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Physics of relativistic collisionless shocks: The scattering-center frame
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In this first paper of a series dedicated to the microphysics of unmagnetized, relativistic collisionless pair
shocks, we discuss the physics of the Weibel-type transverse current filamentation instability that develops in the
shock precursor, through the interaction of an ultrarelativistic suprathermal particle beam with the background
plasma. We introduce in particular the notion of the “Weibel frame,” or scattering center frame, in which the
microturbulence is of mostly magnetic nature. We calculate the properties of this frame, using first a kinetic
formulation of the linear phase of the instability, relying on Maxwell-Jüttner distribution functions, then using a
quasistatic model of the nonlinear stage of the instability. Both methods show that (i) the Weibel frame moves at
subrelativistic velocities relative to the background plasma, therefore at relativistic velocities relative to the shock
front; (ii) the velocity of the Weibel frame relative to the background plasma scales with ξb, i.e., the pressure
of the suprathermal particle beam in units of the momentum flux density incoming into the shock; and (iii) the
Weibel frame moves slightly less fast than the background plasma relative to the shock front. Our theoretical
results are found to be in satisfactory agreement with the measurements carried out in dedicated large-scale
2D3V particle-in-cell simulations.
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I. INTRODUCTION

A. Motivations and objectives

The Weibel-type current filamentation instability (CFI) that
develops in anisotropic plasma flows [1–5] has gained a lot
of attention in past decades because of its relevance to var-
ious fields of physics. Through the generation of skin-depth-
scale current filaments surrounded by toroidal magnetic fields,
which gradually isotropize the counterstreaming plasmas, this
instability is a key process in the formation of astrophysical
collisionless shock waves [6]. Because it also arises in the
precursor of weakly magnetized shock waves, i.e., the up-
stream region where the unshocked plasma flows against a
beam of suprathermal particles, it further sustains the shock
transition and likely generates the magnetized turbulence that
is required for particle acceleration and radiation. Such mi-
crophysics may well underpin the outstanding phenomenon of
gamma-ray burst afterglows, in which a substantial fraction of
the ∼1052 ergs liberated by the cataclysmic event is radiated
away by shock-accelerated electrons, on hours to months
timescales [7,8].

In laser-driven high-energy-density physics and labora-
tory astrophysics, the CFI also plays a central role [9–17].
In particular, it has been recently observed to grow in the
interpenetration of laser-ablated plasmas [18,19], marking a
first step towards the generation of collisionless shocks in the
laboratory [20–23].

The development of the CFI in symmetric colliding
plasmas has been studied theoretically in both the linear

[5,7,24,25] and nonlinear [26–31] regimes, and numerically
using particle-in-cell (PIC) simulations, [3,32–38]. In such a
symmetric configuration, the laboratory frame appears as a
privileged frame in which to discuss the physics of the CFI
and it is found, indeed, that the CFI generates an essentially
magnetic structure in that frame.

However, in the precursor of relativistic collisionless
shocks, the CFI develops in a highly asymmetric configura-
tion: in the reference frame in which the shock front lies at
rest (the shock rest frame Rs), the background plasma appears
cold, and streams at relativistic velocities through a quasi-
isotropic, ultrarelativistically hot gas of suprathermal parti-
cles. Conversely, in the background plasma rest frame Rp, the
suprathermal particles form a dense beam of angular disper-
sion �1, carrying high inertia, and moving through a tenuous
gas of subrelativistic or mildly relativistic temperature. The
growth of the CFI in the precursor of relativistic collisionless
shocks has been discussed in a number of numerical studies
[39–46], but only a few theoretical studies have discussed its
properties in such conditions [47–50]. In particular, the notion
of a frame in which this CFI is essentially of magnetic nature
has not, to the best of our knowledge, received attention so far,
the only exception being [23] where this frame was introduced
to simplify the calculation of the CFI in the precursor of a
nonrelativistic electron-ion shock.

The present paper is the first of a series in which we discuss
the microphysics of unmagnetized, relativistic collisionless
pair shocks. Here, we address in detail this notion of a
“Weibel frame,” in which the electromagnetic configuration is
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essentially magnetic in nature. As shown in accompanying
papers of this series and in particular [51], this reference frame
plays a fundamental role in the physics of collisionless shock
waves. In Paper II [52], it is shown how the noninertial char-
acter of the Weibel frame controls the heating and slowdown
of the background plasma. In Paper III [53], this reference
frame is used to calculate the scattering rate of suprathermal
particles; the latter quantity controls the residence time of
suprathermal particles in the upstream, hence the acceleration
timescale, thus the maximum energy, etc. Therefore, this
notion of a Weibel frame has direct phenomenological conse-
quences and potential observable radiative signatures. Finally,
in Paper IV [54], we discuss the growth of the filamentary
turbulence in the precursor of a collisionless shock. In the
following, as in all accompanying papers, we support our
present theoretical findings through detailed comparisons to
dedicated large-scale 2D3V PIC simulations of relativistic
collisionless shocks.

The present paper is laid out as follows. Section II intro-
duces the notion of the Weibel frame in a fluid model of the
linear phase of the current filamentation instability. Section III
then extends those results to a fully kinetic model of the CFI;
the details of these calculations are provided in the Appen-
dices. Section IV introduces the notion of the Weibel frame
in a nonlinear model of the filamentation phase, in which
the filaments are modeled in quasistatic equilibrium at all
points in the precursor. Finally, Secs. III D and IV B provide
detailed comparisons of those various models to dedicated
PIC simulations. A summary and conclusions are provided
in Sec. V. We use units such that kB = c = 1. The metric
signature is (−,+,+,+).

B. Setup

In this paper, we consider an unmagnetized, relativistic
collisionless shock wave propagating through an electron-
positron plasma. In the shock rest frame Rs, the background
plasma is initially incoming at relativistic velocity β∞ � −1
(Lorentz factor γ∞ � 1) along the x axis from +∞. Inside the
precursor, its mean velocity is written βp (Lorentz factor γp).
The precursor is defined as the region permeated by a beam
of suprathermal particles, which were reflected off the shock
surface or accelerated through a Fermi-like process, possibly
up to high energies.

Our conventions are as follows: the index p refers to the
background plasma, while the index b refers to the suprather-
mal particle population. For species α, nα represents the
density, wα the enthalpy density, pα the pressure, and Tα the
temperature, all measured in the species rest frame, while
uα

μ = γα (1,βα) represents its four-velocity. All throughout,
α will denote a species (“p” or “b”) and not a space-time
index. Both the background plasma and the suprathermal
beam are composed of electrons and positrons, so that there
are actually four species. However, unless otherwise noted, we
do not make any particular distinction between electrons and
positrons in a given population, and therefore drop any refer-
ence to the charge. The above proper hydrodynamic quantities
nevertheless correspond to one charged species (electrons or
positrons) of one population (either the background plasma
or the suprathermal beam). As in other papers of this series,

we rely on the following frames: the shock front rest frame
Rs, the background plasma rest frame Rp, the downstream
rest frame Rd , and the Weibel frame Rw, to be determined
hereafter. Quantities evaluated in one or the other reference
frame are indicated with the respective subscripts |s, |p, |d,
and |w. By default, however, frame-dependent quantities that
lack subscripts are defined in the laboratory frame, which co-
incides with the shock rest frame Rs. Finally, thermodynamic
moments nα , pα , Tα , and wα are always defined as proper,
unless otherwise stated; they are thus defined in the rest frame
of species α.

According to the fluid shock jump conditions [55], the
typical temperature of shocked particles is Tb = κTbγ∞me,
where κTb = (�̂b − 1)(2 − �̂b)1/2�̂

−1/2
b , in terms of the adi-

abatic index �̂b of the shocked gas; the latter is relativistically
hot, so �̂b = 4/3 in the three-dimensional (3D) case, but
�̂b = 3/2 in the two-dimensional (2D) case, which must be
considered when drawing comparison with a 2D3V (2D in
configuration space, 3D in momentum space) PIC simulation;
thus κTb = 1/(3

√
2) in the 3D case and κTb = 1/(2

√
3) in the

2D case. Strictly speaking, the temperature of suprathermal
particles is by definition larger than that of the shocked
plasma, defined above. Yet, as this temperature of suprather-
mal particles always scales with γ∞, we retain the above
definition, emphasizing that κTb is generically larger than the
above, by about an order of magnitude, so that κTb ∼ a few.
This is illustrated in Fig. 1, which shows the profiles of the
main hydrodynamic properties of the background plasma and
suprathermal beam for two reference PIC simulations, with
respective Lorentz factors γ∞ = 17 and 173.

Our PIC simulations are described further on in Sec. III D.
Let us note here, however, that the reference frames of these
2D3V simulations (2D in configuration space, 3D in mo-
mentum space) coincide with the downstream rest frame Rd .
Hence, a Lorentz factor γ∞ = 17 (resp. γ∞ = 173) in the
Rs frame corresponds to a simulation frame Lorentz factor
γ∞|d = 10 (resp. γ∞|d = 100). Simulations are conducted in
the x-y plane, with x̂ oriented along the shock normal, and ŷ
defining the transverse dimension.

The ultrarelativistic suprathermal particle gas is nearly
isotropic in the shock rest frame, meaning a drift Lorentz fac-
tor γb ∼ 1 in the shock rest frame (see Fig. 1). This population
is further characterized by its pressure pb, written ξb in units of
the incoming momentum flux at infinity F∞ = γ 2

∞β2
∞n∞me:

pb = ξbF∞. (1)

The leading instability that develops in the precursor of
weakly magnetized ultrarelativistic shocks is the Weibel-type
CFI described above. In principle, this instability is defined in
all momentum space (k‖, k⊥) where k‖ = k · x̂ and k⊥ = k⊥̂y
in our PIC simulations. The purely transverse modes corre-
spond to k‖ � k⊥, while the so-called oblique modes corre-

spond to the limit k‖ � k⊥ � ωp, with ωp = (4πn∞e2/me)1/2

the plasma frequency of (one charged species of) the unper-
turbed far-upstream background plasma. Oblique modes are
likely relevant far in the precursor, but most likely Landau
damped once the background plasma heats up [38,49,50]. We
thus assume that the transverse modes dominate in most of
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FIG. 1. Spatial profiles of the main hydrodynamic quantities characterizing the background plasma and the beam of suprathermal particles
in the shock precursor, as a function of distance to the shock front x|d in units of c/ωp (simulation frame). (a–c) Profiles extracted from a PIC
simulation of shock Lorentz factor γ∞ = 17 (corresponding to a relative upstream-downstream Lorentz factor γ∞|d = 10) at time t = 3600 ω−1

p .
(d–f) From a PIC simulation of shock Lorentz factor γ∞ = 173 (γ∞|d = 100) at time t = 6900 ω−1

p . (a, d) Lorentz factor of the background
plasma in the simulation (downstream) rest frame (dark gray) of the beam in the simulation frame (light red) and the relative Lorentz factor
between the beam and the background plasma (light blue). (b, e) Proper temperature of the background plasma (dark gray) and of the beam
(light red). (c, f) Proper density of the background plasma (dark gray) and of the beam (light red). The asymmetry of the beam-plasma
configuration is manifest in those figures.

the precursor and restrict ourselves to the limit k‖ → 0 for
simplicity.

Our 2D3V PIC simulations indicate that this is a rea-
sonable approximation. Consider indeed Fig. 2, which plots
the energy densities in electromagnetic components δEx, δEy,
and δBz in our two reference PIC simulations, normalized
to the incoming momentum flux at infinity F∞. The purely
transverse CFI generates a transverse δBz and its associated
electrostatic δEy component; by definition of the Weibel frame
Rw (see further on), δEy|w = 0, and hence δEy = βw|dδBz in
the Rd simulation frame. The growth of this instability also
generates an inductive longitudinal electric field δEx. Non-
strictly transverse CFI modes (with k‖ �= 0) further generate
an electrostatic longitudinal δEx component. Figure 2 reveals
that the energy density in the transverse field components
dominates that in the longitudinal electric field everywhere
in the precursor in the Rd frame, and that the electric field
is smaller than the magnetic field in the near precursor where
the ratio can be measured accurately (up to x of the order of
a few hundred to 1000 c/ωp). Finally, the transverse magnetic
field energy remains larger than the longitudinal electric field
component when deboosted back to the Rw frame. There-
fore, this Weibel frame appears well defined in the 2D3V
simulations.

Let us emphasize that the limit k‖ �= 0 certainly remains
of interest; as a matter of fact, a nontrivial structure along

the streaming axis turns out to be a mandatory requirement to
achieve pitch-angle diffusion of suprathermal particles [5,53].
Yet, we expect that the main features of the (already nontriv-
ial) calculations that follow will remain valid in a limit 0 <

k‖ � k⊥. We thus consider purely transverse electromagnetic
perturbations, i.e., δAμ = (δ�, δAx, 0, 0), and ∂x = 0 for all
quantities.

Figure 2 suggests that the ratio 〈δE2
y 〉1/2

/〈δB2
z 〉1/2, namely,

βw|d, depends on x, which implies that the Weibel frame is
not globally inertial. This frame actually decelerates from the
far to the near precursor, as discussed in [51]. The noninertial
nature of Rw has important consequences for the physics of
the shock, most notably the deceleration and heating of the
background plasma, which form the focus of a subsequent
paper in this series [52].

In the present paper, we characterize the velocity βw|d
(more specifically, βw|p) at each point x of the precursor,
given the physical conditions at this point. The discussion that
follows thus relies on an implicit WKB-like approximation,
which stipulates that the Weibel frame has time to adjust at
each point to the local physical conditions on a decelera-
tion length scale |uw dx/duw|. Improving on this assumption
would necessitate a proper inclusion of noninertial effects,
which are characterized by the velocity profile duw/dx, in
the calculations that follow. However, this velocity profile is
itself determined by the response of the background plasma
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FIG. 2. Spatial profiles of normalized electromagnetic field en-
ergy densities in transverse magnetic field δBz (black), transverse
electric field δEy (blue), and longitudinal electric field δEx (red),
as a function of distance to the shock (units of c/ωp). (a, b)
Extracted from simulation γ∞ = 17 (simulation frame γ∞|d = 10).
(c, d) Simulation γ∞ = 173 (simulation frame γ∞|d = 100). Panels
(a) and (c) show the energy densities measured in the simulation
frame; panels (b) and (d) show the corresponding energy densities
deboosted to the Weibel frame Rw (where δEy|w vanishes by defini-
tion). The velocity of Rw is measured in the simulation as βw|d =
〈δE 2

y 〉1/2/〈δB2
z 〉1/2, where the average is taken over the transverse

dimension of the simulation box. See text for details.

and the suprathermal beam to the microturbulence. Such an
endeavor thus represents a rather formidable task, well beyond
the scope of any current study.

II. THE WEIBEL FRAME IN A FLUID MODEL

Here we present a fluid derivation of the CFI and of its
associated Weibel frame, in the context of the precursor of an
unmagnetized, relativistic electron-positron shock. Although
Sec. III D will demonstrate that, in actual relativistic shock
precursors, kinetic corrections are mandatory to describe the
physics of the CFI, the following fluid model retains the
advantage of simplicity as well as a pedagogical virtue. A
fully kinetic description of the CFI and its Weibel frame in the
case of Maxwell-Jüttner plasma distribution functions will be
provided in Sec. III.

To preserve covariance, we use a relativistic fluid formal-
ism. The conservation of the total energy-momentum tensor
can be written in the compact way [5]

wαuα
μ∂μuα

ν + hα
μν∂μ pα = qαnαuαμF νμ, (2)

introducing hα
μν = ημν + uα

μuα
ν , which projects orthogo-

nally to uα
μ (since uα

μuαμ = −1). The dynamical equation
thus becomes, to first order in the perturbations,

wαuα
μ∂μδuα

ν + hα
μν∂μδpα = qαnαuαμδF νμ. (3)

In the following, the four-velocity perturbation is de-
composed as δuα

μ = (δγα, γ 3
α δβα

x, γαδβα
y, γαδβα

z ), with
δγα = γ 3

α βαδβα
x. Using the short-hand notation δβ⊥α =

(0, δβα
y, δβα

z ) and ∇⊥ = (0, ∂y, ∂z ), the system can be
rewritten explicitly as

γ 2
α wα∂tδβα

x + βα∂tδpα = −qαnα

γα

∂tδAx, (4)

γ 2
α wα∂tδβ⊥α + ∇⊥δpα = −qαnαγα∇⊥(δ� − βαδAx ). (5)

Current conservation written to first order also yields

γα∂tδnα + nα∂tδγα + γαnα∇⊥ · δβ⊥α = 0. (6)

The pressure perturbation can be related to the density pertur-
bation through the adiabatic index �̂α:

δpα = �̂α

pα

nα

δnα. (7)

In the following, we use the isentropic sound speed squared,

c2
α ≡ �̂α

pα

wα

, (8)

so that δpα = c2
α (wα/nα )δnα . Given the relation between δγα

and δβα
x, Eq. (4) can then be used to express the pressure

perturbation in terms of the perturbed apparent density δNα ≡
δ(γαnα ):

∂tδpα = c2
α

γ 2
α

(
1 − c2

αβ2
α

)[qαγαnαβα∂tδAx + γαwα

nα

∂tδNα

]
.

(9)
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This equation involves the effective sound speed squared of
the streaming plasma species:

c2
eff α = c2

α

γ 2
α

(
1 − c2

αβ2
α

) . (10)

We have c2
eff α � 5Tα/(3γ 2

α ) and c2
eff α � 1/(2γ 2

α ) in the non-
relativistic (Tα � me, �̂α � 5/3) and ultrarelativistic (Tα �
me, �̂α � 4/3) thermal limits of a 3D gas, respectively. After
integration, Eq. (9) provides a direct relationship between δpα

and δAx and δNα , which can be inserted in Eq. (5) to yield

γ 2
α wα∂tδβ⊥α + c2

eff α

γαwα

nα

∇⊥δNα

= − qαγαnα (∇⊥δ� − βα∇⊥δAx ). (11)

Finally, combining this equation with Eq (6), one obtains

∂2
t δNα − c2

eff α �δNα

= qαn2
α

wα

[�δ� − βα

(
1 − c2

eff α

)�δAx
]
, (12)

which determines the response of the apparent charge density
to the electromagnetic perturbation: in Fourier space, with
δρα = qαδNα , one finds

δρα = �2
pα

4π

k2

ω2 − c2
eff αk2

[
δ� − βα

(
1 − c2

eff α

)
δAx
]
, (13)

where the relativistic (proper-frame) plasma frequency, �pα ,
is defined by

�2
pα ≡ 4πnαq2

α

wα/nα

. (14)

Note that the far-upstream plasma frequency �pp coincides
with ωp defined earlier.

The above also allows us to determine the response of
the current density, δ jαx, which comprises both a perturbed
conduction current density as well as a perturbed advection
current density:

δ jα
x = ραδβα

x + βαδρα. (15)

Equations (4), (9), and (13) can then be combined to derive
the response in Fourier space:

δ jα
x = �2

pα

4π

{
βα

(
1 − c2

eff α

) k2

ω2 − c2
eff αk2

δ�

−
[

1 − β2
α

(
1 − c2

eff α

) ω2 − k2

ω2 − c2
eff αk2

]
δAx

}
. (16)

We define the Weibel frame as that in which the linear
instability becomes purely magnetic, i.e., the electrostatic
potential and the total electric charge density vanish. From
the response of the charge density, one finds that in this frame
the following relation must be fulfilled:∑

α

�2
pαβα|w

1 − c2
eff α

ζ 2 − c2
eff α

= 0, (17)

where ζ = ω/k is the (complex) phase velocity. In the
shock precursor, the background plasma, of proper density
np and nonrelativistic temperature Tp � 1, flows at a velocity

βp|s � −1 against the suprathermal beam, of proper density
nb and relativistic temperature Tb � 1. To leading thermal
corrections, the above equation can be recast in the form

npβp|w

(
1 + �̂pTp

γ 2
p|wζ 2

)
+ nbβb|w

Tb

(
1 − 1

�̂b

)
� 0, (18)

where we have assumed |ζ |2 � c2
eff α for both populations,

as is consistent within a hydrodynamic model (see Sec. III).
This relation indicates that the velocity of Rw is, in principle,
mode dependent. Yet the response of the beam proves to
be more sensitive to thermal effects than that of the plasma
since the inequality ζ 2 � c2

eff α implies Tp/γ
2
p|wζ 2 � 1. As a

consequence,

βw|p ≡ −βp|w � nbβb|w
npTb

(
1 − 1

�̂b

)
(19)

is a good (mode-independent) approximation of the velocity
of Rw relative to the background plasma frame.

The beam is more conveniently characterized by its nor-
malized pressure ξb and temperature Tb = κTbγ∞me, so that
nb = κ−1

Tb
γ∞ξbn∞ (see Sec. I B). Current conservation fur-

ther implies n∞/np = γpβp/(γ∞β∞), with βp � β∞ � −1,
so that

βw|p � βb|w ξb
γp

γ∞

�̂b − 1

κ2
Tb

�̂b
. (20)

The beam moves relativistically with respect to the back-
ground plasma, therefore either βb|w ∼ 1 or βp|w ∼ −1. As
ξb < 1, however, the former must hold, which provides the
final result:

βw|p � ξb
γp

γ∞

�̂b − 1

κ2
Tb

�̂b
. (21)

In the case of negligible deceleration of the incoming plasma
(γp � γ∞) and for a 3D adiabatic index �̂b = 4/3,

βw|p � 1

4κ2
Tb

ξb. (22)

One can also directly calculate βw:

βw = βw|p + βp

1 + βw|pβp
� βp

(
1 − 1

4κ2
Tb

ξb

γ 2
p

)
. (23)

The above indicates that (i) the Weibel frame Rw moves
at a subrelativistic velocity relative to the background plasma
[i.e., uw|p = βw|p(1 − β2

w|p)−1/2 < 1], and therefore at a rela-
tivistic velocity �βp relative to the shock front; (ii) βw|p is
of opposite sign to βp, which implies that, in magnitude, the
Weibel frame moves slightly less fast than the background
plasma relative to the shock front; and (iii) the relative velocity
βw|p scales with ξb.

Finally, because ξb is a function of distance x to the shock,
Eq. (23) indicates that βw itself depends on x, i.e., the Weibel
frame is not globally inertial, as already observed in Fig. 2.
This observation has important implications with respect to
the physics of the shock, which are addressed in detail in the
follow-up paper [52].

In Sec. III, we extend the above calculations to a kinetic
description. Although the expression for βw|p will be found to
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take somewhat different values, the above three features will
remain valid.

Using the above equations, it becomes straightforward to
derive the dispersion relation of the CFI in this warm fluid
description. Consider the CFI in Rw, where δ�|w = 0. The
response δ jpx

|w of the background plasma can be written

δ jp
x
|w � ω2

p

4π
δAx

|w (24)

to first order in ξb, since the term that has been neglected
here with respect to Eq. (16) is of the order of β2

p|w ∼ ξ 2
b .

Note also that we have assumed that the background plasma
temperature remains subrelativistic over most of the precursor,
as discussed in Paper II [52], so that �pp � ωp. From the
Maxwell equations written in the Lorentz gauge (kμδAμ =
0), i.e., �δAμ = −4π

∑
α δ jαμ, one derives the dispersion

relation in the Weibel frame (subscript w omitted for clarity):(
ω2 − k2 − ω2

p

) = �2
pb

[
1 − β2

b|w
(
1 − c2

eff b

) ω2 − k2

ω2 − k2c2
eff b

]
,

(25)

which, assuming |ω|2 � k2 and c2
eff b � 1, can be approxi-

mated by(
ω2 − k2c2

eff b

)(
ω2 − k2 − ω2

p

) � �2
pbβ

2
b|wk2, (26)

with solution

ω2 � k2c2
eff b − �2

pbβ
2
b|w

k2

k2 + ω2
p

. (27)

The stabilizing effect of the beam dispersion is manifest in
this equation; this effect has been noted before in [48,49].

III. RELATIVISTIC KINETIC MODEL

In this section, we evaluate the Weibel frame velocity
and the local instability growth rate within a rigorous kinetic
formalism. As discussed further below, kinetic effects must in-
deed be taken into account when considering the development
of the CFI in the shock precursor. The derivation of the kinetic
dielectric tensor involves rather heavy calculations, which are
relegated to the Appendices. Below, we describe the general
method, summarize the approximate expressions of the rele-
vant dielectric tensor elements, and provide the estimates of
the growth rate of the CFI and the associated estimate of βw

in various limits. The latter results, in particular, are given in
Sec. III C.

For the time being, the reference frame in which we work
is left unspecified. We first recall the linear dispersion relation
fulfilled by the CFI modes [56]:

εyy(εxx − 1/ζ 2) = ε2
xy, (28)

with ζ = ω/k as the complex phase velocity. In a fully rela-
tivistic framework, the dielectric tensor elements read (i, j =
1, 2, 3) [57]

εi j (ω, k) = δi j +
∑

α

γαω2
pα

ζ 2k2

∫
ui

γ

∂ f (0)
α

∂u j
d3u

+
∑

α

γαω2
pα

ζ 2k3

∫
uiu j

γ 2me

k∂ f (0)
α /∂uy

ζ − vy
d3u, (29)

where vy = uy/(γ me), ω2
pα = 4πnαe2/me represents the non-

relativistic plasma frequency squared of species α (nα rep-
resents as before the proper density), and f (0)

α (u) is the
corresponding unperturbed momentum distribution function,
normalized such that

∫
d3u f (0)

α = 1. If the nondiagonal tensor
element εxy happens to vanish, Eq. (28) implies either εyy = 0
or ζ 2εxx − 1 = 0. These two dispersion relations describe,
respectively, purely electrostatic modes (with δE ‖ ŷ) and
purely electromagnetic (or inductive) modes (with δE ‖ x̂).
Assuming that f (0)

α (u) is even in py, εxy reduces to

εxy(ω, k) =
∑

α

γαω2
pα

ω2

∫
uxuy

meγ 2

∂ f (0)
α /∂uy

ζ − vy
d3u. (30)

This expression is generally nonzero, and hence the CFI
excites mixed electromagnetic and electrostatic fluctuations.
This feature has been often overlooked in the past, δEy = 0
being assumed from the outset in a number of calculations
[58–61]. The electromagnetic (δEx) and electrostatic (δEy)
components of the solutions to Eq. (28) verify [62,63]:

δEy

δEx
= −εxy

εyy
. (31)

In Sec. II, βp|w was determined by solving εxy = 0 in
the fluid limit, exploiting the fact that, to leading order, this
equation is independent of the complex frequency ζ . In the
general kinetic case, however, εxy depends on ζ , the knowl-
edge of which involves solving Eq. (28). In practice, we are
interested in the fastest-growing mode (ζmax), which should be
calculated in the (unknown) Weibel frame. Instead of solving
simultaneously Eq. (28) and εxy|w = 0 for ζmax|w and βp|w,
we follow a different approach, noting that the (δEy, δBz )
fluctuations pertaining to a given mode in the plasma and
Weibel frames are related through

δEy|p = γw|pβw|pδBz|w, (32)

δBz|p = γw|pδBz|w, (33)

since δEy|w = 0. The velocity of the Weibel frame relative to
the plasma rest frame is therefore given by

βw|p = δEy|p
δBz|p

. (34)

Making use of Eq. (31) and of δBz|p = −δEx|p/ζmax|p, one
obtains

βw|p = ζmax|p
εxy|p
εyy|p

. (35)

This formula has the advantage of involving only quantities
measured in the plasma frame.

We apply the above formalism to the case of Maxwell-
Jüttner momentum distribution functions [64]:

f (0)
α (u) = μα

4πm3
eγαK2(μα )

exp[−γαμα (γ − βαux/me)], (36)

where βα ≡ 〈ux/γ me〉 is the normalized mean drift velocity
of species α (corresponding drift Lorentz factor γα), μα ≡
me/Tα , and K2 denotes a modified Bessel function of the
second kind.
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Compact expressions of the tensor elements εlm can be ob-
tained in terms of one-dimensional integrals over the velocity
parallel to the wave vector (v‖) [63,65]. These calculations
are detailed in Appendix A. In Sec. III D, such expressions
will be used for the numerical resolution of Eq. (35) along
with Eq. (28). The parameters of the background plasma and
suprathermal beam will be then extracted from PIC simula-
tions of relativistic collisionless shocks. In the remainder of
this section, we will derive analytic approximations of ζmax|p
and βw|p, valid in distinct instability regimes for the plasma
and beam particles.

The starting points of these calculations are the alternative
expressions (A30)–(A32) of the dielectric tensor. For instance,
εxx can be rewritten as (A30):

εxx = 1 +
∑

α

ω2
pα

k2ζ 2
μαγ 2

α β2
α − ω2

pα

4k2ζ

μ2
αγα

K2(μα )
Aα

xx, (37)

where

Aα
xx = 2

μα

√
1 − ζ 2

∫ ∞

−∞
ds

1

χα − s

×
{

γ 2
α β2

α

(s2 + 1)3/2
+ 1

μα

[
1

s2 + 1
+ 3β2

αγ 2
α

(s2 + 1)2

]
+ 1

μ2
α

[
1

(s2 + 1)3/2
+ 3β2

αγ 2
α

(s2 + 1)5/2

]}
e−μα

√
s2+1, (38)

and χα = γαζ/
√

1 − ζ 2. The integrals involved in εyy and
εxy can be put in a similar form [see (A34) and (A35)].
Introducing �sα as the characteristic width of the integrand
in Eq. (38) [except for the denominator (χα − s)−1], two
limiting cases can be considered for each plasma species: (1)
the “hydrodynamic” limit |χα| � �sα and (2) the “kinetic”
limit |χα| � �sα .

The dimensionless variable s is introduced immediately
before Eq. (A30); it corresponds to γαβ‖γ‖, with β‖ the
component of the particle velocity along the wave vector.
Since the wave vector is transverse to the streaming direction,
the typical extent of s in the above integral is, up to the
resonant factor, controlled by the proper temperature 1/μα;
the parameter χα itself corresponds to the apparent phase four-
velocity of the mode. Therefore, the meaning of the hydrody-
namic limit is that the apparent typical transverse momentum
(normalized to me) exceeds the apparent phase four-velocity,
while the kinetic limit corresponds to the opposite case. In the
following, approximate formulas of the dielectric tensor will
be derived in these two limits.

A. Evaluation of the dielectric tensor for the background plasma

1. Hydrodynamic limit

In the outermost part of the precursor, the background
plasma is characterized by a nonrelativistic proper temper-
ature, μp � 1 [52]. In this limit, �sp � √2/μp, and hence
the hydrodynamic response of the background plasma implies√

μp/2|χp| � 1. This condition coincides with the large-
argument limit (χ̃p � |χp|

√
μp/2 � 1) of the Z and Z ′ func-

tions involved in the low-temperature expressions derived in
Appendix B. These formulas can be further expanded to first

order in 1/μp by making use of the asymptotic series Z (η) �
−1/η − 1/2η3 − 3/4η5 · · · [66]:

εp
xx � 1 − ω2

p

k2ζ 2

{
1 +

[
β2

p + 1

μp

(
1 − 5

2
β2

p

)(
1

ζ 2
− 1

)]}
,

(39)

εp
yy � 1 − ω2

p

k2ζ 2

[
1 + 3γp

μp

(
1

ζ 2
− 1

)]
, (40)

εp
xy � −ω2

pβp

k2ζ 3

[
1 − 3

2μp

(
1 − 2

γ 2
p

)(
1 − ζ 2

)]
. (41)

In the rest frame of the background plasma, βp|p = 0; further
assuming the weak-growth limit, |ζ 2| � 1, the above relations
simplify to

εp
xx � 1 − ω2

p

k2ζ 2

(
1 + 1

μpζ 2

)
, (42)

εp
yy � 1 − ω2

p

k2ζ 2

(
1 + 3

μpζ 2

)
, (43)

εp
xy = 0. (44)

2. Kinetic limit

We now consider the limit χ̃p � 1 of Eqs. (B8), (B10),
and (B12). Using the power series Z (η) � i

√
π exp(−η2) −

2η · · · [66] and assuming |ζ 2| � 1, this yields, in the back-
ground plasma rest frame,

εp
xx � 1 + i

√
πμp

2

ω2
p

k2ζ
, (45)

εp
yy � 1 + ω2

pμp

k2

(
1 + i

√
πμp

2
ζ

)
, (46)

εp
xy = 0. (47)

B. Evaluation of the dielectric tensor for the
suprathermal particles

1. Hydrodynamic limit

In contrast to the background plasma, the beam particles
are characterized by an ultrarelativistic drift velocity in the
background plasma rest frame (γb ≡ γb|p � 1) and a relativis-
tic proper temperature (μb � 1). As a result, the integrand
of Eq. (38) presents the approximate width �sb � 1, so
that the hydrodynamic response of the suprathermal particles
requires |χb| � 1. The corresponding dielectric tensor, εlm,b,
is obtained by expanding (χb − s)−1 � χ−1

b [1 + (s/χb)2] in
Eqs. (A33)–(A35), and evaluating the various resulting inte-
grals. For εxx,b, this gives

Ab
xx � 4

μ2
bγbζ

[
2γ 2

b β2
b

∂2

∂b2
J (0, μb, 1) − ∂

∂b
J (0, μb, 1)

]
+ 4(1−ζ 2)

μ3
bγ

3
b ζ 3

[
2γ 2

b β2
b

∂2

∂b2
I (0, μb, 1)− ∂

∂b
I (0, μb, 1)

]
,

(48)

where the functions I (t, λ, b) and J (t, λ, b) are defined
by Eqs. (C11) and (C4), respectively. Working out the
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derivatives, we find

Ab
xx � 4

μ2
bγbζ

[
γ 2

b β2
bμbK2(μb) + K1(μb)

]
+ 4(1 − ζ 2)

μ3
bγ

3
b ζ 3

[
2γ 2

b β2
bμbK1(μb) + K0(μb)

]
. (49)

Inserting this expression into Eq. (37) yields, to leading order,

εb
xx � 1 − ω2

pbμbβ
2
b

2k2ζ 4
, (50)

assuming |ζ 2| � 1 and γ −2
b � μb � 1, and expanding the

Bessel functions accordingly.
Applying the same procedure to Eqs. (A34) and (A35)

leads to the hydrodynamic expressions

εb
yy � 1 − ω2

pbμb

2k2ζ 2

{
1 + 1

μ2
bγ

4
b ζ 2

[
12 − 5

2
γ 2

b μ2
b ln μb

]}
,

(51)

εb
xy � −ω2

pbμbβb

2k2ζ 3
. (52)

2. Kinetic limit

The kinetic response of the beam particles can be read-
ily obtained, to leading order in |χb|, from the expansion
(χb − s)−1 � −iπδ(s) − P(1/s) in Eq. (A30), where δ(s) is
the Dirac delta function and P denotes the Cauchy principal
value, which here vanishes. In general, however, the beam
particles appear to be only marginally kinetic in PIC shock
simulations, so it could be useful to go to the next order. The
series expansions derived in Appendix C are well suited to this
purpose. In the limit |χb| � 1, Eqs. (C8), (C14), and (C17)
reduce to

Ab
xx � − 4γb

{
i
√

π

2μb

[
1

μb
K3/2(μb) + β2

bγ 2
b K5/2(μb)

]
− γbζ

[
1

μb
K2(μb) + β2

bγ 2
b K3(μb)

]}
, (53)

Ab
yy � − 2γbζ

μb

{
K0(μb) + 2

μb
K2(μb)

+ iγb

√
πμb

2
ζ

[
K1/2(μb) + 2 + β2

b

μb
K3/2(μb)

]}
, (54)

Ab
xy � − 2γbβb

{
i
√

π

2μb
K5/2(μb)

− ζ

[
γ 2

b K3(μb) − 1

μb
K2(μb)

]}
. (55)

Combining these approximate expressions with Eqs. (A30)–
(A32) and expanding the Bessel functions in the small-
argument limit gives

εb
xx � 1 + ω2

pbμbγ
2
b β2

b

k2ζ 2
+ ω2

pbμbγ
3
b

4k2ζ
[3iπ − 16γbζ ], (56)

εb
yy � 1 + ω2

pbμbγ
2
b

k2

[
1 + 3iπ

4
γbζ

]
, (57)

εb
xy � ω2

pbμbβbγ
2
b

k2ζ

[
1 + 3iπ

4
γbζ − 4γ 2

b ζ 2

]
, (58)

where we have further assumed γb � 1.

C. CFI growth rates and frame velocities in various plasma
response regimes

The previous formulas may now be applied to the case of
the precursor of a relativistic shock to derive the growth rate
of the purely transverse CFI and the velocity of the Weibel
frame Rw. We consider the various limits in which the plasma
and/or the beam can be described in a fluidlike or kinetic
approximation, keeping in mind that the most relevant limit
for the precursor is that of both kinetic beam and background
plasma.

For reference, let us recall that in the limit |ζ | = |ω/k| �
1, which is applicable here, the plasma can be described in the
hydrodynamic regime iff γp|ζ | � √

2/μp (with μp = m/Tp

assumed greater than unity). As for the beam, it can be
described in the hydrodynamic regime iff γb|ζ | � 1.

In the following, we solve for the dispersion relation in
the background plasma rest frame, in order to derive βw|p
according to Eq. (35). We also assume that the plasma frame
is close to the Weibel frame, so that the off-diagonal term ε2

xy
can be neglected in the dispersion relation as written in the
background plasma frame. The dispersion relation may then
be approximated as

ζ 2εxx − 1 � 0. (59)

Finally, in order to make contact with our previous no-
tations, we will repeatedly use the substitution ω2

pbμb/ω
2
p =

ξb(n∞/np)/κ2
Tb

. This notably implies ω2
pbμb/ω

2
p � 1. We also

have γb|p � γp|s and βb|p � 1.

1. Hydrodynamic plasma and beam

In the hydrodynamic regime (and in the background
plasma rest frame), |ζ | � μ

−1/2
p and 1/γb|p. Hence, the dis-

persion relation gives to leading order

ζ 2 � −ω2
pbμbβ

2
b|p

k2 + 2ω2
p

, (60)

and so the growth rate saturates at �max � ω2
pbμb for

k � √
2ωp.

Adding up the hydrodynamic plasma and beam contribu-
tions into Eq. (35) and retaining only leading-order terms
yields the Weibel frame velocity

βw|p � ω2
pbμbβb|p

−k2ζ 2 + 2ω2
p + ω2

pbμb
. (61)

As |ζ | � ωp/k according to Eq. (60), the expression for βw|p
boils down to

βw|p � ω2
pbμbβb|p

2ω2
p

� 1

2κ2
Tb

ξb
n∞
np

. (62)

As βb|p � βb|w � 1, we recover the formula derived within
a fluid approach, Eq. (20), provided one sets in the latter
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the adiabatic index �̂b = 2. This is the value expected for a
gas with one degree of freedom in the relativistic limit; the
reduced effective dimensionality for the beam response results
from the assumption of a purely one-dimensional transverse
fluctuation spectrum.

Finally, the fully hydrodynamic regime holds as long as
min(

√
μp/2, γb|p)|ζmax| � 1. Now, expressing Eq. (60) at

kmax ≡ √
2ωp gives

ζmax � i

(
ω2

pbμb

4ω2
p

)1/2

, (63)

so that another way of expressing the validity of the hydrody-
namic regime is

min
(μp

2
, γ 2

b|p
)

>
4ω2

p

ω2
pbμb

� 4κ2
Tb

ξb

np

n∞
. (64)

2. Kinetic plasma and hydrodynamic beam

In this limit, 1/γb|p � |ζ | � μ
−1/2
p ; to leading order, the

dispersion relation takes the form

i
√

2πμpω
2
pbζ − ω2

pbμbβ
2
b|p

ζ 2
− k2 � 0. (65)

The growth rate reaches its maximum value �max =
√

ω2
pbμb

for k � kmax � (2πω2
pbμpμb)1/6ω

2/3
p . We define |ζmax| =

�max/kmax � (ω2
pbμb/

√
2πμpω

2
p )

1/3
.

Making use of Eqs. (46), (47), (51), and (52), we express
Eq. (35) as

βw|p � − ω2
pbμbβb

2ω2
pμpζ 2

max

, (66)

which gives

βw|p �
(

π

4

ω2
pbμb

ω2
pμ

2
p

)1/3

�
(

π

4κ2
Tb

)1/3

ξ
1/3
b

(
n∞
np

T 2
p

m2

)1/3

.

(67)

3. Hydrodynamic plasma and kinetic beam

In this limit, we now have 1/γb|p � |ζ | � μ
−1/2
p . Using

Eqs. (42) and (56), the dispersion relation reduces to

2ω2
pbμbγ

2
b|p

[
1 + i

3π

4
γb|pζ

]
− 2ω2

p

[
1 + 1

μpζ 2

]
− k2 � 0.

(68)

Let us first assume that ω2
p/(μpζ

2) can be neglected in
front of 2ω2

pbμbγ
3
b|pζ . An unstable solution then exists pro-

vided γ 2
b|p > ω2

p/(ω2
pbμb) ∼ 1/ξb. This is the same condition

as encountered in the 4-fluid system of Sec. II [see Eq. (27)],
where c2

eff,b ∼ 1/γ 2
b|p and �2

pb ∼ ω2
pbμb.

If this condition is fulfilled, the fastest-growing

solution corresponds to �max � 8
9π

√
2
3

[ω2
pbμbγ

2
b|p−ω2

p]3/2

ω2
pbμbγ

3
b|p

and

ζmax � 8i
9πγb|p

(1 − ω2
p

ω2
pbμbγ

2
b|p

). Note that the conditions for a

hydrodynamic plasma (
√

μp

2 |ζmax| > 1) and a kinetic beam
(γb|p|ζmax| < 1) are then verified, albeit marginally.

Moreover, combining Eqs. (43), (44), (57), and (58) gives
the Weibel frame velocity:

βw|p � 2ω2
pbμbγ

2
b|pζ

2
max

k2ζ 2
max − 2ω2

p + 2ω2
pbμbγ

2
b|pζ 2

max

. (69)

Inserting the above expressions of �max and ζmax, it
follows that

βw|p �
(

8

9π

)2 ω2
pbμbβb|p

ω2
p

(
1 − ω2

p

ω2
pbμbγ

2
b|p

)2

(70)

�
(

8

9πκTb

)2

ξb
n∞
np

(
1 − np

n∞

κ2
Tb

γ 2
b|pξb

)2

. (71)

In the opposite limit, in which ω2
p/(μpζ

2) dominates
over 2ω2

pbμbγ
3
b|pζ in Eq. (68), the dominant mode satisfies

�max �
√

2ω2
p/μp and ζmax � i[2μp(1 − ω2

pbμbγ
2
b|p/ω

2
p )]−1/2

for kmax ≡
√

2ω2
p − 2ω2

pbμbγ
2
b|p. To leading order, we thus

derive

βw|p � ω2
pbμbγ

2
b|p

2ω2
pμp
(
1 − ω2

pbμbγ
2
b|p/ω2

p

) (72)

� 1

2κ2
Tb

γ 2
b|p ξb

Tp

m

n∞
np

(
1 − 1

κ2
Tb

γ 2
b|pξb

n∞
np

)−1

. (73)

4. Kinetic plasma and beam

Finally, we consider the case of a fully kinetic beam-
plasma system. This regime is of particular importance since
it is found to hold in most of the precursor region in long-time
shock simulations (see Sec. III D). Using the expressions (45)
and (56), the dispersion relation is written

i
√

2πμpω
2
pζ + 2ω2

pbμbγ
2
b|p

(
1 + i

3π

4
γb|pζ

)
− k2 � 0. (74)

The dominant CFI mode is then defined by

�max � 4

3

√
2

3

(
ω2

pbμb
)3/2

γ 3
b|pβ

3
b|p√

2πμpω2
p + 3π

2 ω2
pbμbγ

3
b|p

, (75)

ζmax � i
4

3

ω2
pbμbγ

2
b|p√

2πμpω2
p + 3π

2 ω2
pbμbγ

3
b|p

, (76)

and kmax �
√

2
3μbωpbγb|p.

The corresponding expression for the Weibel frame veloc-
ity is obtained by combining Eqs. (46), (47), (57), and (58).
After some algebra, one finds

βw|p � ω2
pbμbγb|pβb|p

1 + i 3π
4 γb|pζmax − 4γ 2

b|pζ
2
max

ω2
pμp + 2

3ω2
pbμbγ

2
b|p

(77)
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or, to leading order and in terms of our usual parameters,

βw|p � 1

κ2
Tb

ξb
n∞
np

γ 2
b|p

Tp

m
. (78)

D. Comparison to PIC simulations

In this section, we compare the relative velocity βw|p
estimated using the kinetic model of the CFI devel-
oped in Sec. III C with that extracted from 2D3V PIC
simulations.

These simulations have been performed using the mas-
sively parallel, relativistic PIC code CALDER [67]. The shock
is generated by means of the standard mirror technique [40].
The background pair plasma is continuously injected into the
domain from the right-hand boundary, and is made to reflect
specularly off the left-hand boundary (x|d = 0). Electrons
and positrons are injected with a Maxwell-Jüttner momentum
distribution [Eq. (36)] of proper temperature T∞ = 0.01me

and mean drift velocity β∞|d = −(1 − 1/γ 2
∞|d )1/2 in the sim-

ulation frame. As mentioned earlier, this simulation reference
frame coincides with the downstream plasma rest frame (as
a consequence of the use of the mirror technique). Our two
reference PIC simulations use γ∞|d = 10 and 100, which, re-
spectively, correspond to shock Lorentz factors (with respect
to the upstream) of γ∞ = 17 and 173.

As the simulation proceeds, the right-hand boundary (in-
jector) is progressively displaced towards the right so as to
keep the reflected ballistic particles inside the (increasingly
large) domain, while speeding up the calculation at early
times [40]. In order to quench the numerical Cherenkov
instability, which notoriously hampers simulations of rela-
tivistically drifting plasmas, we make use of the Godfrey-
Vay filtering scheme, combined with the Cole-Karkkainnen
finite difference field solver [68]. We use a mesh size �x =
�y = 0.1 c/ωp and a time step �t = 0.99�x/c. Periodic
boundary conditions are employed in the transverse direc-
tion for both particles and fields. The initial domain size
is Lx × Ly = 2700 × 340 (c/ωp)2 for γ∞|d = 10 and Lx ×
Ly = 2000 × 200 (c/ωp)2 for γ∞|d = 100. Each cell is ini-
tially filled with ten macroparticles per species (electrons or
positrons). The simulation is run until tmax = 3600 ω−1

p (resp.
tmax = 6900 ω−1

p ) for our simulation with γ∞|d = 10 (resp.
γ∞|d = 100).

In order to test our model of the CFI developing in the
precursor through the interpenetration of suprathermal and
background plasma populations, we need to carefully dis-
tinguish these two in the simulations. In order to do so, we
track the particles according to the sign of their x momentum
and how many times this sign has changed, due only to
interactions with the electromagnetic turbulence. We then
define the background plasma as those particles that move
toward negative values of x and that have not undergone
turnarounds, i.e., any change of sign of ux. We define the
beam particles as those that move towards positive values
of x, independently of their number of turnarounds. This
definition leaves a minority of particles: those that move with
ux < 0 and have undergone at least one turnaround. In this
population, however, it becomes difficult to distinguish parti-
cles that originate from the right boundary of the simulation

box from those that originate from the left boundary; these
populations have different temperatures, so that a single-fluid
description of this compound population would introduce
errors.

Downstream of the shock, the left-moving and right-
moving particle populations are identical, because the plasma
has isotropized in this simulation frame. There, our definition
of suprathermal particles only counts half of the particles,
therefore our ξb � 1/4 in this region: in 2D3V simulations,
the downstream pressure represents 1/2 of the energy density,
which itself amounts to the incoming energy flux into the
shock rest frame F∞.

We extract hydrodynamic moments nα , Tα , and uα for
each of the beam and background plasma population, assum-
ing that they obey Maxwell-Jüttner momentum distributions.
The spatial profiles of these various hydrodynamic quantities
have already been presented in Fig. 1, as extracted from the
simulations with γ∞|d = 10 and 100 at respective times t �
3600 ω−1

p and 6900 ω−1
p . One can see that np and γp|d vary

weakly across the precursor region, except near the shock
front where the incoming plasma slows down significantly and
experiences compression. By contrast, the plasma temperature
steadily increases from its far-upstream value (Tp = 0.01me)
to unity and beyond when approaching the shock front. This
heating results from the interaction with the beam particles,
the density of which rises by approximately four to five orders
of magnitude across the precursor [52]. The beam Lorentz
factor in the simulation frame is close to unity, confirming that
the beam drifts at a weakly relativistic velocity in the shock
frame.

The general dispersion relation (28) is numerically solved
using the reduced forms (A16), (A22), and (A29) of the
dielectric tensor elements, as detailed in [69]. At each sampled
location, we look for the growth rate (�max), wave number
(kmax), and wave phase velocity (ξmax) of the fastest-growing
mode, and then use Eq. (35) to evaluate the corresponding
value of the Weibel frame velocity (βw|p).

Figure 3 displays the spatial profiles of the χb and χ̃p

parameters defined by Eqs. (A36) and (B5), respectively. In-
terestingly, both the background plasma and beam populations
appear to lie in the kinetic CFI regime (χ̃p < 1 and χb < 1)
throughout the precursor region. However, whereas χ̃p shows
weak variations around relatively low values (χ̃p ∼ 0.05),
so that taking the kinetic plasma limit is well justified, the
χb values are larger by about an order of magnitude and
present stronger variations. Where ξb becomes of the order
of unity, the beam response is then only marginally kinetic;
consequently, analytical approximations present an error of
about a factor 2 with respect to the full numerical calculation
of βw|p.

As discussed in Sec. I B, we estimate the three-velocity
of the Weibel frame in PIC simulations as the ratio βw|d =
〈δE2

y 〉1/2
/〈δB2

z 〉1/2, where averaging is performed over the
transverse dimension. Given the locally measured value of
the background plasma velocity βp|d, we convert it to the
instantaneous local plasma rest frame through the standard
transform βw|p = (βw|d − βp|d )/(1 − βw|dβp|d ). We then com-
pare in Fig. 4 this measurement with our theoretical estimates
of the relative velocity, βw|p, between the Weibel frame and
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FIG. 3. Parameters χb and χ̃p of the beam and the background
plasma as a function of distance to the shock front (units of c/ωp),
extracted from PIC simulations with γ∞ = 17 (a) and γ∞ = 173
(b). We recall that the hydrodynamic (kinetic) regime for the beam
and/or the plasma corresponds to χb � 1 (χb � 1) and/or χ̃p � 1
(χ̃p � 1), respectively. This figure thus indicates that the plasma
should be described in the kinetic regime, and that the beam regime
is intermediate.

the background plasma, using both the numerical calculation
(red circle/dashed line) and the analytical approximation
(purple square/dashed). Both for γ∞ = 17 and 173 it is seen
that, as predicted, βw|p remains subrelativistic throughout the
precursor, increasing from βw|p ∼ 10−3 at the far end of the
precursor up to βw|p � 0.1 near the shock front. The theoret-
ical estimates appear to provide reasonable match to the PIC
data in the region where βw|p can be measured accurately.

For both reference simulations, Fig. 4 reveals significant
fluctuations in the measured values of βw|p, with increas-
ing amplitude at large x, which deserves some discussion.
Far from the shock front, the magnitude of our observable
〈δE2

y 〉1/2
/〈δB2

z 〉1/2 is close to unity (see, e.g., Fig. 2), which
implies that any amount of numerical noise can artificially

101 102 103
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100

101

101 102 103
10−3

10−2

10−1

100

101

FIG. 4. Theoretical estimates of the relative velocity between the
Weibel frame Rw and the background plasma, βw|p, as a function
of distance to the shock front (units of c/ωp), compared with the
velocity extracted from our reference PIC simulations through the
ratio 〈δE 2

y 〉1/2
/〈δB2

z 〉1/2 (solid green); where this value cannot be
measured accurately from the simulation, the data are colored in
light green (see text for details). The red circle symbol/dashed curve
uses the numerical solution to the general kinetic dispersion relation
(28) to derive ζmax, while the purple square/dashed curve plots the
analytic approximations derived in Sec. III C. (a) γ∞ = 17 (γ∞|d =
10). (b) γ∞ = 173 (γ∞|d = 100).

push |βw|d| to values larger than unity, even though its
true value might be <1. Furthermore, when transforming
values to the background plasma rest frame, any error in
βw|d is amplified by ∼γ 2

p|d, which is large far from the
shock.

In a given portion of the precursor, the Weibel frame can be
considered well defined where |βw|d| < 1 for most data points.
In Fig. 4, values |βw|p| < 1 correspond to values |βw|d| < 1,
but the use of raw numerical data, binned linearly and plotted
on a log scale, precludes a clear identification of the region
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where this frame is well defined, at least by eye. By rebinning
the data, however, we infer that the Weibel frame is well
defined in the range x � 103 c/ωp, for both PIC simulations,
as claimed in Sec. I B. At larger distances from the shock,
|βw|p| fluctuates too often on both sides of unity, either be-
cause of numerical noise or because of the contribution of
electrostatic modes. Given the magnitude of the fluctuations,
we have chosen to plot the data in full color only in the region
x � 300 c/ωp, for the sake of being conservative.

IV. THE WEIBEL FRAME IN THE NONLINEAR REGIME

A. Theoretical model

We adopt here another perspective on the Weibel frame.
Specifically, we consider the nonlinear evolution of the CFI,
once the current filaments have formed, borrowing on the
work of [31]. We assume that, at each point in the shock
precursor, the CFI has developed a quasistatic, transversally
periodic system of current filaments. By “quasistatic,” it is
meant that an equilibrium approximately holds between mag-
netic and thermal pressures in the filaments, according to the
physical conditions at the point considered, and that these
conditions evolve slowly enough that this equilibrium has
time to adapt from one point to another. We also consider a 2D
configuration, without loss of generality, so that the plasma
is periodic along the y axis and the species drift along the x
axis; the magnetic field is then transverse to the (x, y) plane.
The dominant components of the four-potential now explicitly
depend on y and are given by Aμ = [φ(y), Ax(y), 0, 0]. We
assume a drifting Maxwell-Jüttner distribution for each of
the four species (corresponding to two counterstreaming pair
distributions), so that

nα = nα0 exp

[
−γαqα

Tα

(φ − βαAx )

]
, (79)

where qα denotes the charge of the species and nα0 represents
a normalization prefactor. We can inject these density profiles
in the potential formulation of the Ampère-Maxwell and
Gauss-Maxwell equations, leading to

∂2
y Ax =

∑
α

ω2
α

c2
γαβα sinh

[
γαe

Tα

(φ − βαAx )

]
mec2

e
, (80)

∂2
y φ =

∑
α

ω2
α

c2
γα sinh

[
γαe

Tα

(φ − βαAx )

]
mec2

e
, (81)

where ωα =
√

4πnα0e2/me scales to the plasma frequency
of species α. It is worth noting that this system can also be
obtained in a four-fluid framework with isothermal closure
condition [31].

Following [31], we introduce the plasma nonlinearity pa-
rameter:

�p =
∣∣∣∣γpβpe

Tp
max

y
Ax(y)

∣∣∣∣. (82)

In the weakly nonlinear limit, �p � 1, the sinh functions in
the above equations can be approximated to unity, so that the
vanishing of the electrostatic component entails

nbγ
2
b|wβb|w
Tb

+ npγ
2
p|wβp|w
Tp

= 0 (83)

where the subscript w has been introduced, because the above
quantities are now defined in the Weibel frame, Rw, in which
φ|w = 0.

In the weakly nonlinear limit, the velocity of Rw can be
computed exactly using relation (83). Writing βb|w = (βb −
βw)/(1 − βbβw), γb|w = γbγw(1 − βbβw), etc., in any given
frame, one finds that βw is a solution to the equation

β2
w − Qwβw + 1 = 0 (84)

with

Qw =
nb
Tb

γ 2
b

(
1 + β2

b

)+ np

Tp
γ 2

p

(
1 + β2

p

)
nb
Tb

γ 2
b βb + np

Tp
γ 2

p βp
. (85)

Writing nb in terms of ξb as before, we expand the above
solution to first order in ξb to obtain the relative velocity βw|p:

βw|p � +γ 2
b|pξb

Tp

me

n∞
np

β2
∞βb|p
κ2

Tb

(86)

where γb|p ∼ γp represents the relative Lorentz factor between
the beam and the background plasma. Interestingly, Eq. (86)
corresponds to our earlier expression Eq. (78) obtained from
the linear dispersion relation of the CFI in the kinetic plasma–
kinetic beam limit.

In Paper II [52], it is argued that γ 2
p ξb is much smaller than

unity in the far precursor, where the incoming background
plasma maintains its initial velocity, i.e., γp � γ∞, and of the
order of unity in the near precursor, where γp < γ∞ due to
deceleration. The above thus implies that the Weibel frame, in
this nonlinear description, moves at subrelativistic velocities
relative to the background plasma, as in the linear limit studied
earlier. That βw|p is positive means that the Weibel frame
moves at slightly smaller absolute velocity towards the shock
front than the background plasma.

In the near precursor, as the background plasma is heated
up to relativistic temperatures, βw|p increases in magnitude;
this implies that the background plasma decouples from the
Weibel frame, hence increasing the heating rate and leading
to the shock transition.

One can also compute the first nonlinear correction in �p to
the above velocity. To this effect, we recast Eq. (81) in terms of
the nonlinearity parameters of the beam (�b) and the plasma
(�p) in relation (83):

nbγ
2
b|wβb|w
Tb

sinh �b|w
�b|w

+ npγ
2
p|wβp|w
Tp

sinh �p|w
�p|w

= 0. (87)

As discussed in Paper III [53], the beam particles carry such
inertia that they hardly participate in the filamentation, mean-
ing �b|w � 1. In Rw, �b|w indeed represents the ratio of the
electromagnetic component eAx|w to the typical momentum
Tb|w = Tb/γb|w of the particles, and for suprathermal particles,
this ratio is much smaller than unity. Assuming �p|w � 1, we
then obtain to lowest order

nbγ
2
b|wβb|w
Tb

+ npγ
2
p|wβp|w
Tp

(
1 + �2

p|w
6

)
� 0. (88)
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In this configuration, the nonlinearity appears as a second-
order correction to the Weibel frame speed. In detail, one
obtains

β
(n−lin)
w|p � βw|p

(
1 − �2

p

6

)
. (89)

Note that the Weibel frame is not always well defined in the
strongly nonlinear limit: if �p,b � 1, Eq. (81) decouples into
a set of two relations between the temperatures and densities:

γb|wnb = γp|wnp, (90)

γb|wβb|w
Tb

= −γp|wβp|w
Tp

, (91)

which overdetermine the system for a given set of parameters.
From Eq. (81), we see that the error on the electrostatic fields
at leading order in �p|w if we evaluate the Weibel frame from
relation (83) evolves as δφ ∝ �3

p|w. In the case of interest,
however, PIC simulations indicate that the weakly nonlinear
limit represents a good approximation in the precursor of
relativistic shocks (see Sec. IV B).

B. Comparison to PIC simulations

In this section, we confront the result of Sec. IV with the
PIC simulations presented in Sec. III D. A strong hypothesis
underlying the above formulas is that of a marginally nonlin-
ear plasma response �p|w < 1. We wish to motivate this hy-
pothesis by measuring this nonlinearity parameter. Assuming
Eq. (79) holds, one expects

np(y) = np0 exp

[
−γp|s

Tp
(φ − βp|sAx )

]
= np0 exp

[
γp|wβp|w

Tp
Ax

]
. (92)

We can then estimate the nonlinearity parameter in the simu-
lation through the following relation:

�p|w �
√

2

〈[
log

(
np

〈np〉
)

−
〈
log

(
np

〈np〉
)〉]2

〉1/2

, (93)

where 〈·〉 denotes the mean value along the direction trans-
verse to the drift.

Using relation (93), we present in Fig. 5 our estimate of
�p|w for the two reference simulations (γ∞ = 17 in the top
panel, γ∞ = 173 in the bottom panel). In both cases, the
nonlinearity parameter tends to increase from values well
below unity in the far precursor, up to near unity within a
few hundred c/ωp to the shock front. This behavior suggests
that one should use the present nonlinear equilibrium model
to estimate βw|p in the near precursor, say x � 300c/ωp, and
the linear estimate obtained in Sec. III at larger distances,
where �p|w falls to values small compared to unity. One must,
however, keep in mind that the present approach is based on
a fluid model, while the former is fully kinetic, and that the
analysis of Sec. III indicates that, from the point of view of the
instability, both the beam and the background plasma should
be treated kinetically. Fortunately, both the present nonlinear
estimate of βw|p, Eq. (86), and its linear kinetic counterpart,
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FIG. 5. Evolution of the nonlinearity parameter of the back-
ground plasma �p|w as a function of distance to the shock (units of
c/ωp). (a) γ∞|d = 10 at time t = 3600 ω−1

p . (b) γ∞|d = 100 at time
t = 6900 ω−1

p .

Eq. (78), match one another. Hence, our theoretical estimate
of βw|p can be considered as rather well established throughout
the precursor.

This is supported by Fig. 6, which compares the values
of βw|p extracted from the simulations with the theoretical
estimate (86), assuming (weakly) nonlinear equilibrium fila-
ments. As before, the PIC simulation data are light colored
where they cannot be measured accurately. In both simulation
cases, the theoretical estimates appear in reasonable agree-
ment with the PIC results, especially in the near precursor
x � 103c/ωp, where the velocity of the Weibel frame is well
defined.

V. CONCLUSIONS

This paper belongs to a series of papers in which we build
a theoretical model of unmagnetized, relativistic collisionless
pair shocks and compare it with dedicated PIC simulations.
More specifically, we have discussed in the present paper the
physics of the purely transverse CFI that results from the
interpenetration of the background plasma and the beam of
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FIG. 6. Similar to Fig. 4, for our theoretical estimate of βw|p
obtained assuming nonlinear equilibrium filaments, as developed in
Sec. IV. The purple diamond symbol/dashed curve uses (86) to
compute the βw|p. (a) γ∞ = 17 (γ∞|d = 10). (b) γ∞ = 173 (γ∞|d =
100).

suprathermal particles in the shock precursor. We have argued
that there exists a frame Rw, referred to as the Weibel frame,
in which the instability is mostly magnetic in nature. We
have derived the velocity of this frame at each point of the
shock precursor, through a kinetic description of the linear
stage of the instability, as well as through a quasistatic model
of the nonlinear phase of the filamentation instability. This
Weibel frame is of particular importance to the physics of the
shock and of the acceleration process, because it represents
the frame of the scattering centers.

We emphasize the following properties of this Weibel
frame:

(i) It is found to move at subrelativistic velocities relative
to the background plasma, i.e., with four-velocity uw|p < 1,
and, therefore, at relativistic velocities toward the shock front.
This result can be related to the strong asymmetry of the

interaction between the beam of suprathermal particles and
the background plasma.

(ii) We also find that the three-velocity βw|p is of opposite
sign to βp, the velocity of the background plasma in the shock
rest frame, implying that the Weibel frame moves slightly less
fast than the background plasma relative to the shock front.

(iii) Furthermore, the relative velocity βw|p typically scales
as ξb, which represents the beam pressure normalized to the
incoming momentum flux at infinity.

(iv) Finally, it is to be emphasized that the Weibel frame is
not globally inertial, because its velocity βw depends on the
distance to the shock.

As discussed in [51], and more particularly [52], which
addresses in detail the consequences of this noninertial nature,
the Weibel frame decelerates from the far to the near precur-
sor. In the present paper, we have determined the velocity
of this frame at each point in the precursor, given the local
physical conditions, in a WKB-like approximation.

Our PIC simulations confirm these various features. In
particular, they reveal that δE⊥ < δB⊥ close to the shock front
and over most of the precursor, and hence that the Weibel
frame is well defined; relative to the shock front, the Weibel
frame velocity, measured through the ratio of δE⊥/δB⊥, is
also found to be slightly below the background plasma veloc-
ity; finally, the relative velocity βw|p generally decreases away
from the shock front, like ξb.

Our kinetic model relies on the use of Maxwell-Jüttner dis-
tribution functions for the beam and the background plasma,
and it provides (at the expense of rather complex calculations)
simple approximations to the velocity of the Weibel frame and
to the growth rate of the purely transverse CFI. Our quasistatic
model of the nonlinear stage of the instability describes the
current filaments as periodic magnetostatic structures in the
Weibel frame, in pressure equilibrium with the plasma. Our
PIC simulations indicate that, over most of the precursor,
those filaments are in a mildly nonlinear stage, with a non-
linearity parameter below unity. We expect that both models
should capture the salient features of the instability and,
indeed, the resulting formulas turn out to bracket rather well
the value βw|p seen in PIC simulations.

In subsequent papers, it will be shown that the Weibel
frame plays an essential role in shaping the microphysics of
the shock transition, in particular the physics of heating and
deceleration of the background plasma.
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APPENDIX A: REDUCED EXPRESSIONS OF THE KINETIC DIELECTRIC TENSOR

The triple integrals involved in Eq. (29) after substitution of the model distribution (36) can be recast in the form of one-
dimensional quadratures [63]. To do so, we mostly follow the lines sketched in [65], where it is shown that two of the momentum
integrations can be carried out in closed form.

Let us first consider the dielectric tensor element εxx, which is involved in the purely electromagnetic dispersion relation of
the CFI (i.e., in a frame close to the Weibel frame). After straightforward algebra, it can be rewritten as

εxx = 1 +
∑

α

ω2
pα

ω2
Cαγ 2

α μαβα

∫
d3u vxe−γαμα (γ−βαux ) − ω2

pα

ζk2
Cαγ 2

α μα

∫
d3u v2

x

e−γαμα (γ−βαux )

ζ − vy
, (A1)

where we have defined

Cα = μα

4πγαK2(μα )
. (A2)

The first integral in the right-hand side of (A1) can be exactly solved by noting that

βα =
∫

d3u vxe−γαμα (γ−βαux ). (A3)

We then proceed by changing to velocity variables in cylindrical coordinates along the wave vector: v = (v‖, v⊥ cos θ, v⊥ sin θ ).
Making use of d3u = γ 5d3v, Eq. (A1) then becomes

εxx = 1 +
∑

α

ω2
pα

ω2
γ 2

α β2
αμα − ω2

pα

ζk2
Cαγ 2

α μα

∫
dv‖

ζ − v‖

∫ 1/γ‖

0
dv⊥ v3

⊥γ 5e−γαμαγ

∫ 2π

0
dθ cos2 θ eγαβαμαγ v⊥ cos θ , (A4)

with γ‖ = (1 − v2
‖ )−1/2. Given the integral representation of the modified Bessel functions of the first kind [70],

In(z) = 1

π

∫ π

0
dt ez cos t cos(nt ), (A5)

we obtain

εxx = 1 +
∑

α

ω2
pα

ω2
Cαμαγ 2

α β2
α − πω2

pα

k2ζ
Cαγ 2

α μα

∫ 1

−1
dv‖

Sα
30 + Sα

32

ζ − v‖
. (A6)

Here we have introduced

Sα
mn(v‖) =

∫ 1/γ‖

0
dv⊥ γ 5vm

⊥In(μαγαβαv⊥)e−γαμαγ . (A7)

From the definition t = γ /γ‖ follow the relations γ v⊥ = (t2 − 1)1/2 and v⊥dv⊥ = dt/γ 2
‖ t3, allowing us to express Sα

30 and
Sα

32 as

Sα
30(v‖) = γ‖

∫ ∞

1
dt (t2 − 1)I0(μαγαβα

√
t2 − 1)e−γαμαγ‖t , (A8)

Sα
32(v‖) = γ‖

∫ ∞

1
dt (t2 − 1)I2(μαγαβα

√
t2 − 1)e−γαμαγ‖t , (A9)

which can be further recast as

Sα
30(v‖) = γ‖

(
1

γ 2
α μ2

α

d2

dγ 2
‖

− 1

)∫ ∞

1
dt I0(μαγαβα

√
t2 − 1)e−γαμαγ‖t , (A10)

Sα
32(v‖) = γ‖

(
1

γ 2
α μ2

α

d2

dγ 2
‖

− 2

μα

d

dγ‖
+ 1

)∫ ∞

1
dt I2(μαγαβα

√
t2 − 1)e−γαμαγ‖t , (A11)

We now take advantage of the following formula [71]:∫ ∞

0
dx

(
x − 1

x + 1

)ν/2

e−δxIν (ζ
√

x2 − 1) = e−
√

δ2−ζ 2√
δ2 − ζ 2

(
ζ

δ +
√

δ2 − ζ 2

)ν

, (A12)

013205-15



GUY PELLETIER et al. PHYSICAL REVIEW E 100, 013205 (2019)

valid for Reν > −1 and δ > ζ . It follows that

Sα
30 = γ‖

γαμα

(
1

γ 2
α μ2

α

d2

dγ 2
‖

− 1

)[
e−γαμα�α

�α

]
, (A13)

Sα
32 = β2

αγ‖
γαμα

(
1

γ 2
α μ2

α

d2

dγ 2
‖

− 2

γαμα

d

dγ‖
+ 1

)[
e−γαμα�α

�α (γ‖ + �α )2

]
, (A14)

where �α = (γ 2
‖ − β2

α )1/2. After evaluation of the first- and second-order derivatives, one finds

Sα
30 + Sα

32 = 2γ‖
γ 2

α μ2
α

[
γ 2

‖ + 2β2
α

�5
α

+ γαμα

(
γ 2

‖ + 2β2
α

)
�4

α

+ γ 2
α μ2

αβ2
α

�3
α

]
e−γαμα�α . (A15)

Substituting Eq. (A15) into Eq. (A6) finally gives the following simplified expression for εxx:

εxx = 1 +
∑

α

ω2
pα

ω2
μαγ 2

α β2
α − 2πω2

pα

k2ζ
Cαγα

∫ 1

−1
dv‖

γ‖
ζ − v‖

[
γ 2

‖ + 2β2
α

γ 2
α μ2

α�5
α

+ γ 2
‖ + 2β2

α

γαμα�4
α

+ β2
α

�3
α

]
e−γαμα�α . (A16)

Let us now consider εyy, which is written

εyy = 1 − ω2
pα

ζk2

∑
α

γ 2
α μα

∫
d3u v2

y

e−γαμα (γ−βαux )

ζ − vy
. (A17)

After changing to cylindrical velocity coordinates, one obtains

εyy = 1 −
∑

α

ω2
pα

ζk2
Cαγ 2

α μα

∫ 1

−1
dv‖

v2
‖

ζ − v‖

∫ 1/γ‖

0
dv⊥ γ 5v⊥e−γαμαγ

∫ 2π

0
dθ eγαμαβαγ v⊥ cos θ , (A18)

which, making use of Eq. (A5), reduces to

εyy = 1 −
∑

α

2πω2
pαζ

k2
Cαγ 2

α μα

∫ 1

−1
dv‖ v2

‖
Sα

10

ζ − v‖
. (A19)

Making use of Eq. (A12), one obtains

Sα
10(v‖) = γ 3

‖
γ 2

α μ2
α

d2

dγ 2
‖

∫ ∞

0
dt I0(μαγαβα

√
t2 − 1)e−γαμαγ‖t =

(
γ‖

γαμα

)3 d2

dγ 2
‖

[
e−γαμα�α

�α

]
, (A20)

and therefore

Sα
10(v‖) =

(
γ‖

γαμα

)3
[

2γ 2
‖ + β2

α

�5
α

+ γαμα

(
2γ 2

‖ + β2
α

)
�4

α

+ γ 2
α μ2

αγ 2
‖

�3
α

]
e−γαμα�α . (A21)

Combining Eqs. (A19) and (A21) then readily yields

εyy = 1 −
∑

α

2πω2
pα

ζk2
Cαγα

∫ 1

−1
dv‖

v2
‖γ

3
‖

ζ − v‖

[
2γ 2

‖ + β2
α

γ 2
α μ2

α�5
α

+ 2γ 2
‖ + β2

α

γαμα�4
α

+ γ 2
‖

�3
α

]
e−γαμα�α . (A22)

Finally, let us rewrite the nondiagonal dielectric tensor element εxy as

εxy =
∑

α

ω2
pα

k2ζ
μαγ 2

α βα − ω2
pα

k2
Cαγ 2

α μα

∫
d3u vx

e−γαμα (γ−βαux )

ζ − vy
, (A23)

Changing to cylindrical velocity variables leads to

εxy =
∑

α

ω2
pα

k2ζ
μαγ 2

α βα − 2πω2
pα

k2
Cαγ 2

α μα

∫ 1

−1

dv‖
ζ − v‖

∫ 1/γ‖

0
dv⊥ γ 5v2

⊥e−γαμαγ

∫ 2π

0
dθ eγαμαβαγαv⊥ cos θ . (A24)

Using Eq. (A5) gives

εxy =
∑

α

ω2
pα

k2ζ
μαγ 2

α βα − 2πω2
pα

k2
Cαγ 2

α μα

∫ 1

−1
dv‖

Sα
21

ζ − v‖
, (A25)

013205-16



PHYSICS OF RELATIVISTIC COLLISIONLESS SHOCKS: … PHYSICAL REVIEW E 100, 013205 (2019)

where Sα
21 can be recast in the form

Sα
21(v‖) = γ 2

‖

∫ ∞

1
dt

(
t − 1

t + 1

)1/2

t (t + 1)I1(γαμαβα

√
t2 − 1)e−γαμαγ‖t . (A26)

Exploiting Eq. (A12) yields

Sα
21(v‖) = γ 2

‖
βαγ 3

α μ3
α

(
d2

dγ 2
‖

− γαμα

d

dγ‖

)[(
γ‖
�α

− 1

)
e−γαμα�α

]
. (A27)

After evaluation of the derivatives, one finds

Sα
21(v‖) = βα

(
γ‖

γαμα

)3[
γ 2

α μ2
α

�3
α

+ 3γαμα

�4
α

+ 3

�5
α

]
e−γαμα�α . (A28)

Combining Eqs. (A25) and (A28), one obtains the simplified expression

εxy =
∑

α

ω2
pα

k2ζ
μαγ 2

α βα − 2πω2
pα

k2
Cαγαβα

∫ 1

−1
dv‖

γ 3
‖

ζ − v‖

[
1

�3
α

+ 3

γαμα�4
α

+ 3

γ 2
α μ2

α�5
α

]
e−γαμα�α . (A29)

It should be stressed that the compact expressions (A16), (A22), and (A29) are strictly valid for Imζ > 0 only. They thus
lend themselves readily to the numerical resolution of the dispersion relation (28) when searching for (purely growing) unstable
modes only, as has been done in [63,69,72]. If damped modes are also examined, care must be taken for the analytic extension
to the lower complex ζ plane of the integrals, owing to the presence of branch points at ζ = ±1 [69,73].

To obtain analytic approximations, it is convenient to make the change of integration variable v‖ → s, such that γ‖ =√
1 + s2/γ 2

α . This gives the alternative expressions

εxx = 1 +
∑

α

ω2
pα

k2ζ 2
μαγ 2

α β2
α − ω2

pα

4k2ζ

μ2
αγα

K2(μα )
Aα

xx, (A30)

εyy = 1 −
∑

α

ω2
pα

2k2ζ

μ2
αγα

K2(μα )
Aα

yy, (A31)

εxy =
∑

α

ω2
pα

k2ζ
μαβαγ 2

α − ω2
pα

2k2

μ2
αγα

K2(μα )
Aα

xy, (A32)

where the Aα
lm terms are defined as

Aα
xx = 2

μα

√
1 − ζ 2

∫ ∞

−∞
ds

1

χα − s

{
γ 2

α β2
α

(s2 + 1)3/2
+ 1

μα

[
1

s2 + 1
+ 3β2

αγ 2
α

(s2 + 1)2

]
+ 1

μ2
α

[
1

(s2 + 1)3/2
+ 3β2

αγ 2
α

(s2 + 1)5/2

]}
e−μα

√
s2+1,

(A33)

Aα
yy = 1

μαγ 2
α

√
1 − ζ 2

∫ ∞

−∞
ds

s2

χα − s

×
{

1

(s2 + 1)1/2
+ γ 2

α β2
α

(s2 + 1)3/2
+ 1

μα

[
2

s2 + 1
+ 3γ 2

α β2
α

(s2 + 1)2

]
+ 1

μ2
α

[
2

(s2 + 1)3/2
+ 3γ 2

α β2
α

(s2 + 1)5/2

]}
e−μα

√
s2+1, (A34)

Aα
xy = βα

μα

√
1 − ζ 2

∫ ∞

−∞
ds

1

χα − s

×
{

1

(s2 + 1)1/2
+ γ 2

α β2
α

(s2 + 1)3/2
+ 3

μα

[
1

s2 + 1
+ γ 2

α β2
α

(s2 + 1)2

]
+ 3

μ2
α

[
1

(s2 + 1)3/2
+ γ 2

α β2
α

(s2 + 1)5/2

]}
e−μα

√
s2+1, (A35)

and we have introduced

χα = γαζ√
1 − ζ 2

. (A36)

APPENDIX B: LOW-TEMPERATURE EXPRESSION OF THE KINETIC DIELECTRIC TENSOR

In the following we expand the dielectric tensor elements in the nonrelativistic thermal limit μα � 1, of particular relevance
to the background plasma particles. Our starting point is Eqs. (A30)–(A35).

Let us first address εxx, by rewriting (A33) as

Aα
xx = βα

μα (1 − ζ 2)
Bα

xx(μα, χα ) (B1)
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where the integral function Bα
xx(μα, χα ) is of the form

Bα
xx(μα, χα ) =

∫ ∞

−∞
ds

fα (s)

χα − s
e−μαϕ(s). (B2)

Applying Laplace’s method to Bα
xx(μα, χα ) [74], one obtains to first order in 1/μα

Bα
xx(μα, χα ) � e−μαϕ(0)

∫ ∞

−∞
ds

e−s2√
μαχ2

αϕ′′(0)
2 − s

{
fα (0) + 1

μα

[
f ′′
α (0)

ϕ′′(0)
s2 −

(
ϕ(4) fα (0)

6ϕ′′(0)2
+ 2ϕ(3) f ′

α (0)

ϕ′′(0)2

)
s4 +ϕ(3)(0)2 fα (0)

ϕ′′(0)3
s6

]}
.

(B3)

Using ϕ(0) = 1, ϕ′′(0) = 1, ϕ(3)(0) = 0 and ϕ(4)(0) = −3, as well as the expansions fα (0) � γ 2
α β2

α + (1 + 3γ 2
α β2

α )/μα and
f ′′
α (0) � −3γ 2

α β2
α , one gets

Bα
xx(μα, χα ) � e−μα

∫ ∞

−∞
ds

e−s2

χ̃α − s

{
γ 2

α β2
α + 1

μα

[
1 + 3γ 2

α β2
α − 3γ 2

α β2
αs2 + γ 2

α β2
α

2
s4

]}
, (B4)

where we have defined

χ̃α =
√

μα

2
χα =

√
μα

2

γαζ√
1 − ζ 2

. (B5)

Introducing the well-known plasma dispersion function [66]

Z (η) = 1√
π

∫ ∞

−∞
ds

e−s2

x − η
, (B6)

and noting that Z ′(η) = −2[1 + ηZ (η)], Eq. (B4) can be conveniently expressed as

Bα
xx(μα, χα ) � −√

πe−μα

{[
γ 2

α β2
α + 1

μα

(
1 + 3γ 2

α β2
α

)]
Z (χ̃α ) + χ̃α

γ 2
α β2

α

μα

[
3

2
Z ′(χ̃α ) + 1

4

(
1 − χ̃2

αZ ′(χ̃α )
)]}

. (B7)

By combining this equation with Eqs. (A30) and (B1), and using the small-argument expansion K2(x) � √ π
2x e−x(1 + 15

8x ) [70],
one obtains the following low-temperature approximation of εxx:

εxx � 1 −
∑

α

ω2
pα

k2ζ 2
μαγ 2

α

{
β2

α

2
Z ′(χ̃α ) + 1

8μα

(
9 − 1

γ 2
α

)(
1 + Z ′(χ̃α )

2

)
− β2

α

μα

χ̃2
α

[
3

2
Z ′(χ̃α ) + 1

4

[
1 − χ̃2

αZ ′(χ̃α )
]]}

. (B8)

Note that χ̃α is the correct relativistic equivalent of the standard argument (η =
√

μα

2 ζ ) of the Z (η) function involved in the
nonrelativistic CFI dispersion relation [3]. A similar result was obtained in [75] in the case of electrostatic plasma waves.

Likewise, the integral involved in εyy (A31) can be expanded to first order in 1/μα:

Aα
yy � 2e−μα

μ2
α

√
1 − ζ 2

∫ ∞

−∞
ds

s2

χ̃α − s
e−s2

, (B9)

so that

εyy � 1 −
∑

α

ω2
pα

2k2(1 − ζ 2)
μαγ 2

αZ ′(χ̃α ). (B10)

Finally, we expand the integral involved in εxy (A32) as

Aα
xy(μα, χα ) � βαe−μα

μα (1 − ζ 2)

∫ ∞

−∞
ds

e−s2

χ̃α − s

{
γ 2

α + 1

μα

[
3γ 2

α + (2 − 3γ 2
α

)
s2 + γ 2

α

2
s4

]}
. (B11)

Combining this expression with Eq. (A32) and identifying the Z and Z ′ functions yields

εxy �
∑

α

ω2
pα

2k2ζ
μαβαγ 2

α

{
9χ̃α

4μα

Z (χ̃α ) − Z ′(χ̃α ) + χ̃2
α

μα

[(
3 − 2

γ 2
α

)
Z ′(χ̃α ) + 1

2

[
1 − χ̃2

αZ ′(χ̃α )
]]}

. (B12)

Expressions (B8), (B10), and (B12) provide the sought-for low-temperature expansions of the CFI dielectric tensor. The
involved Z and Z ′ functions can be readily evaluated in the entire complex plane using, e.g., the fast solver developed in [76].
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APPENDIX C: SERIES EXPANSION OF THE DIELECTRIC TENSOR

In similar fashion to [75], the dielectric tensor can be expanded in the form of an infinite series, which proves convenient for
deriving approximations in the kinetic regime.

Let us first address εxx, remarking that when Imχα > 0 Eq. (A33) can be rewritten as

Aα
xx = − 2i

μα

√
1 − ζ 2

∫ ∞

0
dt eitχα

∫ ∞

−∞
ds e−μα

√
s2+1−its

×
{

γ 2
α β2

α

(s2 + 1)3/2
+ 1

μα

[
1

s2 + 1
+ 3β2

αγ 2
α

(s2 + 1)2

]
+ 1

μ2
α

[
1

(s2 + 1)3/2
+ 3β2

αγ 2
α

(s2 + 1)5/2

]}
e−μα

√
s2+1, (C1)

where we have exploited the identity

1

χα − s
= −i

∫ ∞Imχα

0
dt eit (χα−s). (C2)

Equation (C1) can be put in the form

Aα
xx = 4i

μ3
α

√
1 − ζ 2

∫ ∞

0
dt eitχα

[
∂

∂b
J (t, μα, 1) − 2β2

αγ 2
α

∂2

∂b2
J (t, μα, 1)

]
, (C3)

where we have introduced [77]

J (t, λ, b) =
∫ ∞

−∞
ds

e−λ
√

s2+b−its

√
s2 + b

= 2K0[
√

b(λ2 + t2)]. (C4)

Substituting the above expression into Eq. (C1) yields

Aα
xx = − 4i

μ3
α

√
1 − ζ 2

∫ ∞

0
dt eitχα

[√
μ2

α + t2K1
(√

t2 + μ2
α

)+ β2
αγ 2

α

(
t2 + μ2

α

)
K2
(√

t2 + μ2
α

)]
. (C5)

Expanding eitχα =∑∞
n=0(itχα )n/n!, and making use of the identities [71]∫ ∞

0
dt tnK0(x

√
t2 + μ2) = 2

n−1
2 �
(

n+1
2

)
x

n+1
2

K n+1
2

(xμ), (C6)

d2

dx2
K0(xz) = z2

2
[K0(xz) + K2(xz)], (C7)

we obtain after some algebra

Aα
xx = −2

√
πγαζ

(1 − ζ 2)

{
i

∞∑
m=0

(−1)m

�(m + 1)

(
μαχ2

α

2

)m− 1
2
[

1

μα

Km+ 3
2
(μα ) + β2

αγ 2
α Km+ 5

2
(μα )

]

−
∞∑

m=0

(−1)m

�
(
m + 3

2

)(μαχ2
α

2

)m[ 1

μα

Km+2(μα ) + β2
αγ 2

α Km+3(μα )

]}
. (C8)

The above series can be further simplified using the multiplication theorem of Bessel functions [70], giving finally

εxx = 1 +
∑

α

ω2
pα

ω2
μαβ2

αγ 2
α +

√
πω2

pα

2k2(1 − ζ 2)

μ2
αγ 2

α

K2(μα )

{
i

√
2

μαχ2
α

[
K3/2

(
μα

√
1 + χ2

α

)
μα

(
1 + χ2

α

)3/4 + β2
αγ 2

α

K5/2
(
μα

√
1 + χ2

α

)(
1 + χ2

α

)5/4

]

−
∞∑

m=0

(−1)m

�
(
m + 3

2

)(μαχ2
α

2

)m[ 1

μα

Km+2(μα ) + β2
αγ 2

α Km+3(μα )

]}
. (C9)

Likewise, the integral involved in εyy (A31) can be recast as

Aα
yy = − i

μαγ 2
α

√
1 − ζ 2

∫ ∞

0
dt eitχα

[
I (t, μα, 1) − 4

μ2
α

∂

∂b
I (t, μα, 1) + 4β2

αγ 2
α

μ2
α

∂2

∂b2
I (t, μα, 1)

]
. (C10)

Here, we have defined

I (t, λ, b) =
∫ ∞

−∞
ds

s2e−λ
√

s2+b−its

√
s2 + b

, (C11)
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which can be solved in closed form as [77]

I (t, λ, b) = − 2bt2

t2 + λ2
K0[
√

b(λ2 + t2)] + 2b1/2(λ2 − t2)

(t2 + λ2)3/2
K1[
√

b(λ2 + t2)]. (C12)

As in the previous derivation, we substitute Eqs. (C12) into Eq. (C10), expand the exponential factor, and exploit [71]:∫ ∞

0
dt

t2λ+1Kν[
√

t2 + z2]

(t2 + z2)ν/2
= 2λ�(λ + 1)

zν−λ−1
Kν−λ−1(z). (C13)

It follows that

Aα
yy = − 2

√
πγαζ

μα (1 − ζ 2)

(
i

∞∑
m=0

(−1)m

�(m + 1)

(
μαχ2

α

2

)m+ 1
2
{

Km+ 1
2
(μα ) + 2

μα

[
1 + β2

α

(
m + 1

2

)]
Km+ 3

2
(μα )

}

+
∞∑

m=0

(−1)m

�
(
m + 1

2

)(μαχ2
α

2

)m[
Km(μα ) + 2

μα

(
1 + β2

αm
)
Km+1(μα )

])
. (C14)

Applying again the multiplication theorem of Bessel functions, we find the following expression for εyy:

εyy = 1 +
∑

α

√
πω2

pα

k2(1 − ζ 2)

μαγ 2
α

K2(μα )

{
i

√
μαχ2

α

2

[
K1/2

(
μα

√
1 + χ2

α

)(
1 + χ2

α

)1/4 + 2

μα

(
1 + β2

α

2

)
K3/2

(
μα

√
1 + χ2

α

)(
1 + χ2

α

)3/4

−β2
αχ2

α

K5/2
(
μα

√
1 + χ2

α

)(
1 + χ2

α

)5/4

]
+

∞∑
m=0

(−1)m

�
(
m + 1

2

)(μαχ2
α

2

)m[
Km(μα ) + 2

μα

(
1 + β2

αm
)
Km+1(μα )

]}
. (C15)

Reiterating the previous procedure, we first express the integral term involved in εxy (A32) as

Aα
xy = − iβα

μ3
α

√
1 − ζ 2

∫ ∞

0
dt eitχα

[
μ2

αJ (t, μα, 1) − 6
∂

∂b
J (t, μα, 1) + 4β2

αγ 2
α

∂2

∂b2
J (t, μα, 1)

]
. (C16)

Evaluating the derivatives of the function J defined by Eq. (C4), we obtain

Aα
xy =

√
πγαβαζ

(1 − ζ 2)

{
i

∞∑
m=0

(−1)m

�(m + 1)

(
μαχ2

α

2

)m− 1
2
[

2m

μα

Km+ 3
2
(μα ) − γ 2

α Km+ 5
2
(μα )

]

−
∞∑

m=0

(−1)m

�
(
m + 3

2

)(μαχ2
α

2

)m [ (2m + 1)

μα

Km+2(μα ) − γ 2
α Km+3(μα )

]}
. (C17)

Finally, Bessel-function identities allow us to obtain the following alternative expression for εxy:

εxy =
∑

α

ω2
pα

k2ζ
μαγ 2

α βα +
√

πω2
pαζ

k2(1 − ζ 2)

μαγ 2
α βα

K2(μα )

{
2i

√
μαχ2

α

2

(
1 + γ 2

α

χ2
α

)
K5/2

(
μα

√
1 + χ2

α

)(
1 + χ2

α

)5/4

+
∞∑

m=0

(−1)m

�
(
m + 3

2

)(μαχ2
α

2

)m[
(2m + 1)Km+2(μα ) − μαγ 2

α Km+3(μα )
]}

. (C18)
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