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The structure of Langmuir plasma waves carrying a finite orbital angular momentum is revised in the paraxial
approximation. It is shown that the kinetic effects related to higher-order momenta of the electron distribution
function lead to coupling of Laguerre-Gaussian modes and result in a modification of the wave dispersion and
damping. The theoretical analysis is compared to the three-dimensional particle-in-cell numerical simulations for
a mode with orbital momentum l = 2. It is demonstrated that propagation of such a plasma wave is accompanied
with generation of quasistatic axial and azimuthal magnetic fields which result from the orbital and longitudinal
momenta transported with the wave, respectively.
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I. INTRODUCTION

It was discussed in the seminal paper by Allen et al.
[1] that electromagnetic waves may carry orbital angular
momentum (OAM), while propagating in vacuum, which
can be transferred to particles if the wave is absorbed. This
feature has found various applications in optics for com-
pact storing of information, nanoscale imaging, and manip-
ulation [2]. Mathematically such beams are presented with
Laguerre-Gaussian functions, which are eigenmodes of the
paraxial optics equation in the cylindrical coordinates. Recent
publications show the potential applications of OAM modes
in particle focusing and acceleration, generation of strong
plasma waves, wake-field excitation, and quasistatic magnetic
fields [3–6].

Propagation of OAM optical beams in plasmas is asso-
ciated with excitation of plasma waves that may also carry
orbital momentum [7]. The study of these waves is of partic-
ular interest as they are coupled to plasma electrons and are
involved in such processes as Landau damping and particle
acceleration. The kinetic plasma waves in the cylindrical
geometry have been studied by Mendonça [8]. In contrast to
common plasma waves these “twisted plasmons” demonstrate
different dispersion and damping properties. However, the de-
velopment of the wave dispersion equation in Ref. [8] suffers
from some inconsistencies and properties of these twisted
modes, including the dispersion relation and the damping rate,
are not faultlessly analyzed. The present paper is dedicated to
a more detailed and consistent analysis of the twisted kinetic
plasma waves. It is shown that because of direct coupling of
plasma wave electric field to particles, the Laguerre-Gaussian
(LG) functions are not the eigenfunctions of the electron
kinetic equation. While the Poisson equation for the plasma
wave electric field can be developed in a series of LG func-
tions, these LG functions are coupled in the electron kinetic
equation because of the electron motion in the radial and

azimuthal direction. This coupling can be treated by using an
expansion on the paraxial parameter—the ratio of the plasma
wavelength to the radial width of the wave packet—which is
supposed to be small. By the presented analysis, the dispersion
properties of the twisted plasmons are shown to be strongly
mode dependent in certain parameter ranges.

An additional area of interest is the generation of qua-
sistatic magnetic field on the second order of the am-
plitude of the plasmon. This phenomenon was previously
observed in simulations described in Ref. [9] where two
co-propagating OAM laser pulses with differing angular
mode, frequency, and wavelength are injected into a plasma
and couple with an OAM plasmon. The resulting plasmon is
shown to generate a second-order quasistatic magnetic field.
The distribution function obtained in the analysis performed
here is used to calculate the second-order magnetic field.
The resulting field structure is significantly more complex
than the field described in Ref. [9]; we also present nu-
merical results which match the theoretical predictions made
here.

In what follows we briefly recall the representation of the
paraxial optics wave equation in a series of LG functions and
apply the same approach to electron plasma wave equation.
It is shown that the modes with different radial and azimuthal
wave numbers are coupled to each other, so no definite angular
momentum can be associated with a plasma wave. However,
in the paraxial approximation, where the plasma wavelength
is much smaller than the transverse size of the wave beam,
only the coupling between neighboring modes can be retained
and the dispersion equation can be presented in a closed form.

The analysis of this dispersion equation in several partic-
ular cases provides the examples of the specific evolution of
twisted plasma waves and their coupling to plasma particles.
The analytical results are compared and illustrated with three
dimensional numerical simulations.
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II. DISPERSION EQUATION FOR THE PLASMA WAVE
IN A CYLINDRICAL GEOMETRY

A. LG modes in optics

An electric field E of the electromagnetic wave propa-
gating in vacuum along the z axis can be represented in an
envelope approximation as

E = e E0(τ ) exp(−iωt + ikz)U (z, r, θ ), (1)

where e is the constant polarization unitary vector, ω is the
wave frequency, k = ω/c is the axial wave number, τ = t −
z/c is the co-propagating time, E0(τ ) is the slowly changing
in time amplitude, and a scalar function U is describing the
waveform in the transverse plane, with r, θ , and z being the
radial, azimuthal, and longitudinal components. It is a solution
of the paraxial wave equation,

(2ik∂z + ∇2
⊥)U = 0, (2)

where the second derivative in z is neglected assuming that
function U evolves slowly in the propagation direction. In the
cylindrical geometry the function U can be developed in a
series of eigenmodes, which are the LG functions:

U (z, r, θ ) =
∑
p,l

cp,l Fp,l (X ) exp

(
ilθ + iϕp,l + ikr2

2 f

)
. (3)

Here X = r2/w2
b is the normalized radial coordinate, wb(z) =

wb,0

√
1 + z2/z2

R is the beam radius, for brevity wb(z) is re-
ferred to as wb throughout the text, wb,0 is the beam waist at
the focal point, zR = kw2

b,0 is the Rayleigh length, ϕp,l (z) =
−(2p + |l| + 1) arctan(z/zR) is the Gouy phase, f (z) = z +
z2

R/z is the wavefront curvature, and cp,l is a constant co-
efficient. The radial wave number p � 0 is an integer that
numerates radial modes. The integer l could be positive or
negative, and it numerates the orbital angular momentum
(OAM).

The eigenfunction Fp,l is the LG mode:

Fp,l (X ) =
√

p!

(|l| + p)!
X |l|/2L|l|

p (X ) e−X/2, (4)

where L|l|
p (X ) is a generalized, or associated, Laguerre poly-

nomial of degree p and l which may be defined by the
Rodriguez representation [10]:

Ll
p(x) = (p!)−1exx−l d p

x (e−xxl+p). (5)

The set of functions Fp,l are orthogonal and normalized ac-
cording to the following relation:∫ ∞

0
dX Fp,l (X ) Fp′,l (X ) = δp,p′ , (6)

where δp,p′ is the symbol of Kronecker. The orthogonality on
different angular momenta l and l ′ is assured by the factor eilθ

in Eq. (3). The eigenfunctions Fp,l do not depend on the sign
of the OAM.

So a relatively simple and compact representation of the
OAM beam in optics in vacuum, or in a dielectric medium
without spatial dispersion, originates from Eq. (2), the Lapla-
cian in the transverse plane comes from Maxwell’s equations.
Presentation of the wave field in a series of LG functions

(3) is valid if the paraxial parameter is sufficiently small,
1/kwb,0 � 1. Application of the same approach to the elec-
trostatic electron plasma wave is presented in the next section.

B. LG modes presentation for the plasma wave

We consider a small amplitude plasma wave in a constant
density plasma described by the electrostatic potential � and
the electron distribution function fe. The potential satisfies the
Poisson equation,

	� = e

ε0
δne, (7)

where e is the electron charge, ε0 is the vacuum dielectric
permittivity, and δne = ∫

dv δ fe is the perturbation of the
electron density. The potential � is related to the deviation
of the electron distribution function δ fe = fe − fe0 from the
equilibrium Maxwellian distribution,

fe0(r, v, t ) = ne0(2πTe/me)−3/2 exp(−ε/Te), (8)

which is characterized by the density ne0, temperature Te,
electron energy ε = mev2/2, and the electron mass me.

For a monochromatic plasma wave, with the frequency ω

and wave number k, we are looking for solutions to the Pois-
son equation (7) and the linearized Vlasov kinetic equation
in the paraxial approximation, 1/kwb,0 � 1. Following the
standard approach which was already applied for the twisted
plasma waves in Ref. [8], we represent the solution of this
system as a series of LG functions:

�(z, r, θ, t ) =
∑
p,l

φp,lFp,l (X )

× exp(−iωt + ikz + ilθ + iϕp,l + iqX ),

(9)

δ fe(z, r, θ, v, t ) =
∑
p,l

fp,l (v)Fp,l (X )

× exp(−iωt + ikz + ilθ + iϕp,l + iqX ),

(10)

where q = kw2
b/2 f = z/2zR is the factor accounting for the

front curvature. Similar to the use of the solution set shown
by Eq. (3) to solve Eq. (2), we use the set of Eqs. (9) and (10)
to solve the Poisson equation in the paraxial approximation:

k2� = − e

ε0

∫
dv δ fe. (11)

It results in a system of algebraic equations for the potential
amplitudes φp,l and partial distribution functions fp,l (v). The
Poisson equation (11) is linear, it thus provides relations
between the coefficients of the same mode:

φp,l = − e

ε0k2

∫
dv fp,l . (12)

The situation is more complicated with the Vlasov equation,
which does not separate into a set of independent equations
because the gradient operators vz∂z and v⊥ · ∇⊥couple the
modes with different orbital momenta and radial structure.
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The axial derivative can be presented as follows:

e−iϕp,l −iqX vz∂ze
iϕp,l +iqX F (X ) = −(2p + |l|) ivz

kw2
b

F + ivz

2kw2
b

XF − vz

kw2
b

XF ′,

where F ′ = dF/dX . All the terms in the right-hand side are of the second order over the paraxial parameter 1/kwb with respect
to the dominant term ikvzF . These second-order terms are neglected in our analysis. Then the kinetic equation reads

−i(ω − kvz ) δ fe + v⊥ · ∇⊥δ fe = −iekvz�∂ε fe0 − ev⊥ · ∇⊥�∂ε fe0, (13)

where the expression ∂v fe0 = mev∂ε fe0 is used for the derivative of the electron distribution function assuming that it depends
only on the electron energy. The operator of differentiation on transverse coordinates can be calculated as follows:

e−iqX v⊥ · ∇⊥eilθ+iqX F (X ) = e−iqX

[
v⊥ cos(θ − θv ) ∂r − v⊥

r
sin(θ − θv ) ∂θ

]
eilθ+iqX F (X )

= v⊥
wb

ei(l+1)θ−iθv

√
X F ′ + v⊥

wb
ei(l−1)θ+iθv

√
X F ′ − iq

v⊥
wb

ei(l+1)θ−iθv

√
X F + iq

v⊥
wb

ei(l−1)θ+iθv

√
XF

− l

2
√

X

v⊥
wb

ei(l+1)θ−iθv F + l

2
√

X

v⊥
wb

ei(l−1)θ+iθv F.

Here vr = v⊥ cos(θ − θv ) and vθ = −v⊥ sin(θ − θv ) are the radial and azimuthal components of electron velocity and θv is the
angle of the electron velocity in the transverse plane. By using the properties of the Laguerre functions [10], the derivative of the
function F can be expressed as

√
X F ′

p,l (X ) = 1

2

√
p + 1Fp+1,l−1(X ) − 1

2
√

pFp−1,l+1(X ). (14)

See Appendix A for details. By multiplying Eq. (13) by the factor Fp′,l ′ exp(−il ′θ − iqX ) and performing integration over the
transverse coordinates, one obtains the following system of algebraic equations for the coefficients fp,l :

(ω − kvz ) fp,l + i
∑
p′,l ′

Mp,l;p′,l ′ fp′,l ′ = ekvzφp,l∂ε fe0 − ie
∑
p′,l ′

Mp,l;p′,l ′φp′,l ′∂ε fe0, (15)

where the matrix elements Mp,l;p′,l ′ are defined as follows:

Mp,l;p′,l ′ = 1

πw2
b

∫ 2π

0
dθ

∫ ∞

0
dr r Fp,l (X )e−ilθ−iqX v⊥ · ∇⊥eil ′θ+iqX Fp′,l ′ (X ). (16)

Performing the integrations in Eq. (16) one finds the following expression for the matrix elements:

Mp,l;p′,l ′ = v⊥
wb

[e−iθvδl,l ′+1K−
p,l;p′,l ′ + eiθvδl,l ′−1K+

p,l;p′,l ′ ]. (17)

The matrices K+ and K− describe coupling of the modes with neighboring orbital moments:

K∓
p,l;p′,l ′ = exp[i(ϕp′,l ′ − ϕp,l )]

2

∫ ∞

0
dX Fp,l (X )

[√
p′ + 1 Fp′+1,l ′−1(X ) −

√
p′ Fp′−1,l ′+1(X )

+ iz

zR

√
X Fp′,l ′ (X ) ∓ l ′

√
X

Fp′,l ′ (X )

]
. (18)

Considering Eq. (15) one can see the principal difference from the study presented in Ref. [8], where couplings between the
neighboring orbital modes were neglected and the operator v⊥ · ∇⊥ was replaced by its average value for each mode separately.
This set of equations can be further simplified by developing the elements of the electron distribution function in Fourier series
of the velocity angle:

fp,l (θv ) =
∑

m

f (m)
p,l e−imθv .

Then by integrating Eq. (15) over the azimuthal velocity angle θv one obtains a series of equations for the moments of the partial
distribution function f (m)

p,l :

(ω − kvz ) f (m)
p,l + i

v⊥
wb

∑
p′

[
K−

p,l;p′,l−1 f (m−1)
p′,l−1 + K+

p,l;p′,l+1 f (m+1)
p′,l+1

]

= ekvzφp,lδm,0∂ε fe0 − ie
v⊥
wb

∑
p′

[K−
p,l;p′,l−1φp′,l−1δm,1 + K+

p,l;p′,l+1φp′,l+1δm,−1]∂ε fe0. (19)
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Along with Eq. (12), which includes the function f (0)
p,l , this

system fully defines linear plasma waves with arbitrary or-
bital momentum. The LG modes are coupled both in orbital
momentum l to close neighbors and in radial number p in the
first order on the paraxial parameter.

C. Dispersion equation for the twisted plasma wave

The system of Eqs. (12) and (19), obtained in the parax-
ial approximation (1/kwb � 1), could be further simplified.
The paraxial approximation implies smallness of the mode-
coupling terms. Thus, the equation for f (0)

p,l in (19) can be

simplified by accounting for coupling to f (±1)
p,l but neglecting

the higher-order harmonics. Then, the equations for the first
harmonics read

(ω − kvz ) f (±1)
p,l = −i

v⊥
wb

∑
p′

K∓
p,l;p′,l∓1

× (
f (0)

p′,l∓1 + eφp′,l∓1∂ε fe0
)
. (20)

Substituting this expression into Eq. (19) for the harmonic f (0)
p,l

one finds

f (0)
p,l = e

kvz

ω − kvz
φp,l∂ε fe0

− v2
⊥

w2
b

1

(ω − kvz )2

∑
p′

Q(l )
p,p′

(
f (0)

p′,l + eφp′,l∂ε fe0
)
,

(21)

where the notation for the mode-coupling coefficient is intro-
duced:

Q(l )
p,p′ =

∑
p′′�0

[K−
p,l;p′′,l−1K+

p′′,l−1;p′,l + K+
p,l;p′′,l+1K−

p′′,l+1;p′,l ].

(22)
The second term in the right-hand side of Eq. (21) contains
the dominant term with p′ = p and all other terms with p′ 	= p
are of the second order. By retaining the first-order terms one
obtains the final expression for f (0)

p,l :

f (0)
p,l =

[
−1 + ω (ω − kvz )

(ω − kvz )2 + Q(l )
p,pv

2
⊥/w2

b

]
eφp,l∂ε fe0. (23)

In the second term, it is important to account for the second-
order term in the denominator, which shifts the resonance con-
dition ω = kvz due to the transverse structure of the plasma
wave. By substituting this expression for the electron distri-
bution function in the Poisson equation (12) the dispersion
equation for the twisted plasma wave is obtained:

ε(ω, k) = 1 + e2

ε0k2

∫
dv

[
−1 + ω (ω − kvz )

(ω − kvz )2 + Q(l )
p,pv

2
⊥/w2

b

]

× ∂ε fe0 = 0. (24)

The solution of this equation in the limit ω 
 kvth, where
vth is the electron thermal velocity, can be found by using a
standard expansion procedure. Here we consider the equilib-
rium distribution function (8), but the expression (24) is more
general. A nonequilibrium distribution function may result

from the corresponding plasma wave modes. The real part of
the dispersion equation (24) then reads

Re[ε(ω, k)] = 1 − ω2
pe

ω2

(
1 + 3k2v2

th

ω2
− 2Q(l )

p,p

k2w2
b

)
,

where ωpe =
√

e2ne0/meε0 is the plasma frequency. The
mode-coupling term contributes then to the plasma wave
dispersion:

ω2 = ω2
pe

(
1 + 3k2λ2

De − 2Q(l )
p,p

/
k2w2

b

)
. (25)

Here λDe = vth/ωpe is the Debye length. The last term in the
parenthesis could be comparable with the thermal dispersion.
As it is shown below in Eq. (29) the coefficients Q(l )

p,p are
negative and consequently the OAM and final radial extension
of the plasma wave increase its dispersion.

By taking the residue in the resonance terms in the
right-hand side of Eq. (24) one finds an expression for the
plasma wave damping. The Landau resonance in the case of
plane wave vz = ω/k splits into two resonances v±

z = ω/k ±
(v⊥/kwb)

√
−Q(l )

p,p shifted with respect to the axial phase
velocity. By considering the residues of these two resonances
one finds expression for the imaginary part of the dielectric
permittivity:

Im[ε(ω, k)] =
√

π

2

ω2
peω

k3v3
th

exp

(
− ω2

2k2v2
th

)

× R

(
2ω

k2vthwb

√
−Q(l )

p,p

)
. (26)

Here, the function R(ξ ) = ∫ ∞
0 du u exp(−u2/2) cosh(uξ ) ac-

counts for the OAM contribution. The corrections due to
the orbital momentum of the plasma wave are of the same
order to the dispersion and to the damping. The quantitative
contribution is defined by the value of the coupling coefficient
Q(l )

p,p.
Calculation of the coefficients K± is presented in

Appendix A. There are only four nonzero terms in the coeffi-
cients K−:

K−
p,l;p,l−1 = −1

2

(
1 − i

z

zR

)√
l + p,

K−
p,l;p+1,l−1 = −1

2

(
1 + i

z

zR

)√
p + 1,

K−
p−1,l+1;p,l = −1

2

(
1 + i

z

zR

)√
p,

K−
p,l+1;p,l = −1

2

(
1 − i

z

zR

)√
l + p + 1. (27)

The corresponding matching coefficients in the series K+ read

K+
p,l−1;p,l = 1

2

(
1 + i

z

zR

)√
l + p,

K+
p+1,l−1;p,l = 1

2

(
1 − i

z

zR

)√
p + 1,

K+
p,l;p−1,l+1 = 1

2

(
1 − i

z

zR

)√
p,

K+
p,l;p,l+1 = 1

2

(
1 + i

z

zR

)√
l + p + 1. (28)
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Summing these coefficients according to Eq. (22) one finds
the final expression for the coupling coefficient:

Q(l )
p,p′ = −

(
1 + z2

z2
R

) (
p + |l| + 1

2

)
. (29)

As one can see, the mode p, l is coupled in general to four
neighboring modes: p, l ± 1 and p ± 1, l ∓ 1. In the case
p = 0 only three modes are coupled: 0, l ± 1 and 1, l − 1.
Finally, the principal mode 0,0 is coupled to two modes 0,1
and 1,−1.

All coupling coefficients are negative. This implies, in
agreement with qualitative expectations, that presence of
OAM increases the plasma wave dispersion and damping. The
final expressions can be written as follows:

ω2 = ω2
pe

(
1 + 3k2λ2

De + 2p + |l| + 1

k2w2
b

)
, (30)

Im ω

ω
= −

√
π

8

1

k3λ3
De

exp

(
− ω2

2k2v2
th

)

× R

(√
p + (|l| + 1)/2

k2λDewb

)
. (31)

Note that these expressions are rather different from the
expressions (26) and (30) for the plasma wave dispersion and
damping proposed in Ref. [8]. In the limit of a very wide
(almost planar) wave one finds the standard expressions for
the dispersion and damping of a plane Langmuir wave. In con-
trast, in the case of sufficiently narrow beams, where kwb,0 <

1/kλDe, the OAM corrections dominate, the function R in that
limit ξ 
 1 behaves as R(ξ ) ∼ √

2π ξ exp(ξ 2/2). Graphical
representations of these two functions with comparisons to
the standard dispersion relation and damping are presented
in Fig. 1. As expected, we observe that the OAM carried by
plasma waves impacts dispersion and damping terms as the
plasma wave narrows, resulting in an increase of both terms.

III. STRUCTURE OF A VORTICAL PLASMA WAVE

A. Electric field of a plasma wave carrying
an orbital momentum

As an example of LG plasma wave con sidered in the
previous section, we consider here a structure of a single mode
p, l within the Rayleigh zone |z| � zR. The electric potential
(9) contains only one term characterized by the amplitude φp,l :

�(z, r, θ ) = φp,lFp,l (X ) cos(kz − ωt + lθ ), (32)

where the radial part is given by the function Fp,l (r2/w2
b )

(4). The electric field is found by taking the gradient of the
potential:

Ez = E0Fp,l (X ) sin(kz − ωt + lθ ), (33)

Eθ = lE0

kwb
X −1/2Fp,l (X ) sin(kz − ωt + lθ ), (34)

Er = −2
E0

kwb
X 1/2F ′

p,l (X ) cos(kz − ωt + lθ ), (35)

where E0 = kφp,l is the amplitude of the axial electric field.
The axial field dominates; the transverse fields are smaller

FIG. 1. Dispersion (a) and damping (b) of the OAM plasma
wave calculated using Eqs. (30) and (31). Values on these graphs
are calculated using the wave width wb,0/λD = 12 (red triangles),
25 (blue circles), and 100 (green diamonds) and for the OAM
conditions l = 2, p = 0. The black crossed line on (a) shows the
standard Bohm-Gross dispersion corresponding to wb,0/λD → ∞,
while the black dashed line on (b) shows the damping rate in the
limit k2λDewb,0 
 1.

by a factor 1/kwb � 1. The radial field is phase shifted with
respect to the azimuthal and axial fields.

It is important to assure that the radial and azimuthal
electric fields are not singular at the beam axis. As the
radial function behaves at the origin X � 1 as Fp,l ∝ X |l|/2,
the fields in question behave as Eθ ∝ r|l|−1 and Er ∝ r|l|−1.
Therefore, for l = ±1 these fields are nonzero at the axis,

Eθ (r = 0) = ± E0

kwb,0

√
p + 1 sin(kz − ωt ± θ ),

Er (r = 0) = − E0

kwb,0

√
p + 1 cos(kz − ωt ± θ ).

This mode l = 1 has been excited in Ref. [6]. We can better
understand the structure of the mode l = ±1 by presenting
these fields in the Cartesian coordinates:

Ex(x = 0, y = 0) = − E0

kwb,0

√
p + 1 cos(kz − ωt ),

Ey(x = 0, y = 0) = ± E0

kwb,0

√
p + 1 sin(kz − ωt ).

These fields are regular; they correspond to the field of a
dipole rotating in the clockwise direction.
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B. Electron distribution function in the field of a plasma wave

The dominant term in the expansion of the electron dis-
tribution function (10) is given by Eq. (23). In the first-
order expansion over the paraxial parameter 1/kwb � 1, the
expression is straightforward:

f (0)
p,l = kvz

ω − kvz
eφp,l∂ε fe0. (36)

However, there are other coefficients that are of the first order.
This follows from Eq. (20) by taking into account the fact
that nonzero coefficients are given by Eqs. (27) and (28). The
three components of the electron distribution function in the
first order are the following:

f (±1)
p,l±1 = ± iv⊥

2w

ω

(ω − kvz )2
eφ0,1∂ε fe0

√
l + p + 1 ± 1

2
, (37)

f (±1)
p∓1,l±1 = − iv⊥

2w

ω

(ω − kvz )2
eφ0,1∂ε fe0

√
p + 1 ∓ 1

2
. (38)

With these expressions one can calculate the explicit form of
the electron distribution function:

δ fe = eE0

ω − kvz
∂ε fe0

[
vzFp,l (X ) cos(kz − ωt + lθ )

+ vθ l

kwb

ω

ω − kvz
X −1/2Fp,l (X ) cos(kz − ωt + lθ )

− 2
vr

kwb

ω

ω − kvz
X 1/2F ′

p,l (X ) sin(kz − ωt + lθ )

]
. (39)

Here the radial and azimuthal electron velocities vr =
v⊥ cos(θ − θv ) and vθ = −v⊥ sin(θ − θv ) are introduced the
same way as in Eqs. (16) and (17). Coupling of the dominant
mode p, l to neighboring modes results in the appearance of
azimuthal and radial electron velocities in the expression for
the electron distribution function.

This expression can be used for the calculation of the mo-
ments of electron distribution function. The lowest moments,
the perturbation of density and electric current, can also
be found directly from the Poisson and Ampere equations.
Explicit solutions for the electron distribution function for
mode p = 0, l = 2 are derived in Appendix B. According to
Eq. (7), the density perturbation reads

δne

ne0
= − keE0

meω2
pe

Fp,l (X ) cos(kz − ωt + lθ ). (40)

The electric current follows from the Ampere relation, je =
−ε0∂t E:

jz = ε0ωE0Fp,l (X ) cos(kz − ωt + lθ ), (41)

jθ = ε0ω
lE0

kwb
X −1/2Fp,l (X ) cos(kz − ωt + lθ ), (42)

jr = 2ε0ω
E0

kwb
X 1/2F ′

p,l (X ) sin(kz − ωt + lθ ). (43)

The same expressions can be found by integrating the expres-
sion (39) for the electron distribution function and accounting
for the dispersion relation ω ≈ ωpe. One can also calculate the
orbital momentum carried by electrons in the plasma wave. In

the first order on the wave amplitude one finds

lz = mer
∫

dv vθ δ fe

= −ne0

ω
eE0X −1/2Fp,l (X ) cos(kz − ωt + lθ ). (44)

It oscillates in space and time and does not create a magnetic
field.

C. Numerical modeling

In order to test the analytical results presented in this
article we carry out numerical calculations in a kinetic frame-
work. These numerical calculations are performed using the
particle-in-cell (PIC) code OCEAN [11]. A three-dimensional
(3D) box with dimensions 1200 × 1200 × 160 cubic cells
with sides of length δl = λDe is filled with a uniform hydrogen
plasma to a density ne,0 and temperature of Te/mec2 = 1.54 ×
10−3, while ions are fixed. In order to properly resolve fields at
nonrelativistic amplitudes more than 100 particles per cell are
required to achieve a high enough signal-to-noise ratio to mea-
sure second-order effects. The boundary condition along the
propagation axis is periodic, while in the transverse directions
they are absorbing for both fields and particles. In order to
facilitate a simple periodic plasma wave with OAM the Gouy
phase and front curvature are ignored for this analysis.

Simulations model a plasma wave with an OAM mode of
p = 0, l = 2, and assuming a phase velocity ω/k = c to avoid
damping and trapped particles. The length of the box was
chosen so that it fits exactly one wavelength with kLz = 2π .
The width of the plasma wave wb/λDe = 400/π being chosen
so that kwb 
 1 to reduce additional dispersion from the
vortex terms in Eq. (30) and so that k2wbλDe 
 1 to reduce
the vortex terms in Eq. (31).

No electromagnetic field is considered to excite the plas-
mon. To model this wave we impose a perturbative electric
field of the form described in Eqs. (33)–(35). This pertur-
bation is imposed volumetrically on each time step with the
dimensionless amplitude δa0 = eE0/mecωpeNdt , where Ndt is
a number of time steps over 10 plasma periods so that Ndt =
10Tpe/dt . The value of δa0 is chosen so that the resulting
perturbation increases linearly from zero to the maximum
value a0 = 0.3. After that time the wave is allowed to evolve
freely in plasma without any driver over more than 20 peri-
ods. Such a method of plasma wave excitation is not 100%
efficient and it results in the maximum amplitude of the
free plasma wave of a0 = 0.2. That difference between the
imposed and observed field of the plasma wave is explained
by an impedance to the system due to the thermal effects and
the positioning of the absorbing boundaries.

Figure 2 compares the simulation results for electron
density, azimuthal, and radial electric fields with theoretical
values given by Eqs. (40), (34), and (35) with a0 = 0.2. The
transverse slices given in the left column clearly display four
azimuthal lobes expected for an l = 2 mode; the more detailed
comparison on the right shows line outs from the numerical
calculations comparing extremely well with the theoretical
mode. The line-out plots shown in the figure are filtered using
a Gaussian filter with a width of one cell, which removes the
high-frequency noise; the results without the filter are also
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FIG. 2. Results from a PIC simulation 16 periods after the initial
10-period setup phase. The plots on the top are of δne/ne0, the middle
of Eθ , and the bottom of Er . The electric fields are normalized by the
plasma field Ep = mecωpe/e. The plots on the left, (a), (c), and (e),
show transverse slices (with no image filter applied) taken from the
center of the PIC code box, with the propagation (z) axis going into
the page. The dashed lines shown in the transverse slices are the line
outs used to plot the graphics on the right. The plots on the right, (b),
(d), and (f), are line outs from the slices (filtered green, unfiltered
light green) compared with theoretical predictions with an a0 = 0.2
(black dashed lines) plotted against the position along the line outs d
plotted in (a), (c), and (e); this corresponds to ycosφ where φ is the
angle the line out would make with the y axis.

shown for comparison. More details of the setup and stability
of the simulation are described in Appendix C.

D. Magnetic field generation in the field of a plasma wave

Equation (44) shows that no magnetic field is generated
in the first order. However, it was shown in Ref. [12] that
a magnetic field can be generated as a result of second-
order effects. The general expressions for the magnetic field
generation by a plasma wave are derived by Bell et al. [12]
and Gorbunov et al. [13]. Following the approach developed in
this paper, the equation for the second-order vector potential
A(2) can be written as

(
∂2

t − c2∇2 + ω2
pe

)
A(2) = ε−1

0 j(2), (45)

where j(2) = −eδneve = j δne/ne0 is the second-order current.
According to the expressions (40)–(43), all three components
of the vector potential are generated in the second order on the
plasma wave amplitude. Explicit expressions for the vector
potential can be found from Eq. (45) in the paraxial approx-

imation, accounting only for the dominant axial derivative in
the Laplacian term:

Az = − ekE2
0

2meω3
F 2

p,l − ekE2
0

2meω

F 2
p,l

4k2c2 − 3ω2

× cos 2(kz − ωt + lθ ), (46)

Aθ = − elE2
0

2meω3wb
X −1/2F 2

p,l

− elE2
0

2meωwb

X −1/2F 2
p,l

4k2c2 − 3ω2
cos 2(kz − ωt + lθ ), (47)

Ar = − eE2
0

2meωwb

X 1/2(F 2
p,l )

′

4k2c2 − 3ω2
sin 2(kz − ωt + lθ ). (48)

It contains quasistationary components for the axial and az-
imuthal components and the component oscillating at the sec-
ond harmonic. The axial component dominates and two other
components are of the first order on the paraxial parameter.
The magnetic field B = ∇ × A(2) calculation is straightfor-
ward:

Bz = − elE2
0

meω3w2
b

(
F 2

p,l

)′
, (49)

Bθ = ekE2
0

meω3wb
X 1/2

(
F 2

p,l

)′
. (50)

The radial component of the magnetic field is zero, Br = 0,
with the relationship between the azimuthal and axial compo-
nents being Bθ /Bz = (kwb/l )X 1/2. It is of the first order on the
paraxial parameter compared to the axial component which is
of the second order. The magnetic field is constant; it does
not oscillate in time and in space. Magnetic field lines form
helices of a constant radius rotating in the direction opposite
to the sign of the orbital momentum: θ = θ0 − (k/l )(z − z0).
An illustration of such a magnetic field is presented in Fig. 3
for the mode p = 0, l = 2 where several 3D representations
of the data from the numerical simulation are given. The red
and blue surfaces show isodensity contours for positive and
negative perturbations; we note the four azimuthal lobes of the
l = 2 mode. The green and purple lines display the interior
and exterior magnetic field lines, which do not oscillate in
time.

It is important to note that the total magnetic flux over
any closed surface is zero:

∮
B · dS = ∫

dV ∇ · B = 0. In
particular,

∫ ∞
0 Bzr dr = 0 and magnetic field is zero at the

axis. Generation of that magnetic field is an adiabatic effect.
Its intensity is proportional to the square of the plasma wave
electric field and it disappears as soon as the plasma wave
disappears.

The azimuthal component of magnetic field is created
by the quasistatic electric current associated with the axial
momentum carried with the plasma wave. The axial com-
ponent of the magnetic field can be related to the orbital
momentum carried by the plasma wave. The latter can be
derived from the general expression for the electromagnetic
stress tensor [14]. In the case of a zero magnetic field it
reads Ti j = ε0(EiEj − 1

2δi jE2). In plasma we need also to
add the particle stress tensor σi j = ne0meuiu j . Then the wave
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FIG. 3. Three 3D views of the electron density deviation in the plasma wave, calculated in the OCEAN PIC code for the plasmon mode
p = 0, l = 2, data taken 16 periods after the initial 10 period setup phase. The views along the propagation axis, and across the transverse
axis, are shown with a parallel projection, and the final tilted image uses a convergent projection. The red and blue surfaces show surfaces of
constant δne/ne0, and the light green surface corresponds to a positive density perturbation with a value of 80% the amplitude of the plasmon.
The dark blue surface shows a negative density perturbation with the same absolute value as the red surface. In addition to the surfaces of
constant density the magnetic field lines for the interior (interior red thin lines) and exterior (exterior light thin purple lines) regions of the
plasmon are shown. The magnetic field lines are calculated using the magnetic field values taken from the PIC code and the MAYAVI2 [15]
streamline package; the first figure includes arrows to denote the direction of propagation of the magnetic field lines.

momentum is described by the projection of the stress tensor
on the correspondent direction divided by the phase velocity,
Pj = (k/ω)

∑
j ni(Ti j + σi j ). The dominant term in the ex-

pression for the axial component of the orbital momentum
reads

Lz = rPθk/ω = r (k/ω) (ε0EzEθ + ne0meuzuθ ) = ε0l

ω
E2

0 F 2
p,l .

(51)

Correspondingly, the total orbital momentum per unit length
carried with a twisted plasma wave is Lz = 2π

∫ ∞
0 r drLz =

πw2
bε0lE2

0 /ω. [Here the relation (6) for the normalization of
the radial functions is used.] One then can define the magnetic
moment per unit volume,

Mz = − e

me
Lz = − ε0el

meω
E2

0 F 2
p,l ,

and the total magnetic moment per unit length Mz =
−πw2

bε0elE2
0,1/meω. It can be noticed that one cannot obtain

the same expression for the magnetic moment by apply-
ing the definition of the magnetic moment of electrons as
Mz = r j (2)

θ = r jθ δne/ne0. The component of magnetic mo-
ment carried with the plasma wave field is lost in such a
definition.

The magnetic fields at later times in the PIC code
(Fig. 4) show a twisted solenoidlike magnetic field which
matches the theoretical calculation above. The numerical
values of the magnetic field match theoretical calculations
even after the plasmon is left to oscillate for ∼20 peri-
ods, despite being close to the noise threshold of the PIC
calculation.

The plasmon described in Ref. [9] appears to have the same
form and the same amplitude as that described in this paper.
With a plasmon of amplitude a0 = 0.15 − 0.25, an OAM
mode p = 0, l = 2, a plasma density ne0 = 4.5 × 1018 cm−3,
and a beam waist wb,0 = 5 μm the peak value in the axial
direction is 2.5–6.9 T, which is consistent with magnetic
field plotted in Fig. 2 of Ref. [9]. The azimuthal field in this
case, assuming a value of k = ωpe/c from the wave matching

conditions used in said paper, would have a similar peak value
to the axial components at 2.0–5.8 T. The theoretical analysis
undertaken in Ref. [9] involves considering ringlike current
structure that ignores the axial components, however, this
would not be sufficient to calculate the azimuthal magnetic
field. No azimuthal magnetic field is shown in the numerical
results, and so the full structure of the magnetic field cannot
be commented on further.

FIG. 4. Results from the same PIC simulation as in Fig. 2. The
plots on the top show the azimuthal magnetic field Bθ and the
bottom show the axial magnetic field Bz, both normalized to the
field Bp = meωpe/e. The plots on the left show the central transverse
slice from the PIC box (filtered using a Gaussian filter with a width
equal to one cell and the plots on the right show line outs from these
slices (light green unfiltered data, green filtered data) compared with
a theoretical model using a0 = 0.2 (black dashed line). Due to this
being a second-order effect there is considerable noise seen in the
magnetic field, despite there being ∼100 particles per cell in the
simulation. Nevertheless, after a filter is applied to the axial field,
a good match to the theoretical model can be seen.
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IV. CONCLUSIONS

This study of electrostatic electron plasma waves with
orbital angular momentum covers two main aspects of the
physics of these objects. The first aspect being the develop-
ment of a fully kinetic paraxial perturbation applied to the
electron distribution function. The analysis presented here
includes corrections due to the coupling of nearest-neighbor
modes due to gradient terms in the linearized Vlasov equation.
This new electron distribution function is used to develop a
dispersion equation allowing for the calculation of the phase
and group velocities of such a plasma wave including this
coupling. The wave orbital momentum and final radial extent
result in a stronger wave dispersion and stronger damping.
These effects become particularly important for the plasma
waves with wavelengths larger than kwb,0λDe. It is expected
that the collisionless damping of the twisted plasma wave will
result in the transfer of the wave orbital momentum to the
resonant electrons. The analytical results shown in this study
can be extended to higher amplitudes, if nonlinear phenomena
and wave breaking of plasma waves with the additional OAM
components will be considered.

The second subject of this study is magnetic field gen-
eration by an OAM plasmon. While the first-order field is
shown to be zero, in the second order a significant “twisted
solenoidlike” magnetic field is shown to exist in both theoret-
ical calculations and particle-in-cell simulations.
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APPENDIX A: CALCULATION OF THE
COUPLING COEFFICIENTS

Expression (14) for the derivative of Fp,l can be obtained
by using expression (5) for the Laguerre polynomial. By
taking a derivative of this expression one finds x(Ll

p)′ = (p +
1)Ll−1

p+1 − (l − x)Ll
p. At the same time, the Laguerre polyno-

mial can also be expressed in a power series [10]:

Ll
p(x) =

p∑
k=0

(−1)k (p + l )! xk

k! (p − k)! (l + k)!
. (A1)

By taking the derivative of this expression one finds another
presentation: (Ll

p)′ = −Ll+1
p−1. Combining both expressions for

the derivatives one has a relation between the Laguerre poly-
nomials of different order:

xLl+1
p−1(x) = −(p+1)Ll−1

p+1+(l − x)Ll
p. (A2)

This expression allows the presentation of the derivative of
Fp,l in the form given by Eq. (14).

The mode-coupling coefficient is given by Eq. (22). The
coefficients entering in this expression contain integrals of a
product of two Laguerre polynomials multiplied by a power
and exponential function:

I j (p, l; p′, l ′) =
∫ ∞

0
dx x je−xLl

p(x)Ll ′
p′ (x). (A3)

The method of evaluation of that integral consists in two steps.
First, the Laguerre polynomial with an index p′ is developed
in a power series according to Eq. (A1):

I j (p, l; p′, l ′) =
p′∑

k=0

(−1)k (p′ + l ′)!
k! (p′ − k)! (l ′ + k)!

×
∫ ∞

0
dx x j+ke−xLl

p(x). (A4)

The remaining integral can be calculated as follows: In the
case 0 � j + k � l − 1 its value is given in Ref. [10], Eq.
(7.414.11):∫ ∞

0
dx e−xx j+kLl

p(x) = ( j + k)! (l + p − j − k − 1)!

p! (l − j − k − 1)!
.

In the case j + k � l the remaining Laguerre polynomial Ll
p

can be represented according to Eq. (5):∫ ∞

0
dx e−xx j+kLl

p(x) = 1

p!

∫ ∞

0
dx x j+k−l d p

x

(
e−xxl+p

)
.

The integral in the right-hand side is calculated by integrating
it by parts p times. It has nonzero value only if j + k � l + p:∫ ∞

0
dx e−xx j+kLl

p(x) = (−1)p ( j + k)! ( j + k − l )!

p! ( j + k − l − p)!
.

Inserting these expressions in Eq. (A4) we find a representa-
tion for the integral I j (p, l; p′, l ′) as a finite sum:

I j (p, l; p′, l ′) =
p′∑

k=0

(−1)k (p′ + l ′)! ( j + k)!

p! k! (p′ − k)! (l ′ + k)!

⎧⎪⎨
⎪⎩

(p+l− j−k−1)!
(l− j−k−1)! , k � l − j − 1,

0, l − j � k � p + l − j − 1,

(−1)p ( j+k−l )!
( j+k−p−l )! , k � p + l − j.

(A5)

By using that expression for I j (p, l; p′, l ′) one can calculate
explicitly the expressions for the coefficients K±. Because of

the symmetry I j (p, l, p′, l ′) = I j (p′, l ′, p, l ), the summation
limits p + l − j � p′ and p′ + l − j � p need p′ + l − j �
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p � p′ − l + j and l + l ′ � 2 j. Then the nonzero coefficients
needed for calculation of the coupling coefficient Qpp are
given by Eqs. (27) and (28).

APPENDIX B: ELECTRON DISTRIBUTION FUNCTION
OF THE VORTICAL MODE (0, 2)

Here we present an example of the electron distribution
function for an LG plasma wave, considered in Sec. III, of
the mode p = 0, l = 2, and for simplification the Gouy phase
and front curvature are ignored. The corresponding radial
functions read

F0,2 = X/
√

2 e−X/2, F1,1 =
√

X/2 (2 − X ) e−X/2.

The electric potential (9) contains only one term characterized
by the amplitude φ0,2:

� = φ0,2√
2

r2

w2
b

e−r2/2w2
b cos(kz − ωt + 2θ ).

The electric field can then be found by taking the gradient
of the potential. The dominant term in the expansion of the
electron distribution function (10) is given by Eq. (23). In the
first-order expansion over the paraxial parameter 1/kwb � 1,
the expression is straightforward:

f0,2 = kvz

ω − kvz
eφ0,2∂ε fe0.

Other coefficients are of the first order. They are following
from Eq. (20) by taking into account the fact that nonzero
coefficients are given by Eqs. (27) and (28). The three compo-
nents of the electron distribution function in the first order are
the following:

f0,2±1 = iv⊥
2w

ω

(ω − kvz )2
eφ0,2∂ε fe0 e∓iθv

√
2 + 1 ± 1

2
,

f1,0 = − iv⊥
2w

ω

(ω − kvz )2
eφ0,2∂ε fe0 eiθv .

With these expressions one can calculate the explicit form of
the electron distribution function:

δ fe

fe0
= − a0c√

2v2
th

ω

ω − kvz

r

wb
e−r2/2w2

b

[
vz

r

wb
cos(kz − ωt + 2θ )

+ vθ

kwb

ω

ω − kvz
cos(kz − ωt + 2θ )

+ vr

kwb

ω

ω − kvz

(
r2

w2
b

− 2

)
sin(kz − ωt + 2θ )

]
.

Here the dimensionless amplitude a0 = ekφ0,2/meωc is in-
troduced. This expression can be used for calculation of the
moments of the electron distribution function.

APPENDIX C: NUMERICAL MODELING TECHNIQUES

There are several ways that a plasma oscillation can be
independently generated in a PIC simulation: by imposing a
perturbation on the electron distribution function and solving
the Gauss equation for a potential, or by imposing an electric
field of the correct form to generate the electron distribu-
tion function associated with the desired plasmon. The latter

FIG. 5. The upper plot shows the amplitude of the electric field
components, with red triangles showing the axial, blue diamonds the
azimuthal, green circles the radial electric fields, and finally black
crosses showing the electron density component. The vertical dashed
line shows the point in the simulation where the amplification process
stops. The horizontal dashed lines show the component amplitudes
for a reference a0 = 0.2 in the same color and marker scheme.
The lower plot shows the amplitude of magnetic field components
in the PIC simulation. Red lines with triangles correspond to the
axial field, and blue lines with diamonds to the azimuthal field, with
the solid line corresponding to the PIC simulation; the darker solid
line corresponds to an average over a Gaussian window over three
periods. No radial magnetic field is observable.

method has the advantage that it can be performed gradually
in time. Since one of the principle aims of the simulation
presented here is to demonstrate the existence of certain
second-order effects, a gradual onset method, as described in
Sec. III C, gives the system time to relax into a stable state.

The plasmon generated in the simulation presented here
attains an amplitude in the range 0.1 < a0 < 0.2. The electric
field across all components achieved a consistent amplitude
of a0 = 0.15 ± 0.01. The electron density component of the
plasmon has some nonlinear features where the positive den-
sity part of the wave has a slightly larger amplitude than
the negative density part; both the negative and positive am-
plitudes correspond to an a0 in the range 0.2 > a0 > 0.15.
Dependence of the amplitudes of the electric and magnetic
fields on time can be seen in Fig. 5. They are normalized
to mecωpe/e and meωpe/e, respectively. The frequency of the
plasmon matches that described by the dispersion relation
Eq. (A4), which in this case reduces to the simple result ω �
ωpe, with all electric field and density components oscillating
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with the same frequency. The single plasmon observable
in the simulation is stable for the duration of the simula-
tion (∼20 oscillations) after the initial 10 oscillation setup
phase.

To run a simulation with a grid consisting of 1200 ×
1200 × 160 cells and 100 particles per cell, approximately
24 h on 20 000 cores is required. Such a high resolution is
required for several reasons: the first reason being that the
temperature is required to be low to avoid such effects as wave
breaking and Landau damping; the second reason being that
when a lower resolution is used the amplification process is
less efficient as the observed plasmon becomes out of phase
with the amplifying field; thirdly the second-order magnetic
fields are not observable in conditions with greater noise. If

the grid size is reduced by a factor of 4 and the number of
particles reduced to just 10 per cell a stable plasma wave of
the same amplitude is still observable for the duration of the
simulation.

The amplitude of the two components of the magnetic field
correspond to an a0 in the range 0.2 > a0 > 0.15 consistent
with the amplitude observed in the electron density compo-
nent. The profile of the magnetic field, while static in space,
has some temporal oscillation (see Fig. 5) at a frequency of
ωpe during the amplification phase but with a small amplitude
of around 10%–20% of the mean value and decaying in
time towards an equilibrium value. At very late in time an
oscillation at a frequency of 2ωpe is visible in the azimuthal
field.
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