges sufficiently for
the purposes of this study with this value of N .

Figure 5 shows the DSF calculated using three time steps
(dt = 0.01, 0.02, and 0.04) with the system simulated for a
fixed time span Ts = 800. The number of particles was chosen
to be 10 000 for all simulations. We can see that all DSFs
are in very close agreement. Thus, we chose dt = 0.01 for
simulations in this study. Based on these tests, we conclude
that N = 10 000, Nstep = 80 000, and dt = 0.01 yield accurate
results.

FIG. 5. The DSF for three different choices of the time step. All
simulations were performed with the plasma parameters (κ = 3, � =
1500), and the wave number was set to either q = 0.54 (left panel)
or q = 1.81 (right panel). The DSFs for all cases are in very close
agreement.
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V. RESULTS

As described above, we ran 20 MD simulations of N = 104

particles, with Nstep = 80 000 and dt = 0.01, for each (κ, �)
pair studied across the liquid regime, as shown in Fig. 1. From
these results, we calculated the DSF, S(q, ω), across the liquid
regime for values of q ranging from less than 0.5 to nearly
30 and ω ranging from 10−2 to 102. Dispersion relations for
given (κ, �) pairs were found by determining, across a range
of values of q, the value of ω at which the peak DSF value
occurred for a given value of q. The intermediate scattering
function was also calculated from the DSF results for given
(κ, �) pairs. These DSF, dispersion relation, and intermediate
scattering function results, calculated from our MD data, were
then compared with DSFs, dispersion relations, and scattering
functions calculated using the seven theoretical models exam-
ined in this study.

In Subsec. V A, we compare our MD results with the
theoretical models for a range of parameter values that cover
the entire Yukawa liquid regime. In Subsec. V B, we offer an
empirical fitting form for the DSF that captures many of the
new features we have explored, and we show that this fit is in
good agreement with our MD results. Finally, in Subsec. V C,
we examine the double-plasmon resonance peak that appears
in the MD DSF, although none of the theoretical models
predict this peak.

A. Comparison of theoretical models and the MD results

In this subsection, we compare our MD results with results
calculated using the seven theoretical models discussed in
Sec. II. First, we examine the dispersion relation for two
(κ, �) pairs that represent extreme limits of the effective
coupling and screening. Next, we compare the DSF calculated
from our MD data with those from the theoretical models. We
then investigate the predicted high-frequency tail of the DSF.
Finally, we compare, for a fixed value of q, the intermediate
scattering function F (q, t ) obtained from the DSF calculated
from the MD data with those calculated using the theoretical
models.

FIG. 6. Dispersion relations obtained from the theoretical mod-
els and the MD data. The plasma parameters are (κ = 0, � = 150) in
panel (a) and (κ = 2, � = 31) in panel (b). The red band reflects
damping and corresponds to the full-width-half-maximum of the
MD results. The failure of the M model reflects the importance of
including a g(r) dependency; similarly, the lower frequencies in the
MNS model reflect the lack of the high-frequency sum rule in that
model. Results for the ion-acoustic wave in panel (b) show that all
models except the M model predict the MD results well.

FIG. 7. The DSF S(q, ω) obtained from the theoretical models
and the MD data. The plasma parameters are (κ = 1, � = 217), and
the wave numbers are either q = 1.27 (left panel) or q = 2.71 (right
panel). The HK and Mermin models fail to predict the MD results.
In particular, the HK model predicts two peaks, which suggests that
their third-order approximations may not converge fast enough.

Dispersion relations obtained using MD are compared
with those predicted by the theoretical models in Fig. 6; the
dispersion relations for (κ = 0, � = 150), corresponding to a
plasma oscillation, and for (κ = 2, � = 31), corresponding to
an ion-acoustic wave, are shown. The peak of the DSF arises
from the collective plasma oscillations, and its location is the
plasmon frequency [26,28,45]; plasmon damping is charac-
terized by the width of the peak (full-width-half-maximum of
MD) and is shown as a light pink band. We do not include
the HK model, which yielded poor predictions, in Fig. 6 for
reasons that will be explained below. The M model fails to
predict the dispersion relation because the collision frequency
ν, treated here as a constant for a given wave number q, is
independent of structural information contained in S(q). The
MNS model predicts a slightly lower peak frequency than the
MD simulations because of its neglect of elastic physics [1].
(The viscosity was obtained from a best fit to the MD data to
remove any errors arising from an inaccurate viscosity input;
thus, the error shown is indicative of a poor functional form.)
In general, the other four models are indistinguishable, with
the exception of A, for which the results are slightly higher
than the MD results for the ion-acoustic wave.

Next, in Fig. 7, we compare the full DSF, the intermediate
screening and high coupling case (κ = 1, � = 217), and
two wave numbers, q = 1.27 and q = 2.71. Even though we
calculate the DSF up to q = 30, we focus on the DSF at low
wave numbers, q � 5, because our main interest is collective
modes. This figure reveals that, while the location of the peak
is accurate (Fig. 6), damping is somewhat poorly predicted
by all of the models. As mentioned above, serious problems
were found with the HK model. The HK model [18] satisfies
the same three sum rules as the three other models discussed
here and should thus yield results similar to those of the other
sum-rule-based models; however, the HK model predicts two
peaks, thereby shifting the main peak to lower frequencies to
compensate for spectral weight in the higher-frequency peak.
To our knowledge, this behavior of the HK model has not been
seen before; however, a careful examination of their results
[18] reveals an incipient shoulder on the high-frequency side,
which we find bifurcates into a secondary peak at q values
larger than those authors present. While we do not know the
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FIG. 8. The DSF obtained from the HK model. The plasma
parameters are (κ = 0, � = 150), and the wave numbers are q =
1.45, 1.63, 2.17, 2.35 in panels (a) through (d), respectively. The
parameter η3 was obtained from the MD results using the least
squares fitting method. The HK model shows two peaks when the
wave number is small; as the wave number increases, the second peak
(on the right) weakens, while the left peak dominates the spectrum
and yields a more reasonable result.

source of this spurious behavior, we do not recommend the
HK model without further analysis.

Figure 8 shows the DSF obtained from HK for (κ = 0, � =
150) and wave numbers q = (1.45, 1.63, 2.17, 2.35), which
are consistent with the box size and span a range that reveals
the unusual behavior of the HK model. The parameter η3 is
obtained from the MD results using the least squares fitting
method. The HK results exhibit two clear peaks in the low-
wave-number regime; the right peak weakens as the wave
number increases. The DSF obtained from the HK model
gives better results when q is large.

All of the models examined in this work predict that
the DSF exhibits a high-frequency tail (see Table I). Our
MD results support the existence of this high-frequency tail,
the form of which reveals that many sum rules are finite.
Figures 9(a) and 9(b) show the DSF for moderate coupling
[(κ = 1, � = 72) and (κ = 2, � = 158)], and Figs. 9(c) and
9(d) show the asymptotic power of the DSF at the mid- to
high-frequency limit for κ = 0 and κ = 3. In Figs. 9(a) and
9(b), we denote a portion of our MD results with square
shapes to illustrate a spurious result, ω−2, which arises from
limitations in the numerical Fourier transforms. We verified
that the DSF results obtained using other simulation tools
(e.g., LAMMPS [46] and QUANTUM ESPRESSO [47]) also yield
this spurious result, regardless of the plasma parameters.
Careful control of Fourier-transform error allows us to extract
the high-frequency tail at intermediate frequencies. To our
knowledge, the tail has only been examined by Selchow et al.
[48], who reported that the DSF has an asymptote of ω−7.5.
The DSF from Donko et al. [45] also showed an asymptotic
tail, but its properties were not examined. Here, in our more
complete study, we see that the asymptotic power varies as a
function of κ , �, and q. In general, the power varies between
−∞ and ∼ − 6, in disagreement with all of the theoretical

FIG. 9. The DSF from the seven theoretical models and our
MD results for different parameter values (upper panels) and the
asymptotic power of the DSF from the MD results at the mid- to
high-frequency limit (lower panels). Panels (a) and (b) show the
DSF with (κ = 1, � = 72) and (κ = 2, � = 158), respectively, and
panels (c) and (d) show the asymptotic power of the DSF from the
MD results at high frequency for κ = 0 and κ = 3, respectively. We
denote a portion of our MD results in square shapes to indicate a
spurious result, ω−2, which arises from limitations when using nu-
merical Fourier transforms. At intermediate frequencies, the power
p is obtainable from MD simulations and varies from p = −∞ to
p ∼ −6. Table I shows that none of the theoretical models can predict
the asymptotic power variation seen in the MD simulation results.

models and indicating that only a small number of finite
moments exist.

It is interesting to examine these results in the time domain,
through the intermediate scattering function F (q, t ). Figure 10
shows the magnitude of F (q, t ) obtained from the DSF. In
Fig. 10, we remove the spurious results caused by numerical
Fourier transforms. Figure 10(a) shows that all models fail to
predict the MD results. However, in Fig. 10(b), it is interesting

FIG. 10. Log-log plot of the intermediate scattering function
(ISF) F (q, t ) calculated using several theoretical models and from
our MD data for different plasma parameter values. Panel (a) shows
the ISF at the lower boundary of the liquid regime (κ = 0, � = 10),
and panel (b) shows the ISF near the upper boundary of the liquid
regime (κ = 3, � = 1510). The wave number is set to q = 5.6 in
both cases. Only the Mermin model shows fairly good agreement
with the MD results (shown in red) at large t ; all of the other models
decay quickly.
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FIG. 11. A comparison of the DSF otained from the MD data
and the fitting form for the DSF in (17). The MD DSF and the fitting
form for the DSF are shown for moderate coupling regimes in panels
(a) and (c) and for strong coupling regimes in panels (c) and (d); the
wave number was set to q = 1.99 in all cases.

to note that only the M model shows fairly good agreement
with the MD results at large t , despite its poor performance
for the properties described above.

B. Fit of the DSF and the susceptibility

The plasmon-pole approximation is often used to provide
a simple functional form for S(q, ω) based on sharp peaks
(δ functions) that satisfy the basic sum rules [13]; however,
examining Figs. 9(a) and 9(b) suggests the following fitting
form, which includes finite peak widths and a power-law
high-frequency tail:

S(q, ω) = A1S0(q, ω) + A2(
ω2 − ω2

o

)p/2 + γ (ω2)p1/2
, p > p1,

(17)
where S0(q, ω) is the DSF of the ideal gas, p is the power-law
exponent of the high-frequency tail, and A1, A2, γ , ωo, and p1

are fitting parameters; note that p here should not be confused
with the p in the plasma frequency ωp. The criterion p > p1

should be satisfied to guarantee that the leading power at
the high-frequency limit is p. Suitable initial guesses would
be ωo approximately equal to the peak frequency from the
dispersion relation, A1 ∼ S(q, 0), A2 approximately equal to
the peak amplitude of the dispersion relation, and γ approxi-
mately equal to the width of the dispersion relation. Figure 11
shows the DSF from the MD simulations, together with curve-
fitting results using (17). Figures 11(a) and 11(b) show the
MD DSF in two moderate coupling regimes, and Figs. 11(c)
and 11(d) show the MD DSF in two strong coupling regimes.
The wave number is q = 1.99 for all panels. In addition to
the MD DSF curves, we plot the contribution to the DSF
of each term of (17). The results show that coupling shifts
the boundary between collective and random behavior to a
lower value of the wave number q, and that the ideal-gas
term plays an important role at very low frequencies when the
screening or coupling is strong. While the MD DSF and the fit

FIG. 12. The real and imaginary parts of χ (q, ω) obtained from
the MD and from the fitting form in (17). Panels (a) and (b) show
moderate coupling regimes, and panels (c) and (d) show strong
coupling regimes; the wave number was set to q = 1.99 in all cases.
These results show that the fitting form in (17) gives good agreement
with the MD results.

obtained using (17) differ around ω ∼ 0.15 in Figs. 11(c) and
11(d), overall, the fitting form in (17) gives good agreement
with the MD results. However, close to the melting transition,
intermediate frequencies in S(q, ω) are important and are not
captured by our fitting form.

The susceptibility χ (q, ω) represents an alternate represen-
tation of the linear response of the system and contains more
information than the DSF through its real and imaginary parts.
Figure 12 shows the susceptibility from the MD simulations
and curve-fitting results. For the MD simulations, we use
Eq. (16) to obtain the real and imaginary parts of the suscepti-
bility. For the fitting form, we use Eq. (17) to obtain the DSF
first, and then the fluctuation-dissipation theorem [Eq. (6)] to
obtain the imaginary part of χ (q, ω). Lastly, the Kramers-
Kronig relations [Eqs. (13)] are used to obtain the real part
of χ (q, ω). Figures 12(a) and 12(b) show the susceptibility
in moderate coupling regimes, and Figs. 12(c) and 12(d)
show it in strong coupling regimes. The wave number is q =
1.99 for all panels. These results for the susceptibility also
show that the fitting form in (17) gives good agreement with
the MD results. Further investigation is needed to determine
relations among the fitting parameters A1, A2, γ , ωo, and p1

via frequency moments of the DSF.

C. Double-plasmon peak

Figure 13 shows the DSF obtained from MD results for
different plasma parameters and wave numbers. In Fig. 13(a),
we can see that the DSF exhibits a second peak at ω = 2,
following a first peak at ω = 1 for an OCP. This second
peak is the double-plasmon resonance peak, as reported by
Korolov et al. [49]. This peak is damped as the wave num-
ber increases. Figures 13(b)–13(d) show the DSF for YOCP
cases. The double-plasmon peak amplitude is small and is
increasingly damped as κ increases. In fact, for κ = 2 and 3,
no double-plasmon peak is observed. In Figs. 13(a)–13(d), we
select coupling parameters which are close to the lower liquid
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FIG. 13. The double-plasmon resonance peak in the DSF ob-
tained from the MD results. The DSF is shown for several wave
numbers for each of four different sets of plasma parameters. Panel
(a) shows that the OCP exhibits the double-plasmon resonance peak
at ω = 2. The peak amplitude of the double-plasmon resonance
peak decreases as the wave number increases. Panels (b) through
(d) suggest that the relative strength of the double-plasmon resonance
peak decreases (larger width and smaller peak) with larger κ .

boundary values in Fig. 1, and therefore, the effective coupling
parameter is almost constant. The results in this figure suggest
that this double-plasmon peak has a strong dependence on κ

and weak dependence on q.
The sound speed of the OCP is infinite, and therefore, the

second peak in Fig. 13(a) does not occur as an artifact of
the PBC; to confirm this, we further investigated whether the
double-plasmon peak is an artifact of the PBC for the YOCP.
If the second peak occurs as a result of the PBC, then the
peak location would depend on the size of the simulation box.
Figure 14 shows the DSF calculated from MD data obtained
using different box sizes. The plasma parameters (κ = 0.1,
� = 10) were chosen for these simulations because, as we
can see in Fig. 13, it is difficult to observe the second peak
when κ � 1. In Fig. 14, we see that the properties of the
second peak do not change with the size of the simulation
box. The amplitude of the second peak decreases as the wave
number increases, as expected. Therefore, we conclude that
the double-plasmon peak is not an artifact of the size of the
simulation box and is a real, physical phenomenon missed by
all of the models.

VI. CONCLUSIONS

We have compared seven diverse theoretical models with
highly accurate MD simulation results. These comparisons,
which include dispersion relations, the intermediate scattering
function F (q, t ), and the DSF S(q, ω), reveal that none of
the models can predict these three quantities well even within
a limited range of plasma parameters. The M model, which
lacks correlation information and satisfies only the particle-
conservation law, poorly predicts dispersion properties; this
model is therefore limited to weakly coupled plasmas, where
it adds little value [10,37]. The HK model satisfies the same

FIG. 14. The DSF calculated from MD data obtained using
different simulation-box sizes. The plasma parameters are κ = 0.1
and � = 10. The properties of the second, double-plasmon resonance
peak do not change with the size of the simulation box. The ampli-
tude of the second peak decreases as the wave number increases, as
expected.

three sum rules as most of the other models but exhibits a
spurious second peak in the DSF at moderate to large q;
further work is needed to understand this poor behavior. The
TI, A, E, and G models all predict approximately the same
dispersion, with a small error in A for the ion-acoustic wave.

Perhaps surprisingly, these theoretical models have very
different high-frequency behaviors and thereby expose limi-
tations to employing only the three basic sum rules. More-
over, in contrast with the high-frequency predictions of the
sum-rule models, the MD results reveal that the DSF has
an asymptotic power-law tail, with nontrivial dependencies
on the plasma parameters κ and �, as well as the wave
number q. This asymptotic power-law behavior severely limits
extensions to the sum-rule approaches because there are a
finite number of finite moments. This power law suggests a
fitting form of the DSF which is accurate over a wide range
of plasma parameters and wave numbers. In addition, we
uncovered numerical issues in the course of this study; the
computational Fourier transform gives a fictitious power −2
of ω in the high-frequency tail, which makes it challenging to
directly obtain other dynamic properties, such as the response
function and the DLFC.

The results of this work motivate further studies to extend
the theoretical models examined here to include more infor-
mation beyond three moments and a damping parameter, and
to examine the sensitivity of the models in specific applica-
tions, such as stopping power [10] and XRTS at intermediate
(q, ω).

All data can be found in Ref. [50].
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