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Influence of atomic kinetics on inverse bremsstrahlung heating and nonlocal thermal transport
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This paper describes a computational model that self-consistently combines physics of kinetic electrons and
atomic processes in a single framework. The formulation consists of a kinetic Vlasov-Boltzmann-Fokker-Planck
equation for free electrons and a non-Maxwellian collisional-radiative model for atomic state populations.
We utilize this model to examine the influence of atomic kinetics on inverse bremsstrahlung (IB) heating
and nonlocal thermal transport. We show that atomic kinetics affects nonlinear IB absorption rates by further
modifying the electron distribution in addition to laser heating. We also show that accurate modeling of nonlocal
heat flow requires a self-consistent treatment of atomic kinetics, because the effective thermal conductivity
strongly depends on the ionization balance of the plasma.
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I. INTRODUCTION

The interplay between kinetic physics of electrons and
atomic processes has previously been identified to play an
important role in laser-produced plasmas [1–6]. However, an
adequate modeling treatment is often out of reach due to
high computational cost. Kinetic modeling of electrons itself
presents a challenge due to the high dimensionality of the
governing equation. This complexity is exacerbated in mid-
to high-Z nonequilibrium plasmas, where determining the ion
charge state that feeds into the electron kinetic equation may
require solving atomic kinetics rate equations for hundreds or
thousands of states and tens of thousands of transitions.

Most electron kinetic models assume a fixed ionization
state and neglect the effects of atomic kinetics. This assump-
tion is only valid for a fully ionized or local thermodynamic
equilibrium (LTE) plasma. These condititions, however, are
rare in mid- to high-Z laboratory laser-produced plasmas.
These plasmas are often not fully ionized. Even if the tem-
perature is high enough for that to occur, it still takes a finite
amount of time for the system to ionize such that atomic ki-
netics must be accounted for in the model. In addition, energy
losses occurring via transport and radiative processes (due to
finite size and spatial gradients) also prevent the system from
staying fully ionized. In either case, atomic kinetics plays an
important role in determining the ionization balance, which
affects other processes through absorption, transport, radiative
properties, etc. Atomic kinetics is also sensitive to the electron
distribution, because the cross sections for these processes
can vary significantly with respect to the impact energy. In
the present study, we will examine the influence of atomic
kinetics on two basic problems relevant to laser-produced
plasmas: inverse bremsstrahlung (IB) heating and nonlocal
thermal transport.

The rest of the paper is organized as follows. In Sec. II,
we introduce a framework to self-consistently model atomic
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kinetic processes and nonthermal (kinetic) electrons. The two
main components are a kinetic equation for the electrons
and a non-Maxwellian collisional-radiative model for atomic
kinetics. The influence of atomic kinetics on IB heating
and nonlocal thermal transport are examined in Sec. III and
Sec. IV. Finally, a summary is given in Sec. V. Some details of
the atomic kinetics treatment and IB absorption are described
in the Appendix.

II. COMPUTATIONAL MODEL

A kinetic model is used to describe the time evolution of
the electron distribution function coupled with ions via elas-
tic and inelastic processes. The resultant Vlasov-Boltzmann-
Fokker-Planck equation (VBFP) for the electron reads

∂t f + v · ∇ f + e

me
E · ∇v f = C( f ) + Q( f ), (1)

where f ≡ f (x, v, t ) is the electron velocity distribution func-
tion, and C and Q are the elastic and inelastic collision
operators, respectively. The name Vlasov-Boltzmann-Fokker-
Planck comes from the fact that Eq. (1) contains two Vlasov
terms (last two terms on the left-hand side), a Fokker-Planck
term (C), and a Boltzmann term (Q). When atomic kinetics
is not considered, Q is absent and we end up with a Vlasov-
Fokker-Planck (VFP) model. The elastic collision operator C
includes both electron-electron (ee) and (elastic) electron-ion
(ei) collisions, i.e., C( f ) = Cee( f ) + Cei( f ). Both Cee and Cei

depend on atomic kinetics because the collision frequencies
scale with the ionization of the plasma, i.e., νee ∼ Ne and
νei ∼ ZNe, where Ne = ∫ ∞

−∞ f (v) dv.
The inelastic collision operator Q is responsible for

the coupling between free electrons and the atomic state
distribution. In this work, inelastic processes refer to all
atomic kinetic processes that affect the atomic state dis-
tribution and ionization balance. They consist of a large
number of processes that directly depend on atomic state
densities, e.g., collisional excitation and deexcitation, ioniza-
tion and recombination, autoionization and electron capture,
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photoionization, and radiative recombination. Detailed ex-
pressions for these terms are given in Appendix A. The time-
dependent Boltzmann kinetic model had been used in the past
to simulate ultrashort-pulse high-intensity laser experiments
(see, for example, Refs. [7–9]). These studies often assume a
spatially homogenous (zero-dimensional) plasma to simplify
the calculation.

Due to complexity and high computational cost, most
electron kinetic models (with two exceptions to be mentioned
later) neglect Q and further assume that the plasma ioniza-
tion state Z is fixed in time [10–14]. Strictly speaking, this
assumption is only valid for a fully ionized plasma where
there are not any inelastic processes occurring. When the atom
is partially filled with bound electrons, inelastic processes
can happen, and Q cannot be safely neglected in general.
The main reason is because Cee = 0 is a necessary condition
for Q = 0, in which case both electrons and atomic states
must follow their equilibrium distributions; this is known as
the local thermodynamic equilibrium (LTE) limit. Therefore,
the plasma is always in non-LTE (Q �= 0) when Cee �= 0,
and the atomic state distribution cannot simply be determined
from equilibrium (Saha-Boltzmann) distributions. It is possi-
ble, however, to have Cee = 0 when Q �= 0, in which case the
free electrons are thermalized. Most non-LTE atomic kinetics
models operate based on this assumption since all transition
rates involving free electrons can be conveniently parame-
terized in terms of ne and Te, instead of the full distribution
function f [15].

It is not always clear how Q affects the distribution (and
other physical processes that depend on the shape of the
distribution, e.g., transport). In general, inelastic processes
can play two competing roles: ionization and excitation from
ground state (or transitions involving electrons from inner-
shell) with large transition energies (compared to the average
energy of the electron) can cause depletion of the high energy
tail (dethermalization), while excitation and deexcitation col-
lisions between high-lying states, due to their small transition
energies, act more like elastic collisions that thermalize the
distribution. We note that since excitation and deexcitation
does not change the total electron density, Q can be nonzero
even when Z is constant in time.

We mention two previous studies which included ioniza-
tion kinetics in VFP codes. The first one is due to Town
et al. [16] In this work, the authors coupled their VFP
code to a simple ionization kinetics model to simulate short
pulse laser-solid interaction. The ionization model was highly
simplified that it only took in account collisional ionization
and recombination; other processes (such as excitation, auger
ionization, radiative recombination) are neglected. Either and
Matte [17] also attempted to include atomic kinetics by cou-
pling an average atom model to their VFP code. Their average
atom model gave a slightly better description of the atomic
kinetics, compared to Town et al., since it took into account
excitations between bound states. However, the accuracy of
an average atom model is severely limited, particularly for
mid- to high-Z elements due the lack of an adaquate treatment
for autoionization and dielectronic recombination (see, for
example, a discussion in Ref. [18]).

In this work, we employ a collisional-radiative model
to simulate non-LTE atomic kinetics [15,19–21]. The

distribution of atomic populations is calculated by solving a
set of coupled rate equations:

dy
dt

= A · y, (2)

where y is the vector of atomic state densities and A is the
rate matrix. All inelastic processes described in the previous
paragraph are included in A. Equation (2) is coupled to
Eq. (1) via the rate matrix, because transition rates involving
free electrons directly depend on the distribution function f .
For example, an excitation (or ionization) rate from i to j
is obtained from

∫
f σi→ jv dv, where σi→ j is the collision

cross section. Radiative excitation and deexcitation rates are
included in the rate matrix A but not in Q, because they do
not change the electron distribution.

The numerical solution of the VBFP equation is based
on the KALOS formalism [22]. The VFP part of the model
is from the VFP code K2 [14], which also includes a self-
consistent treatment of the electric field. The distribution
function is expanded in spherical harmonics in velocity space,
i.e., f (x, v, t ) = ∑nmax

n=0

∑n
m=−n f m

n (x, v, t )Y m
n (θ, ϕ), and the

expansion coeffcients are evolved in time according to the
kinetic equation. All simulations performed in this study are at
most one-dimensional in space, and the expansion is truncated
at nmax = 1. Since there is no magnetic field, we only need to
evolve two coefficients, i.e., f 0

0 and f 0
1 . For clarity, we now

drop the superscript and refer to them as f0 and f1. We also
assume that inelastic processes do not contribute significantly
to momentum scattering, i.e., Q has no effect on f1 and is
only applied to f0. Advection, acceleration and collisions are
handled separately using operator-splitting techniques. While
advection is treated explicitly (for efficient parallelization),
acceleration and collisions are treated implicitly. The collision
terms in Q are discretized using a conservative formulation
detailed in Ref. [23]. Equations (1) and (2) are solved self-
consistently at each time step to update both the electron
distribution f and the atomic state distribution y. Radiation
transport is neglected, as the plasma is assumed to be optically
thin to all radiative transitions.

The atomic physics data used in this work is constructed
based on the screened-hydrogenic model. The energy levels
are described by principal quantum numbers (pqn), including
single and double excitations from the valence shell up to
pqn 10, plus a few excitations from inner shells. Transition
cross sections and rates are obtained from simple screened-
hydrogenic formulas. Details about the atomic model con-
struction can be found in Ref. [18]. The main advantage of
this approach is that the atomic models are compact, com-
putationally efficient and give reasonably accurate ionization
balance over a wide range of conditions. These models have
been applied to a number of high energy density physics
applications. For example, non-LTE opacities produced from
these models are a critical component in large scale radiation
hydrodynamic simulations of laser holhraum experiments at
the National Ignition Facility (NIF) [24,25].

In the next two sections, we use the computational model
described here to examine the effects of atomic kinetics on
two fundamental problems relevant to laser-produced plas-
mas: IB heating and nonlocal thermal transport.
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III. INVERSE BREMSSTRAHLUNG HEATING

In this section, we consider IB heating and ionization of a
uniform plasma due to a laser. In this case, the transport term
in Eq. (1) is neglected, and the electromagnetic acceleration
term due to the laser is replaced by the so-called Langdon
operator [1]. With these assumptions, we only need to solve
for the isotropic part of the electron distribution function f0:

∂t f0(v, t ) = C0( f0) + Q0( f0) + I ( f0), (3)

where I denotes the Langdon operator (see Appendix B). This
operator was first derived by Langdon [1] to study nonlinear
IB heating and absorption. Langdon showed that during the
heating, the distribution can deviate from a Maxwellian and
take a super-Gaussian form of order m > 2. As a consequence,
the absorption rate is reduced compared the Maxwellian
value. He proposed a fit for the ratio of the absorption rate
over the Maxwellian value as follows:

R(α) = 1 − 0.553/[1 + (0.27/α)0.75], (4)

where R depends only on α. The Langdon parameter α is

defined by α = Zv2
0

v2
t

, where v0 is the oscillation velocity of

an electron in the laser electric field and vt ≡
√

Te
me

is the
thermal velocity. Here, the ionization state is defined as Z =∑

i z2
i yi/

∑
i ziyi where zi is the charge number of atomic

state i. It can be seen that α represents the ratio of the
thermalization to the IB heating timescale. In the limit of
α → 0, R → 1 and the distribution becomes Maxwellian.
Matte et al. [26] performed kinetic simulations of both uni-
form and nonuniform plasmas to study the effect of IB heating
on the shape of the distribution function, and provided a
practical formula to fit the distribution. The distribution is fit
to a super Gaussian, i.e., f ∝ exp[−(v/vm)m], where v2

m/v2
t =

3Γ (3/m)/Γ (5/m). The parameter m can be determined from

m(α) = 2 + 3/(1 + 1.66/α0.724). (5)

Weng et al. [11] proposed a modified form of the Langdon
operator extending its applicability to high laser intensities,
where the original operator gives inaccurate results. We note
that none of these authors included the effects of atomic
kinetics in their calculations. In the following simulations,
we demonstrate that atomic kinetics can modify the shape of
the distribution function during the IB heating process, and
hence affecting the absorption rate. For simplicity, we use
the original Langdon operator instead of the one proposed
by Weng et al. Our numerical simulations confirm that in
the absence of atomic kinetics, Eqs. (4) and (5) provide
very good fits to the calculated absorption rates and electron
distributions.

We simulate an Aluminum plasma of density 1019 cm−3

being heated by a 3ω laser (λL = 351 nm) at a constant
intensity of 1014 W/cm2 for 100 ps. The plasma is initially in
LTE at 2 ev corresponding to Z 	 0.7. The time evolution of
several quantities of interest is shown in Fig. 1. The plasma
is rapidly heated to approximately 330 ev and ionized to
Z 	 10 within 100 ps as shown in Figs. 1(a)–1(c). Here, the
electron temperature is defined as Te = 4π

3

∫ ∞
0 f0(v)mev

4 dv.
The ratio of the absorption coefficient to the Maxwellian value
is shown in Fig. 1(d) (solid line) and also compared to the

FIG. 1. Simulation of IB heating and ionization of Al at ni =
1019 cm−3. The plasma is initially in LTE at 2 ev. (a) Electron
temperature, (b) charge state densities, (c) ionization state, and (d) IB
absorption coefficient are shown as functions of time. In panel (d),
the solid line refers to the absorption coefficient from the simulation,
while the dashed line is calculated from Eq. (4) using α from the
simulation.

value given by Eq. (4) (dashed line). Similar to Langdon, we
define R = f0(v = 0)/ fM (v = 0) where fM is the equivalent
Maxwellian distribution with same density and temperature. It
can be seen that the value of R from the simulation is always
higher than that given by Eq. (4). This suggests that the distri-
butions appear to be more thermalized when atomic kinetics
is included. To examine this further, the electron distribution
at 1.3 ps (where the difference in R is the largest) is plotted
in Fig. 2. We also show comparisons with a Maxwellian
distribution (dashed line) and a Langdon distribution (dash-
dotted line) at the same density and temperature. The Langdon
distribution takes a super Gaussian form of order m, where m
is determined from Eq. (5). The actual distribution with self-
consistent treatment of atomic kinetics looks more thermal-
ized, i.e., closer to a Maxwellian distribution, than a Langdon
distribution. To understand this, we first note that IB heating
shifts both slow (v/vt � 1.2) and fast (v/vt � 2.6) particles
to the intermediate range, so the Langdon distribution is
flattened near v = 0. In contrast, atomic kinetic processes,
mainly collisional ionization, affect the distribution in the
opposite way. Since the mean ionization energy is typically
a few times the electron temperature (∼ 2–3 Te), electrons
in the range of 1.2 � v/vt � 2.6 have very large collisional
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FIG. 2. Electron distribution function at 1.3 ps. The solid line
is the distribution from simulation, and the dashed and dash-dotted
lines are Maxwellian and Langdon distributions, respectively. The
Langdon distribution is a super Gaussian distribution of order m =
2.96, where m is determined from Eq. (5) using α from the simula-
tion. The two analytical distributions are normalized to have the same
density and temperature as the actual distribution.

ionization rates (fast electrons can also ionize but their cross
sections are smaller while slow electrons are not sufficiently
energetic). Therefore, these electrons can participate in col-
lisional ionization and end up at lower energies. In addition,
new electrons produced as a result of ionization also tend to
have distributions peaked at low energies. The net result is
that the distribution is shifted to lower energies; hence, the
distribution looks more like a Maxwellian distribution.

To show that this effect is not unique for Aluminum,
we repeat the same simulation but using different materials.
Figure 3 shows results for similar IB heating tests using (a)
Copper and (b) Molybdenum. Although the ionization process
(red dash-dotted curves in Fig. 3) is different for each of
these materials, the absorption rates (solid and dashed black
curves in Fig. 3) are consistently higher than those predicted
from Eq. (4). In addition to modifying the absorption rates,
non-Maxwellian electron distributions can also impact how
various plasma parameters are inferred from measurements
[3,27]. The results in this section indicate that atomic kinetics
need to be included in the model to capture the correct
distribution.

IV. NONLOCAL THERMAL TRANSPORT

In this section, we consider a nonlocal thermal transport
problem in a uniform plasma. Similar problems had also
been explored by various authors in the past [28–30]. In
these works, the authors assumed a fully ionized plasma
and neglected the effect of atomic kinetics. Nevertheless,
they demonstrated that thermal transport in the presence of a
strong temperature gradient (often as a result of laser absorp-
tion) exhibits (nonlocal) kinetic features, and therefore cannot
be modeled by the standard Spitzer-Harm heat conduction
model [31]. This is because the main heat carriers (elec-
trons at ∼3.7v/vt ) can travel many mean-free-path’s ahead
of the thermal front and deposit heat (preheat), which leads

FIG. 3. Simulations of IB heating and ionization of (a) Cu and
(b) Mo at ni = 1019 cm−3. The plasma is initially in LTE at 5 ev.
In both plots, the black solid and dashed lines are IB absorption
coefficients R and the red dash-dotted lines are the ionization state Z .
Solid lines refer to the absorption coefficients from the simulation,
while dashed lines are calculated from Eq. (4) using α from the
simulation.

to a reduction in the heat flux (“flux inhibition”). We will
demonstrate that atomic kinetics does not alter the overall
picture of nonlocal heat flow, but rather influences the propa-
gation of the heat via the conductivity of the plasma.

The problem simulated here is identical to that presented
in Ref. [29], except that we also include atomic kinetics so
ionization can be self-consistently modeled. A 400 μm slab
of iron (Fe) plasma, initially at a density of 2 × 1019 cm−3

and temperature of 50 ev, is suddenly heated from the left side
by a temperature source of 1 kev. This boundary condition sets
up a heat wave traveling to the right. As the heat wave passes,
it heats and ionizes the plasma, raising the effective ionization
and heat conductivity. The ions are assumed to be static and
cold. The standard treatment in hydro codes requires solving
a diffusion equation for electron temperature (or energy), e.g.,
∂t Te = −∇κ∇Te, where the heat conductivity κ is determined
from the Spitzer-Harm (SH) formula. In this case, the heat
flow is highly nonlocal so SH model does not give correct
results, both in terms of heat flux and propagation of the
thermal wave. For comparison purpose, we run a similar
simulation using the VFP model at a fixed ionization of 18,
i.e., Ne = 3.6 × 1020 cm−3. Here Z = 18 is chosen to roughly
match the propagation speed of the thermal wave. The spatial
domain is discretized into 200 zones and the electron velocity
grid is discretized into 60 groups. We assume a constant value
of ln Λ for both ei and ee collisions (ln Λee = ln Λei = 7.1).

Figure 4 shows the electron temperature and ionization
state at several instances in time (10, 40, 80, and 140 ps) as
the heat wave travels to the right. The solid lines are solutions
from the VBFP model and the dashed lines from VFP model.
Up to 10 ps, the propagation and the temperature profile
from VBFP and VFP are quite similar. However, at later
times, the two solutions start deviating from each other. This
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FIG. 4. (a) Temperature and (b) ionization state from both VFBP
(solid) and VFP (dashed) simulations at four times: 10, 40, 80 and
140 ps (thermal wave moves from left to right). VBFP simulation
includes self-consistent atomic kinetics, while VFP simulation as-
sumes Z = 18. The crosses mark spatial locations used in Fig. 6

can be understood by examining the ionization state shown
Fig. 4(b). Since the VFP simulation assumes a constant Z , the
conductivity only depends on the temperature of the plasma
(here conductivity should only be understood qualitatively as
the speed at the which the heat is transported). In contrast, the
VBFP simulation takes into account ionization, so the con-
ductivity depends both on temperature and mean ionization,
which vary both in space and time. To further illustrate this,
Fig. 5 shows the heat fluxes from both simulations at 140 ps.
It can be seen that the VBFP heat flux (solid line) is larger
than the VFP one (dashed line) at x � 42 μm and smaller
at x � 42 μm. This exactly coincides with the ionization
from VBFP simulation being higher at x � 42 μm and lower
at x � 42 μm [Fig. 4(b)]. For this reason, the heat front
in the VFP simulation travels faster than that in the VBFP
simulation. The SH heat fluxes with different values of flux

FIG. 5. Heat fluxes at 140 ps from VFBP and VFP simulations.
Different values of flux-limited SH heat flux are also shown for
comparison purpose.

FIG. 6. Electron distribution functions at 140 ps and at five dif-
ferent locations as marked in Fig. 4. All distributions are normalized
to have same density and energy. The dashed line is the equivalent
Maxwellian distribution.

limiters are also shown in Fig. 5, and clearly fail to capture
the true heat flux both in magnitude and the extent of the heat
flow. Figure 6 shows the electron distribution function from
the VBFP simulation at five different locations as marked in
Fig. 4. This illustrates the origin of nonlocal heat flow as di-
cussed previously, that is, heat-carrying electrons travel ahead
of the heat front and preheat the plasma upstream. As a result,
the electron distributions upstream of the heat front show a
depletion of fast particles, and the ones downstream show
enhancements of fast particles. Although VFP simulations
can also capture this effect, the effective conductivity (and
hence the heat propagation) cannot be accurately determined
without atomic kinetics. This is particularly relevant to heat
flows in the corona of a high-Z laser-produced plasma, e.g.,
a gold holhraum wall in indirect drive ICF [25,32], where the
timescales associated with atomic processes can be compara-
ble to transport timescales.

V. SUMMARY

We have introduced a computational model to self-
consistently simulate atomic kinetics and electron kinetic
physics. The model consists of a kinetic (Vlasov-Boltzmann-
Fokker-Planck) equation for electrons and a collisional-
radiative system of rate equations for atomic states. The
electron distribution function, expanded in spherical harmon-
ics, is self-consistently evolved in time along with the distri-
bution of atomic state populations.

We simulated IB heating and ionization of mid- to high-Z
materials to examine the influence of atomic kinetics on the
heating. We found that the resultant electron distributions dur-
ing the heating process always appear to be more thermalized
than the classical self-similar solution of Langdon [1]. As a
result, the absorption rates are higher than that predicted by
Langdon. Non-Maxwellian distributions are also relevant for
a number of experimental measurements that are sensitive to
the shape of the distribution [3,27].

We also simulated a nonlocal thermal transport problem in
a uniform plasma taking into account detailed atomic kinetics.
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The overall picture of nonlocal heat flow remains unchanged,
but the propagation of thermal wave depends strongly on
atomic kinetics. This is because the effective thermal conduc-
tivity is determined from the ionization balance, which needs
to be accounted for in the model.
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APPENDIX A: INELASTIC COLLISION OPERATOR

In this Appendix, we give mathematical expressions for
all relevant processes included in the inelastic collision op-
erator. As mentioned in the text, these operators are only
applied to the isotropic component f0. It is more convenient
to work in energy space ε = mv2/2; hence, we can define an
electron energy distribution function n(ε) such that n(ε) dε =
4π f0(v)v2 dv. These collision terms take the form of a Boltz-
mann collision operator. For each type of process, we give
the expression for a single transition between a single pair
of atomic states. The full expression includes a sum over all
transitions present in the atomic model. For each transition,
we always write both forward and reverse processes, for
which the cross sections are related through the principle of
detailed balance.

1. Excitation and deexcitation

The source term for an excitation and deexcitation between
a pair of atomic states i and j is as follows:

[∂t n(ε)]ed =
∫

(δ1 − δ0)
[
yin(ε0)σ exc

i→ jv0 − y jn(ε1)σ dex
i← jv1

]
dε0,

(A1)

where we have defined vk = √
2εk/me and δk = δ(ε − εk )

(k = 0, 1, 2). Here σ exc
i→ j and σ dex

i← j denote excitation and de-
excitation cross sections. From energy conservation, we also
have ε0 = ε1 + εi j where εi j is the transition energy. The δ

function’s allow us to write Eq. (A1) in a compact form.

2. Ionization and recombination

The source term for an ionization and recombination be-
tween two atomic states i and j, where j belongs to the ionized
stage, reads

[∂t n(ε)]ir =
∫

(−δ0 + δ1 + δ2)
[
yin(ε0)v0σ

ion
i→ j

− y jn(ε1)n(ε2)v1v2σ
rec
i← j

]
dε1 dε2, (A2)

where σ ion
i→ j and σ rec

i← j denote ionization and recombination
cross sections, respectively. From energy conservation, we
have ε0 = ε1 + ε2 + εi j . Since every collisional ionization
produces an additional electron, Eq. (A2) involves a double in-
tegral over the energies of the scattered and ionized electrons.
The three-body recombination integral is quadratic in n(ε)
since this process requires two free electrons. For this reason,
this term constitutes the most computationally intensive part
of the calculation. Most of the data for collisional ionization
cross sections is given in terms of total cross sections, i.e.,
integrated over all transferred energy. To determine σ ion

i→ j , we
assume a Rutherford cross section, i.e., σ ion

i→ j (ε) ∝ 1/(εW 2)
(W is the energy transferred during the collision), and scale it
to get to the correct total cross section. A detailed treatment
of this can be found in Ref. [23].

3. Autoionization and electron capture

For an autoionization and electron capture between i and j,
the source term is as follows:

[∂t n(ε)]aug = δ(ε − εi j )
[
yiR

au
i→ j − y jn(ε)vσ ec

i← j

]
(A3)

where Rau
i→ j is the autoionization rate, and σ ec

i← j the electron
capture cross section. This term does not involve an integral
over energy because this process only produces and removes
electrons at the transition energy εi j .

4. Photoionization and radiative recombination

The source term for photoionization and radiative recom-
bination between i and j is as follows:

[∂t n(ε)]pir =
∫ [

yi
Iν
hν

σ
pi
i→ j −y jn(ε)vσ rr

i← j

(
1 + c2

2hν3
Iν

)]
dΩ,

(A4)

where Iν denotes the radiation intensity, and σ
pi
i→ j and σ rr

i← j
are the photoionization and radiative recombination cross
sections, respectively. From energy conservation, we have
hν = ε + εi j . The first term in the square bracket is due to
photoionization and the second term is due to radiative re-
combination, which includes both spontaneous and stimulated
terms. Since we assume that the plasma is optically thin,
we simplify Eq. (A4) by neglecting terms depending on the
radiation field:

[∂t n(ε)]rr = −4πy jn(ε)vσ rr
i← j . (A5)
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APPENDIX B: LANGDON OPERATOR

The Langdon operator describing IB heating [1] is written
as

I ( f0) ≡ [∂t f0(v)]IB = Av2
0

v2

∂

∂v

(
g(v)

v

∂ f0

∂v

)
, (B1)

where A = 2πZe4Ne ln Λei and g(v) 	 1. The IB heating and
absorption rate can be obtained by taking a second moment
of Eq. (B1), i.e., ∂t Et = 2π

∫ ∞
0 I ( f0) mv4 dv. It can be easily

shown that ∂t Et ∝ f0(v = 0), so the ratio of the absorption
rate to the Maxwellian value can be determined as R = f0(v =
0)/ fM (v = 0).
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