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Topology and stochasticity of turbulent magnetic fields
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We present a mathematical formalism for the topology and stochasticity of vector fields based on renor-
malization group methodology. The concept of a scale-split energy density, ψl,L = Bl · BL/2 for vector field
B(x, t ) renormalized at scales l and L, is introduced in order to quantify the notion of the field topological
deformation, topology change, and stochasticity level. In particular, for magnetic fields, it is shown that the
evolution of the field topology is directly related to the field-fluid slippage, which has already been linked to
magnetic reconnection in previous work. The magnitude and direction of stochastic magnetic fields, shown to
be governed, respectively, by the parallel and vertical components of the renormalized induction equation with
respect to the magnetic field, can be studied separately by dividing ψl,L into two (3 + 1)-dimensional scalar
fields. The velocity field can be approached in a similar way. Magnetic reconnection can then be defined in terms
of the extrema of the Lp norms of these scalar fields. This formulation in fact clarifies different definitions of
magnetic reconnection, which vaguely rely on the magnetic field topology, stochasticity, and energy conversion.
Our results support the well-founded yet partly overlooked picture in which magnetic reconnection in turbulent
fluids occurs on a wide range of scales as a result of nonlinearities at large scales (turbulence inertial range) and
nonidealities at small scales (dissipative range). Lagrangian particle trajectories, as well as magnetic field lines,
are stochastic in turbulent magnetized media in the limit of small resistivity and viscosity. The magnetic field
tends to reduce its stochasticity induced by the turbulent flow by slipping through the fluid, which may accelerate
fluid particles. This suggests that reconnection is a relaxation process by which the magnetic field lowers both
its topological entanglements induced by turbulence and its energy level.
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I. INTRODUCTION

Newtonian mechanics can be obtained from relativistic me-
chanics in the limit of v/c → 0, the regime of small velocities
v compared to the speed of light c. Quantum mechanics too
reduces to classical mechanics as the Planck constant tends
to zero h̄ → 0. These examples do not of course exhaust the
list of “special” formalisms that emerge from more general
theories in physics. The limiting case may be dubbed an
ideal regime if it arises as a result of the elimination of
nonidealities such as friction or viscosity from the general
theory. All this may seem familiar and quite simple, but it
is not. Care must be taken in letting specific parameters tend
to zero in order to reach an ideal regime. It is true that in
recovering Newtonian mechanics from the relativistic theory
one basically neglects the higher powers of v/c in a Taylor
expansion while equations usually remain well defined with
stable solutions. However, this is not a general theme. For
example, as viscosity ν tends to zero in a fluid, or corre-
spondingly the Reynolds number Re tends to infinity, the flow
becomes very unstable and sensitive to slight perturbations
which may lead to the development of turbulence. Indeed, it is
well known that the velocity field in a turbulent fluid becomes
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Hölder singular1 in the limit ν → 0 [1,2]. Mathematically, this
means that the very concept of taking a derivative, in terms of
spatial gradients, would become problematic since the normal
derivative of a Hölder-singular function is not well defined and
more advanced tools must be employed instead. Analogously,
magnetohydrodynamics (MHD) should be treated with care
in the limit when viscosity, electrical resistivity, or other such
transport coefficients tend to zero. For instance, the magnetic
field in a turbulent fluid would become Hölder singular in the
limit of vanishing magnetic diffusivity η → 0 (see [3–6]). All
in all, this suggests that the conventional ideal hydrodynamics
(HD) and ideal MHD may only be applied in very special
circumstances where flows remain laminar and quantities such
as the velocity and magnetic fields are Lipschitz continuous.

Although these concepts are well founded in theoretical
physics and formulated with rigorous mathematics, a vast
literature in plasma physics as well as astrophysics often
appeals to the so-called ideal HD and ideal MHD without a
proper examination of their applicability. For example, for a
magnetized fluid such as a plasma, it is an easy exercise to
show that in the limit of vanishing resistivity, the magnetic
field seems to be frozen into the fluid [7]. This principle of

1The complex (or real) valued function g in Rn is Hölder continu-
ous if two non-negative and real constants C and h exist such that
|g(x) − g(y)| � C‖x − y‖h for all x, y ∈ domain(g). If the Hölder
exponent h is equal to unity, then g is Lipschitz continuous. Also
g is called Hölder singular if h < 1.
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magnetic flux freezing is usually applied in the laboratory
and astrophysical systems as a common delicacy arising
from the ideal MHD (see, e.g., [8,9]). Nevertheless, such
environments are usually turbulent, the velocity and magnetic
fields singular, and the solutions for the ideal MHD unstable.
Application of flux freezing in such systems would involve
serious mathematical difficulties.

For Hölder-singular fields, even simple concepts such as
field line and particle trajectory, would require careful recon-
sideration. A mathematical definition for the field lines of
a given vector field F can be given in terms of its integral
curves. A field line may be considered as a parametric curve
whose tangent vector at any point is parallel to the vector
field at that point. Quantitatively, for the vector field F(y) =
(F1(y), . . . , Fm(y)) in Rm, an integral curve (field line) is de-
fined as a solution y(τ ) = (y1(τ ), . . . , ym(τ )) of the ordinary
differential equation

dy(τ )

dτ
= F(y(τ )),

with appropriate initial (boundary) conditions. Hence, y(τ ) is
in fact a curve parametrized by τ such that at any point τ0,
dy(τ0)/dτ is tangent to F(y(τ0)). Mathematically, the exis-
tence and uniqueness of integral curves can be determined us-
ing Picard’s existence (Cauchy-Lipschitz) theorem. A unique
solution is guaranteed if F(y) is Lipschitz continuous. For
example, velocity, electric, and magnetic fields in HD and
MHD are usually assumed to be continuous, and thus the
corresponding integral curves (field lines) are assumed to be
well defined. However, in many circumstances, the Lipschitz
continuity condition is not satisfied and the uniqueness theo-
rem cannot be applied as a result. What does a magnetic field
line mean if the magnetic field is not Lipschitz continuous?
The same question can be raised of course for any other vector
field.

One example is the velocity field in a turbulent fluid
in the limit when viscosity tends to zero ν → 0 which, as
was shown for the first time by Onsager, turns out to be
Hölder singular rather than Lipschitz continuous [1,2,5]. This
singularity will make all HD equations ill-defined because
they contain derivatives of the velocity field (see Sec. II).
In fact, similar situations have already been encountered in
other fields of physics including quantum electrodynamics
(QED) and quantum chromodynamics. Dealing with ultravi-
olet (UV) infinities, which arise, for example, in calculations
of seemingly simple quantities such as the mass or electric
charge of particles, has been a major challenge in develop-
ing these theories. Regularization and renormalization group
(RG) methodologies have been developed to resolve these the-
oretical difficulties. Today, these well-established formalisms
are applicable in many other fields including HD and MHD.

Lagrangian particle trajectories become stochastic in tur-
bulent fluids in the limit when viscosity tends to zero (see,
e.g., [10–12]). Under such circumstances, the conventional
flux freezing [7] collapses [3–6,13] and instead a distinct
stochastic version of it is introduced. This new concept of
stochastic flux freezing introduced by Eyink [4] along with
stochasticity of field lines [3,5,13] led to deep physical con-
sequences. Magnetic field topology and its evolution with
time, for example, would be deeply affected by these new

phenomenologies. Topology plays a crucial role in many mag-
netic phenomena including generation (dynamo action) and
reconnection of magnetic fields. Reconnection of stochastic
magnetic fields in turbulent fluids, which are ubiquitous in
astrophysics and plasma physics, is sometimes defined as a
sudden change in magnetic field topology (for a review of
magnetic reconnection see, e.g., [14–17]). Magnetic dynamos
in fact require persistent magnetic topology change in order
to sustain the generation of magnetic fields in stars, galaxies,
and accretion disks (for a modern dynamo model applicable
to such systems see, e.g., [18] and references therein; for
problems involving both generation and reconnection of large-
scale fields in accretion disks see [19,20]). In recent years,
the problem of magnetic reconnection [6,21–23], as well
as a magnetic dynamo [4], in turbulent systems has been
approached taking into account the field stochasticity and
turbulence. Yet concepts such as topology change and weak
and strong stochasticity are widely used without providing
concise mathematical definitions. For example, depending on
the context, the mathematical notion of stochasticity for a
vector field may differ from what a physicist refers to. What
an experimentalist can measure is a spatial and temporal
average field at any point in space-time not the bare field.
In fact, as discussed before, in many cases the bare field is
not well defined at all. If a renormalization method is applied
to remove the field singularities, then the stochasticity of the
renormalized field is obviously different from the stochasticity
of a bare vector field. After all, turbulence itself is a large scale
rather than a molecular phenomenon. (For an application of
renormalization group methodologies in MHD turbulence see,
e.g., [24,25].)

In this paper we give a rigorous mathematical definition
of stochasticity level for vector fields in terms of the unit
vectors tangent to the renormalized field at different coarse-
graining scales. The time-dependent angle between such two
unit vectors at a space-time point (x, t ) provides a means
to define a local stochasticity level. The average stochas-
ticity level in a volume V can then be obtained using Lp

norms. Intuitively, the temporal changes in the stochasticity
level indicate topological deformations in the vector field.
We use the time derivative of the Lp-average stochasticity
level to define topological deformations. These concepts are
then applied to turbulent magnetic fields using the coarse-
grained induction equation. As an example, we apply the
mathematical formalism developed here to the magnetic field
evolution in turbulent systems encountered often in astrophys-
ical environments, which may provide plasma physicists and
astrophysicists with an alternative statistical approach to study
magnetic phenomena.

The detailed plan of this paper is as follows. In Sec. II
we first briefly review the problem of Hölder singularities in
HD and MHD, and the RG methodologies used to resolve
them. We also add a few simple arguments to these known
results in order to show that the evolution of magnetic energy
is related to the parallel component of the induction equation
(with respect to the magnetic field) while the evolution of the
field topology is associated with its perpendicular component.
Our formulation of topological deformations and stochastic-
ity level for general vector fields is presented in Sec. III.
This formalism is then applied to the problem of magnetic
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reconnection in Sec. IV with a discussion connecting the ideas
advanced here to stochastic reconnection and the slippage of
magnetic field through the fluid. We discuss our results in
Sec. V.

II. RENORMALIZED MHD

In order to give a simple and clear picture of the prob-
lem of singularities in HD, let us briefly discuss Onsager’s
approach to turbulence following the description and notation
of Ref. [2], which can be consulted for details (see also [1]).
The incompressible Navier-Stokes equation is given by

∂u
∂t

+ u · ∇xu = −∇x p + ν∇2u, ∇x · u = 0. (1)

In the limit when viscosity tends to zero ν → 0, the regime of
so-called ideal HD, one might expect the energy dissipation
to vanish. However, numerous experiments and numerical
simulations (see, e.g., [26–28]) have shown that the kinetic
energy dissipation rate

ε(x, t ) = ν|∇xu(x, t )|2, (2)

does not vanish as ν → 0 and has a space average converging
limν→0〈ε(t )〉 = 〈ε∗(t )〉 with a nonzero limit ε∗(t ) > 0. One
might argue therefore that the velocity gradients should di-
verge ∇xu → ∞ in the limit ν → 0. As mentioned in the
Introduction, this is analogous to the UV divergences in
quantum field theory (QFT). Such situations may arise, for
example, when an integral diverges as a result of contributions
from infinitesimal distances. In principle, UV divergences can
be removed by invoking an RG methodology. In fact, QED
was developed based on renormalization methods to remedy
UV infinities. As one goes to smaller scales (higher energies in
the language of high-energy physics), higher-order terms in a
perturbative formalism (e.g., corresponding to loops in Feyn-
man diagrams in QED) give rise to infinities. Mathematically,
this is similar to the inviscid limit of a turbulent fluid: HD
equations containing velocity gradients become ill-defined in
the limit of ν → 0. In fact, it was Onsager who showed that
such a singularity is necessary to explain the breakdown of
the conservation of energy, associated with nonvanishing ε in
Eq. (2), in the limit of small viscosity in a turbulent fluid.

One remedy to the problem of singular fields is to use
distributions. Mathematically, such an approach involves mul-
tiplying equations by a smooth test function and integrating.
Physically, this means that we “average” quantities, such as
magnetic and velocity fields, over a region in space-time. In
fact, what we measure in the laboratory as a magnetic or
velocity field at the point (x, t ) is an average over a small
volume around x during a time interval. The reason is that
any such a measurement would require a time interval as
well as a spatial volume; therefore, a vector field cannot be
measured “exactly” at a space-time point. Let us coarse grain,
or renormalize, the velocity field u(x, t ) at a length scale l ,

ul (x, t ) =
∫

V
Gl (r)u(x + r, t )d3r, (3)

where Gl (r) = l−3G(r/l ) with G(r) is a smooth, rapidly
decaying kernel. In other words, G ∈ C∞

c (R), the space

of infinitely differentiable functions with compact support.2

Without loss of generality, we may assume

G(r) � 0, (4)

lim
|r|→∞

G(r) → 0, (5)∫
V

d3r G(r) = 1, (6)∫
V

d3r r G(r) = 0, (7)

and ∫
V

d3r|r|2G(r) = 1. (8)

We may also assume G(r) = G(r) with |r| = r, i.e., an
isotropic kernel, which leads to

∫
d3r rir jG(r) = δi j/3 [2].

Note also that the expression (8) indicates
∫

V d3r|r|2Gl (r) =
l2. Intuitively, therefore, the coarse-grained field ul represents
the average velocity of a fluid parcel of size l at position x. It
is basically the low-pass-filtered field, containing only length
scales larger than l . A simple change of variable in Eq. (3), as
x + r → r′, allows us to write

ul (x, t ) =
∫

V
Gl (r′ − x)u(r′, t )d3r′. (9)

Thus all gradients ∇x would act on G, which also implies that
ul is now continuous. Without delving into the mathematical
details, it is easy to see the implication that the differential
equation dy(s)/ds = F(y(s)), with F = ul , has unique solu-
tions (integral curves) for given boundary conditions. Thus
the notion of field line for the renormalized field ul is well
defined.

Since the space and time derivatives commute with the
coarse-graining operator, we can multiply Eq. (1) by the
kernel Gl (r) and integrate. This results in the renormalized,
or coarse-grained, form of the incompressible Navier-Stokes
equation

∂ul

∂t
+ ∇x · (uu)l = −∇x pl + ν∇2

x ul , ∇x · ul = 0. (10)

Applying the Cauchy-Schwarz inequality to ∇xu shows
that the renormalized velocity gradient is bounded as long
as the total energy remains finite as ν → 0. Therefore,
the ultraviolet divergences (in the form ∇xu → ∞ as
ν → 0, discussed above) are removed: ∇xul < ∞. Also
applying the Cauchy-Schwarz inequality to the viscous term
ν∇2

x ul (x, t ) = (−ν/l )
∫

d3r(∇G)l (r) · ∇xu(x + r, t ) leads

to |ν∇2
x ul (x, t )| �

√
(ν/l )Cl

∫
d3r|(∇G)l (r)|2 ε(x + r, t ),

where Cl = ∫
d3r|(∇G)l (r)|2. This expression, at the limit

ν → 0, converges to

∣∣ν∇2
x ul (x, t )

∣∣ �
√

(ν/l )Cl

∫
d3r|(∇G)l (r)|2 ε∗(x + r, t ).

(11)

2A function g is said to have a compact support (set of its arguments
for which g �= 0) if g = 0 outside a compact set (equivalent to closed
and bounded sets in Rm).
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Therefore, the renormalized viscous term has an upper bound
of order ν1/2 and vanishes for a fixed scale l as ν → 0. This
results in

∂ul

∂t
+ ∇x · (uu)l = −∇x pl , ∇x · ul = 0 (12)

for the inertial range of turbulence, the range of scales l
for which the viscous term is negligible. The renormalized
Navier-Stokes equation, given by Eq. (10), can be rewritten
as

∂ul

∂t
+ ∇x · (ulul + τ l ) = −∇x pl + ν∇2

x ul , ∇x · ul = 0,

(13)

where τ l = (uu)l − ulul is the turbulent stress tensor. Mul-
tiplying Eq. (13) by ul , one can easily obtain the evolution
equation for the kinetic energy

∂t
|ul |2

2
+ ∇x ·

[(
1

2
|ul |2 + pl

)
ul + τ l · ul

]
= −	l , (14)

where

	(x, t ) = −∇xul · τ l (x, t ) (15)

is the energy flux from resolved scales greater than l to
unresolved scales less than l (energy cascade). Suppose3

|u(x + r, t ) − u(x, t )| � CU

( |r|
L

)h

, (16)

for some C > 0 with U being the (large-scale) characteristic
velocity of the system. Applying this to Eq. (15) leads to

	l (x, t ) = O(l3h−1). (17)

Equation (14) indicates that persistent energy decay re-
quires

∫
ν→0 d3r 	l (x, t ) �= 0. Since the scale l is arbitrary, for

any fixed l viscosity can be taken arbitrarily small to let the
ideal renormalized Eq. (13) be satisfied and then l can be de-
creased. However, if (16) holds for all space-time points (x, t )
with a Hölder exponent h > 1/3, then

∫
l→0 d3r 	l (x, t ) → 0.

Physics is independent of our eyesight (resolution scale) and
thus the energy decay rate cannot depend on our choice of
scale l as l → 0. The conclusion is that in the ideal limit
ν → 0, the velocity field becomes Hölder singular with the
exponent h � 1/3.

It should be emphasized here that real flows have obviously
finite Reynolds numbers (i.e., finite viscosity) although they
may be extremely large. In other words, the mathematical
condition of vanishing viscosity ν → 0 is never realized in
real classical fluids. The velocity field therefore satisfies the
condition (16) with h = 1. However, for this to hold in a fluid
with finite but very small viscosity, |r| must be very small. In
other words, the velocity field is smooth only below a very
small length scale set by viscosity |r| < ld (ν). Nevertheless,
in a finite range of scales above this scale, the velocity field
will remain nonsmooth and singular. In the presence of such

3Note that this is the Hölder continuity condition; Lipschitz con-
tinuity follows only if h = 1, while Hölder singularity follows for
h < 1.

singularities, what does magnetic topology, as well as topol-
ogy change, mean in terms of magnetic field lines (integral
curves)? In fact, similar arguments apply to the magnetic
field in the limit of vanishing diffusivity η → 0. Similar to
the dissipative anomaly associated with velocity field, i.e.,
nonvanishing energy dissipation rate ν|∇xu|2 when ν → 0,
the magnetic field B in a turbulent fluid is associated with
a magnetic dissipative anomaly η|∇xB|2 > 0 when η → 0.
Therefore, ∇xB → ∞ as η → 0. Singular fields, and conse-
quently ill-defined gradients, in MHD obviously have many
consequences, one of which is invalidity of magnetic flux
freezing in its conventional sense.

A. Failure of flux freezing

In order to discuss the notion of flux freezing, Maxwell’s
equations ∇ · B = 0 and ∂t B = −∇ × E are usually used
along with the equation of motion for electrons simplified in
a compact form known as Ohm’s law

E + u × B = P, (18)

where P represents any nonideality. For example, it can
represent the resistive electric field ηJ, where η is resistivity
and J = ∇ × B is the electric current. Combining these, one
arrives at the induction equation

∂B
∂t

= ∇ × (u × B) − ∇ × P. (19)

In the limit of small nonideality P, Eq. (19) is conventionally
called the ideal induction equation,

∂B
∂t

= ∇ × (u × B). (20)

Magnetic flux through a smooth and oriented surface
S(t ) with S(t = 0) = S is a Lagrangian variable defined as

(S, t ) = ∫

S(t ) B(t )dA. Its time evolution is given by

d
(S, t )

dt
=

∫
S(t )

[
∂B
∂t

− ∇ × (u × B)

]
dA. (21)

Using Ohm’s law leads to

d
(S, t )

dt
= −

∮
C(t )

P dx, (22)

where C(t ) is the boundary of the surface S(t ) advected by
the flow. The magnetic field will be frozen into the fluid only
if ∇ × P = 0, or in particular P = 0. This result, known as
the Alfvén flux-freezing theorem [7], has other derivations too
[see Eq. (41) and the Appendix; see also [3] for a detailed
discussion].

There are however mathematical and physical difficulties
inherent in flux-freezing arguments. If the magnetic field is
frozen into an ideal fluid, the flow would entangle the field
lines in a very complex way, whereas such patterns have
never been observed in magnetized systems including astro-
physical bodies. More importantly, one implicit assumption
in flux-freezing arguments is the continuity of the velocity
and magnetic fields in the limit when the nonideal term P
(e.g., resistivity) tends to zero, in which case the governing
equations may become ill-defined. Even in HD, as discussed
in the preceding section, it is well known that the solutions of
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the ideal incompressible Euler equations in turbulent systems
should be singular in the limit ν → 0.

Analogous to the velocity field, the magnetic field too can
be renormalized to remove its singularities. The renormalized
induction equation reads

∂Bl

∂t
= ∇ × (u × B)l − ∇ × Pl , (23)

where we have used the renormalized Ohm law

El + (u × B)l = Pl , (24)

which can also be rewritten as

El = Pl + Rl − ul × Bl . (25)

Therefore, even in the absence of any nonideality P, there is a
nonlinear term which is not necessarily negligible,

Rl = −(u × B)l + ul × Bl ≡ −El . (26)

Here the turbulent electromotive force (EMF) El ≡ −Rl is the
motional electric field induced by turbulent eddies of scales
smaller than l and it plays a crucial role in magnetic dynamo
theories. We find

∂Bl

∂t
= ∇ × (ul × Bl − Rl − Pl ). (27)

Let us assume that the nonideal term P is negligibly small at
larger scales. In other words, we assume that Pl is negligible
in the inertial range of turbulence, which can basically be
taken as the definition of the inertial range. Ignoring Pl ,
Eq. (27) becomes the ideal renormalized induction equation.
This form of MHD equations can also be called a coarse-
grained, distributional, or weak form. After coarse graining
at an arbitrary scale l > ld , where ld is the viscous damping
scale down the inertial range, the ideal MHD equations gain
such an additional nonlinear term even for a smooth laminar
solution. However, for such solutions the nonlinear term Rl

would vanish rapidly as l tends to zero. A real violation of flux
freezing for an ideal MHD solution is one which persists in the
limit l → 0 as defined in [3]. Many other similar situations
can be found in RG theories.

Employing the renormalization method briefly discussed
above, Eyink and Aluie [3] showed that magnetic flux conser-
vation can be violated at an instant of time for an arbitrarily
small length scale l in the absence of any nonideality only if
at least one of the following necessary conditions is satisfied:
(a) nonrectifiability of advected loops, (b) unbounded velocity
or magnetic fields, or (c) singular current sheets and vortex
sheets that both exist and intersect in sets of large enough di-
mension. One underlying important fact is that an electrically
conducting fluid with a small viscosity and resistivity, or other
nonideality represented by the vector field P in Ohm’s law,
will be generally turbulent (see, e.g., [1,3,29,30]).

What is the condition for a given magnetic field, satisfying
the above renormalized induction equation in the sense of
distributions, to be frozen into the fluid? One way to answer
this question is through studying the slippage between the
magnetic field and the fluid threaded by the field. However,
it should be emphasized that flux freezing in its conventional
form is meaningless in a turbulent medium, as we will briefly
discuss in Sec. II D. Particle (Lagrangian) trajectories are

stochastic in a turbulent flow: Which trajectory should a field
line be frozen into? Conventional flux freezing is not valid in
a turbulent medium since the magnetic field is stochastic in
such environments; instead a stochastic version is in demand.
In Sec. II D we will briefly discuss the concept of stochastic
flux freezing introduced in [4] in the context of spontaneous
stochasticity. A mathematical analysis of these concepts is
given in the Appendix for self-containment (details can be
found in [1,3] and references therein).

B. Field-fluid slippage

Eyink [6] obtained a simple equation that governs the
perpendicular slip velocity of magnetic field lines relative to
the fluid generalizing the magnetic reconnection theory to
turbulent media. Here we only introduce the concept of slip
velocity and add a very simple argument to show how the
slip-velocity source term is related to the time evolution of
the unit vector tangent to the renormalized magnetic field at
scale l .

If we denote by ξ(s; x, t ) an arbitrary point on the magnetic
field line at time t located at a distance s from a base point
x along the field line, the unit tangent vector to the curve
parametrized by s is

d

ds
ξ(s; x, t ) = B̂(ξ(s; x, t ), t ), ξ(s = 0; x, t ) = x, (28)

where B̂ = B/|B|. On the other hand, the position of a fluid
element, which starts at x0 at time t0 at a later time t , satisfies
the following equation:

d

dt
x(t, x0, t0) = u(x(t, x0, t0)), x(t0, x0, t0) = x0. (29)

Obviously, if flux freezing holds for a smooth and laminar
solution of ideal MHD equations, then we should be able
to parametrize both field lines and the trajectories of the
fluid elements together using the same function ξ ≡ x. In
other words, in that case, we could find a function s(t, s0, x0)
such that ξ(s(t ; s0, x0); x(t ; x0, t0), t ) = x(t ; ξ(s0; x0, t0), t0).
The derivative of this equation reveals that the flux-freezing
condition (d/dt )ξ = u(ξ, t ) ≡ ũ holds if and only if

ṡ(t )B̂(ξ, t ) + Dtξ = ũ, (30)

where Dt = ∂t + u · ∇. To determine s(t ) one can use the
parallel components to write

ṡ(t ) = (ũ − Dtξ) · B̂ = (ũ − Dtξ)‖, s(t0) = s0. (31)

Therefore, the condition dξ/dt = ũ holds if and only if for all
s, x, and t ,

(Dtξ)⊥(s; x, t ) − u⊥(ξ(s; x, t ), t ) = 0. (32)

In fact, this is another version of flux freezing since what it
really states is that the relative perpendicular velocity (with
respect to the field line) between the field line and fluid
elements vanishes. Thus when the flux-freezing condition is
not satisfied, this relative velocity has a nonzero value which
we denote by

�w⊥(s; x, t ) = (Dtξ − ũ)⊥(s; x, t ). (33)
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Therefore, the flux-freezing condition translates into �w⊥ ≡
0. It is easy to show (for details see [6]) that

d�w⊥
ds

− [(∇ξB̂)T − (B̂B̂) · (∇ξB̂)] · �w⊥ = − (∇ × P)⊥
|B| .

(34)

Hence, assuming that the field remains smooth as P → 0,
one may conclude that flux freezing holds and the field lines
move with the fluid elements with no slippage. In fact, the
expression (34) indicates that flux freezing holds if B̂ × (∇ ×
P) = 0. This condition has long been known as the general
condition for flux freezing [31]: (∇ × P)‖ = 0. In the next
section we will show that this vector has a close relationship
with the evolution of the magnitude and direction of magnetic
field.

C. Field topology and energy

Here we connect Eyink’s [6] slip-velocity source term to
magnetic topology and show how the renormalized induction
equation gives rise to two equations which govern the topol-
ogy and energy of the magnetic field. In the inertial range
of turbulence, as we discussed before, the nonideal term P
is (by definition) negligible. In this case, the nonlinear term
R will appear instead of P in the above expressions thus
the slip-velocity source term is given by the perpendicular
component of (with respect to Bl )4

�l = ∇ × Rl

Bl
. (35)

Similarly, we can define

σ l = ∇ × Pl

Bl
, (36)

which will be useful in our later discussions. It is easy to see
that the term �⊥

l (σ⊥
l ) is related to the time evolution of the

unit vector tangent to the renormalized field Bl . The derivative
of the unit vector B̂ = Bl/|Bl | is

∂t B̂l = 1

|Bl |2 (|Bl |∂t Bl − Bl∂t |Bl |).

Noting that ∂t |Bl | ≡ ∂t (B2
l )1/2 = (Bl · ∂t Bl )(B2

l )−1/2, which is
(Bl/|Bl |) · ∂t Bl = B̂l · ∂t Bl = (∂t Bl )‖, we find

∂t B̂l = 1

|Bl | [∂t Bl − B̂l (B̂l · ∂t Bl |)] = 1

|Bl | [∂t Bl − (∂t Bl )‖].

Obviously, the terms inside the square brackets are the per-
pendicular component (with respect to Bl ) of the renormalized
induction equation

∂t B̂l =
(

∂t Bl

Bl

)
⊥

or

∂t B̂l −
(∇ × (ul × Bl )

Bl

)
⊥

= −�⊥
l − σ⊥

l . (37)

4Here, for simplicity, we have dropped the minus sign used in [6]
in the definition of �⊥

l .

Consequently, �⊥
l + σ⊥

l is also the source term for the time
evolution of B̂l which arises from the nonlinear term Rl

and nonideal term Pl . Note that on small scales, i.e., in
the dissipative range, σ dominates � in the expression (37),
whereas in the inertial range, where P is negligible, � is
dominant instead. In the inertial range, �⊥

l corresponds to
the contribution of the turbulent electromotive force El ≡
−Rl = (u × B)l − ul × Bl in changing the direction of the
magnetic field at scale l . According to the argument following
Eq. (35), a nonzero slip-velocity source term �⊥

l �= 0 (σ⊥
l �=

0) indicates field-fluid slippage. This in turn means that the
conventional flux freezing would not hold in turbulence. In
terms of Eq. (37), this is also equivalent to the fact that
the turbulent EMF induced by the motions below scale l
change the direction of magnetic field at scale l . Note that this
argument also implies that the evolution of the field topology,
in terms of the temporal changes in its direction B̂l , is related
to the perpendicular component of the induction equation.

Similarly, it is easy to show that the evolution of magnetic
energy at scale l is related to the parallel component of the
induction equation

∂Bl

∂t
=

(
∂Bl

∂t

)
‖
,

∂

∂t

(
B2

l

2

)
= Bl

(∂Bl

∂t

)
‖
. (38)

Thus one may study magnetic field topology (in terms of ∂t B̂l )
and magnetic energy (in terms of ∂t B2

l or ∂t Bl ) separately. In
general, the contributions of nonidealities and nonlinearities
to the evolution of B̂l and Bl can be summarized as

(∂t B̂l )non = −(�⊥
l + σ⊥

l ) (39)

and (
∂t Bl

Bl

)
non

=
(

∂t B2
l /2

B2
l

)
non

= −(�‖
l + σ

‖
l ). (40)

Separating the magnitude Bl and direction B̂l of the magnetic
field Bl , the former governed by the parallel component
and the latter by the vertical component (with respect to
the magnetic field Bl ) of the induction equation, extremely
simplifies the study of stochastic fields and shows that �‖
(σ ‖) is related to the temporal changes in the field magnitude
(energy) while �⊥ (σ⊥) is related to the temporal changes
in the field direction (topology). We will formulate these
considerations more rigorously in Sec. III.

D. Spontaneous stochasticity and stochastic flux freezing

Eyink [4] has shown that magnetic flux conservation in
turbulent media with small resistivities, or equivalently high
magnetic Reynolds numbers, neither holds in the conventional
sense nor is entirely broken. Instead, flux freezing holds in a
statistical sense associated with the spontaneous stochasticity
of Lagrangian particle trajectories. As resistivity tends to zero,
the magnetic Reynolds number tends to infinity. If viscosity of
the fluid tends to zero simultaneously and the fluid becomes
turbulent, Lagrangian trajectories will not be unique anymore.
With an infinite number of such trajectories, which trajectory
can the magnetic field pick at any point and freeze into?

Even in the absence of any nonideal term in Ohm’s law,
Eq. (27) indicates that flux freezing would not hold in a
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turbulent medium. It can be shown (see the Appendix for de-
tails) that for particle advection in turbulence the Lagrangian
trajectories can remain random in the limit of vanishing
conductivity and viscosity. This phenomenon of spontaneous
stochasticity [32] resembles spontaneous symmetry breaking
in QFT and has been discussed with great details in recent
decades (for more details see [4] and references therein).

Expanding ∇ × (u × B) = B · ∇u − B∇ · u − u · ∇B +
u∇ · B, one can write the bare induction equation as
DB/Dt = B · ∇u − B∇ · u + λ∇2B with Lagrangian deriva-
tive D/Dt ≡ ∂t + u · ∇. Here we denote magnetic diffusiv-
ity by λ. The continuity equation Dρ/Dt + ρ∇ · u = 0 then
yields

D

Dt

(
B
ρ

)
=

(
B
ρ

)
· ∇u. (41)

This is of course another way to state the conventional flux-
freezing theorem presuming that MHD equations remain well
behaved in the limit λ → 0 (i.e., the so-called ideal MHD
regime) and the integral curves of B/ρ are advected with the
fluid.5

In general, there is no way to find a velocity field u∗ such
that the resistive induction equation can be written in the ideal
form (20). Nevertheless, it is possible to describe the motion
as a stochastic advection. This approach naturally leads to the
notion of stochastic flux freezing (see the Appendix; for a
more detailed treatment see [4] and references therein). The
induction equation can in fact be expanded in a form that
resembles a diffusion equation, which is analogous to the
problem of particle advection in turbulence. A path-integral
formula can then be applied which eventually leads to the im-
portant implication that magnetic field is stochastically frozen
in and is advected along stochastic Lagrangian trajectories
(see the Appendix).

III. MAGNETIC TOPOLOGY AND STOCHASTICITY

In general, a given vector field B(x, t ) would be different
at different scales, that is, Bl (x, t ) would generally differ from
BL(x, t ) for l �= L. The scale dependence of B(x, t ) is related
to its spatial gradients (if the field is renormalized spatially;
otherwise a similar argument would apply to temporal renor-
malization). Quantitatively, one can see this relationship by
writing

∂Bl

∂l
= ∂

∂l

∫
V

Gl (r)B(x + r, t )d3r. (42)

This expression may be simplified by changing variables as
r′ = r/l and using the definition Gl (r) = l−3G(r/l ):

l
∂Bl

∂l
= l

∫
V

d3r′G(r′)
∂

∂l
B(x + lr′, t )

5Euler potentials α and β are also sometimes used to write the mag-
netic field in Clebsch notation, B = ∇α × ∇β with vector potential
A = α∇β + ∇γ . The ideal bare induction equation then becomes
∂t B = ∇ × (u × B) + ∇(Dα/Dt )∇β + ∇α × (Dβ/Dt ). Thus flux
freezing, in this formulation, translates into the statement that α and
β remain conserved in the flow.

=
∫

V
d3r Gl (r) r · ∇B(x + r, t )

=
∫

V
d3r Gl (r) (r + x) · ∇B(x + r, t )

−
∫

V
d3r Gl (r) x · ∇B(x + r, t ). (43)

Therefore, we find

l
∂Bl

∂l
= (x · ∇B)l − x · ∇Bl . (44)

Here we have used the fact that xl = x, which results from
Eqs. (6) and (7). In this paper we are mostly concerned with
the behavior of a given vector field in terms of its renormal-
ized components at different scales. However, it should be
emphasized that this approach is completely different from
the concept of scale separation. One might naively attempt to
scale separate the field assuming L � l and calling BL → B0

the large-scale field and Bl − BL → b the small-scale field

Bl = BL + (Bl − BL )

?⇒ BT = B0 + b,

with BT to be understood as the total field. Nevertheless,
scale separation requires 〈BT 〉 = B0 and 〈b〉 = 0, where 〈·〉
indicates an ensemble averaging. However, in general, 〈Bl −
BL〉 �= 0. In fact, the statistical scale separation method in-
herently differs from the deterministic approach of renor-
malization. The latter methodology does not depend on any
separation of scales between large-scale mean quantities and
their small-scale components. In fact, as mentioned above, we
treat the scale l as a variable as it is common in RG analyses
(for a discussion on the relation between coarse-graining or
renormalizing mean field theory and the filtering approach
employed in large-eddy simulation of turbulent flows see [3]
and references therein). We will not use this vague but widely
used notion in this paper.6

Scale-split energy density

We define the scale-split energy density ψ (x, r; t ) in terms
of the renormalized vector field Bl (x, t ) at scale l and the
renormalized field BL(x + r, t ) at scale L as7

ψl,L(x, r, t ) = 1
2 Bl (x, t ) · BL(x + r, t ). (45)

Here we are concerned only with ψl,L(x, r = 0, t ) ≡
ψl,L(x, t ). This quantity is a scale-dependent scalar field and
obviously L = l reduces it to the energy density B2

l /2 at scale

6Another analogous method is to decompose a (usually scalar)
field to homogeneous and inhomogeneous parts, writing φ(x, s) =
φ∗(s) + φ′(x, t ). Here φ∗(s) = (1/V )

∫
V φ(x, s)d3x is the homoge-

neous part and φ′(x, s) is the inhomogeneous part of φ. This decom-
position is used, for example, in inflationary theories in cosmology
for the quantum scalar field φ(x, s) known as the inflation which
drives the cosmic inflation.

7All the definitions and arguments presented here can be obviously
applied to any other vector field including the velocity field. In this
paper, however, we are primarily concerned with the magnetic field.
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l . In general, ψl,L provides us with pointwise information
about the angle between the coarse-grained fields on different
scales and also their magnitude. Note that ψl,L(x, t ) is in fact
a renormalized space-correlation function

ψl,L(x, t ) = 1

2

∫
V

d3r
∫

V
d3r′Gl (r)GL(r′)

× B(x + r, t ) · B(x + r′, t ).

Therefore, this scalar field is also an indicator of the self-
alignment of the field B at any point (x, t ), that is to say, it
depends on the angle between B(x + r, t ) and B(x + r′, t ) for
any r and r′ in the neighborhood of x (since G is a rapidly
decaying function). It also proves more convenient to consider
the direction and magnitude of the field separately by writing
ψ (x, t ) = φ(x, t )χ (x, t ) with two scalar fields

φl,L(x, t ) =
{

B̂l (x, t ) · B̂L(x, t ) for BL �= 0, Bl �= 0

0 otherwise
(46)

and

χl,L(x, t ) = 1
2 Bl (x, t )BL (x, t ). (47)

Therefore, the energy field χl,L is associated with the mag-
nitude of the field at different scales whereas the topology
field φl,L is associated with its direction. Physically, we are
interested in volume-averaged quantities in a given spatial
volume V and on a given range of scales [l, L]. (For simplicity,
we will drop the indices l, L hereafter.) Averaging can be done
using Lp norms, with p = 2 corresponding to rms averaging.
Mathematically, the scalar field φ(x, t ) is basically the cosine
of the angle between two coarse-grained components of the
magnetic field B(x, t ) at different scales l and L at point (x, t ),
i.e., φ = cos θ = B̂l · B̂L. Thus the term inside the parentheses
in Eq. (46), after rms averaging, is a measure of the average
deviation of B̂l from B̂L, i.e., [1 − cos θ ]rms/2. In other words,
it is a measure of self-entanglement of the vector field, which
is why we call it the topology field. The term χl,L is twice
the geometric mean of the energy densities at scales l and
L, χ = 2

√
UlUL, where Ul = B2

l /2 and similarly UL = B2
L/2.

Hence its squared rms average is proportional to the volume
average of energy densities χ2

rms = 4〈UlUL〉V , which is the
reason why we call it the energy field. In short, the scalar field
φ is related to the field topology whereas χ is related to the
field energy density. Also note that at magnetic nulls, φ = 0
by definition.

To make our arguments more tractable and quantitative, let
us begin with a few definitions. For any t ∈ [t0, t0 + T ] and
x ∈ V and in the range of scales [l, L], we give the following
definitions.

Definition 1. The vector field B(x, t ) is scale independent
if l ′∂l ′Bl ′ (x, t ) = (x · ∇B)l ′ − x · ∇Bl ′ ≡ 0 for all l ′ ∈ [l, L].
Otherwise, B(x, t ) is scale dependent.

Definition 2. The scale-dependent vector field B(x, t ) is
stochastic if −1 � φ(x, t ) � 1 is a stochastic variable.8

8A stochastic (random) variable is a variable whose numerical
values are determined based on the outcomes of a random process
such as tossing a die or flipping a coin. Mathematically, a random

Definition 3. The self-entanglement (of order p) of the
vector field B(x, t ) is

Sp(t ) = 1

2
‖1 − φ(x, t )‖p ≡ 1

2

[ ∫
V

∣∣∣∣1 − φ(x, t )

∣∣∣∣p d3x

V

]1/p

.

(48)

Obviously, Sp(t ) ≈ 0 corresponds to a nonstochastic field,
while Sp(t ) ≈ 1 indicates a strongly tangled field (between
the scales l and L and in volume V ). Hence, a smooth field
is one for which S∞(t ) = 0.9 For a stochastic field, the self-
entanglement level would be a measure of its stochasticity.

Definition 4. The stochasticity level (of order p) of a
stochastic field B(x, t ) is its self-entanglement.

Definition 5. The topological deformation (of order p) of
a stochastic (nonstochastic) field B(x, t ) is the rate of change
of its pth power of the stochasticity level (self-entanglement)
with time:10

Tp(t ) = ∂Sp(t )

∂t
= S1−p

p (t )

2p

∫
V

(φ − 1)
∂φ

∂t
|φ − 1|p−2 d3x

V
.

(49)

Note that Tp ≡ 0 generally indicates a stationary stochasticity
rather than nonstochasticity. We will give a more precise
definition of weak stationarity in terms of time series in
Sec. IV.

We emphasize in passing the distinction between topology
change and topological deformation. Under a smooth defor-
mation of a given stochastic field renormalized at scale l , such
that close points on its integral curves (field lines) remain
close to each other, the topology will not change; there will
be only deformation. This is why a doughnut is topologically
“equivalent” to a coffee cup since each of these objects can
be obtained from the other one by a smooth deformation
that keeps initially close points (on one object) close to each
other (on the second object).11 The topology would change,
however, if one tears the object while deforming it; thus a
reconnecting magnetic field undergoes topology change. Of
course such a topology change will in general translate into a
change in stochasticity level too, i.e., Tp �= 0. Nevertheless,
a change in stochasticity, i.e., Tp �= 0, by itself does not

variable Y : O → M is a measurable function from a set of possible
outcomes O to a measurable space M.

9The Lp-norm of f : Rm → Rm is the mapping f → ‖f‖p =
[
∫

V |f (x)|p(dmx/V )]1/p. For p = 2, ‖ f ‖2 = frms is the root-mean-
square value of f . For p � q, ‖f‖p � ‖f‖q. Also ‖f‖∞ =
limp→∞ ‖f‖p = |f |max.

10In this paper we work in an Eulerian system for simplicity
and focus on points in space rather than following fluid particles.
Otherwise, all time derivatives should be replaced with Lagrangian
derivatives.

11Mathematically, such a deformation can be represented by a
map f from one topological space (e.g., a doughnut) to another
(e.g., coffee cup) with an inverse f −1 representing the backward
deformation. To keep the close points close to each other f and f −1

need to be continuous functions. Such a bijective continuous map
f with continuous inverse f −1 is called a homeomorphism between
topological spaces.
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necessarily represent a topology change; rather it generally
indicates a topological deformation. Also note that stochas-
ticity level and topological deformation, as defined above, are
relative concepts in the sense that they are scale dependent.

Definition 6. The (pth-order) cross energy of the vector
field B is

Ep(t ) = ‖χ‖p. (50)

Its time derivative represents the dissipation rate

Dp(t ) = ∂Ep(t )

∂t
= E1−p

p (t )
∫

V
χ

∂χ

∂t
|χ |p−2 d3x

V
. (51)

This concept of field dissipation, rather than field energy
dissipation, will prove useful as a bookkeeping device when
we discuss magnetic reconnection in Sec. IV.

Throughout this paper, we will take p = 2. Thus, the
stochasticity level S2, topological deformation T2, cross en-
ergy E2, and dissipation D2 are given by

S2(t ) = 1

2
(1 − φ)rms, (52)

T2(t ) = 1

4S2(t )

∫
V

(φ − 1)
∂φ

∂t

d3x

V
, (53)

E2(t ) = χrms, (54)
and

D2(t ) = 1

E2(t )

∫
V

χ∂tχ
d3x

V
. (55)

Locally, at any arbitrary point x ∈ V , the time derivative of the
scalar field φ(x, t ) is given by

∂φ

∂t
=

[
∂t Bl

Bl
· (I − B̂l B̂l )

]
· B̂L +

[
∂t BL

BL
· (I − B̂LB̂L )

]
· B̂l

= B̂L ·
(

∂t Bl

Bl

)
⊥Bl

+ B̂l ·
(

∂t BL

BL

)
⊥BL

. (56)

Here ( )⊥B represents the perpendicular component with re-
spect to B. Hence, the time evolution of S2

2 is given by

T2(t ) = 1

4S2

∫
V

[B̂l · B̂L − 1]

[
B̂L ·

(
∂t Bl

Bl

)
⊥Bl

+ B̂l ·
(

∂t BL

BL

)
⊥BL

]
d3x

V
. (57)

The time evolution of the scalar field χ (x, t ) can be similarly
obtained,

∂χ

∂t
= 1

2
BlBL

[(
∂t BL

BL

)
‖BL

+
(

∂t Bl

Bl

)
‖Bl

]
. (58)

Here ( )‖B represents the parallel component with respect to
B. Hence, for the time evolution of cross energy E2(t ) we find

D2(t ) = 1

4E2

∫
V

[
B2

l ∂t
(
B2

L/2
) + B2

L∂t
(
B2

l /2
)]d3x

V

= 1

E2

∫
V

(
BlBL

2

)2[(
∂t BL

BL

)
‖BL

+
(

∂t Bl

Bl

)
‖Bl

]
d3x

V
,

(59)

which is obviously related to the temporal changes in energy
densities B2

l /2 and B2
L/2 at scales l and L. This is in turn re-

lated to the parallel component of the renormalized induction
equation at these scales, as we discussed previously.

The above considerations are general and can be applied
to any vector field. Let us now concentrate on magnetic field
B(x, t ) which satisfies the renormalized induction equation
(27). Time evolution of φ, given by Eq. (56), and the renor-
malized induction equation (27) can be used to write

∂φ

∂t
= B̂L ·

(∇ × (ul × Bl )

Bl
− �l − σ l

)
⊥Bl

+ B̂l ·
(∇ × (uL × BL )

BL
− �L − σL

)
⊥BL

. (60)

Therefore, the time evolution of φ driven by the nonlinearities
and nonidealities, rather than the turbulent flow, is(

∂φ

∂t

)
non

= − B̂L · (�⊥
l + σ⊥

l )︸ ︷︷ ︸
field-fluid slippage of Bl along BL

− B̂l · (�⊥
L + σ⊥

L )︸ ︷︷ ︸
field-fluid slippage of BL along Bl

.

In the inertial range (dissipative range),12 terms proportional
to � (σ) would dominate. Note that the slip-velocity source
terms, defined by Eqs. (35) and (36), have appeared again here
at two scales.

The term χ can be treated similarly. To get ∂tχ , we can
rewrite Eq. (58) using the renormalized induction equations
for Bl and BL. The part that depends on the nonlinearity R
and nonideality P is given by(

∂tχ

χ

)
non

= −(�‖
L + �

‖
l + σ

‖
L + σ

‖
l ). (61)

The implication is that the magnetic energy conversion is
related to �‖ and σ ‖. Therefore, the local time evolution of
ψ driven by nonlinear terms is given by(

∂ψ (x, t )

∂t

)
non

≡ 1

2
χ (x, t )

(
∂φ(x, t )

∂t

)
non

+ 1

2
φ(x, t )

(
∂χ (x, t )

∂t

)
non

or

2

(
∂ψ

∂t

)
non

= −2χ (B̂L · (�⊥
l + σ⊥

l ) + B̂l · (�⊥
L + σ⊥

L ))︸ ︷︷ ︸
field-fluid slippage

− ψ (�‖
L + �

‖
l + σ

‖
L + σ

‖
l )︸ ︷︷ ︸

magnetic dissipation

. (62)

One ubiquitous magnetic process, which can be used as an ex-
ample to apply the formulation developed so far, is magnetic
reconnection to be discussed in the following section.

12For simplicity, we assume a magnetic Prandtl number of unity
throughout this paper, that is, the viscosity is assumed to be equal to
the magnetic diffusivity ν/η = 1.
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IV. PHYSICAL IMPLICATIONS: SLIPPAGE AND
RECONNECTION

In this section we apply the formalism developed in the
previous sections to the problem of the slippage of magnetic
field through the fluid and the closely related concept of
magnetic reconnection. In a more detailed treatment, the for-
malism developed so far should be applied to the velocity field
as well. We postpone such a detailed approach to a future work
and present a general picture here in terms of magnetic field
evolution only. Some definitions of magnetic reconnection
require the magnetic field to evolve without flux freezing
[33]. Some others include a topology change in magnetic
field [21], although the notion of topology change mostly

remains vague in such definitions. Yet others include also a
conversion of magnetic energy into heat or kinetic energy of
fluid particles (see, e.g., [34]; for a more detailed discussion of
reconnection definitions see [14,17]). Axford [35] argued that
the change of magnetic connections between fluid particles
can be taken as the basal definition of reconnection [6]. As
the turbulent flow tangles an initially smooth magnetic field,
its stochasticity level Sp(t ) increases with time. Magnetic field
lines, however, are not easily bent and they will resist bending
and tangling by means of tension forces. At some point, the
field would slip through the fluid to reduce its stochasticity
level (self-entanglement).

Equation (57) can be expanded using the renormalized
induction equation as

T2(t ) = 1

4S2

∫
V

d3x

V
[B̂l · B̂L − 1]︸ ︷︷ ︸

self-entanglement (stochasticity)

[ (
B̂L

Bl
· ∇ × (ul × Bl )⊥Bl

+ B̂l

BL
· ∇ × (uL × BL )⊥BL

)
︸ ︷︷ ︸

turbulence (flow)

− (B̂L · �⊥
l + B̂l · �⊥

L + B̂L · σ⊥
l + B̂l · σ⊥

L )︸ ︷︷ ︸
slippage (reconnection)

]
, (63)

where we have also recovered the terms related to nonideality P. The term inside the first set of square brackets in Eq. (63) acts
as a weight function w(x, t ) = B̂l · B̂L − 1, which represents the local field stochasticity (or self-entanglement for nonstochastic
fields). The smoother the field is (i.e., more aligned B̂l and B̂L), the smaller the value of this weight function would be. As
the turbulent flow tangles an initially smooth magnetic field (leading to large deviations between B̂l and B̂L), whose effect is
represented by the terms inside the first set of large parentheses in the second set of square brackets, the stochasticity level
increases, T2 = ∂t S2 � 0. However, such a tangled magnetic field would interact with the flow and resist more tangling and
bending. Magnetic field lines can slip through the fluid, an effect already known to be related to �⊥ �= 0 or σ⊥ �= 0, whose
effect is represented by the terms in the second set of parentheses inside the large square brackets. This can lead to a sudden
motion of the field lines relative to the fluid quickly decreasing the stochasticity level T2 = ∂t S2 � 0. Therefore, at some point
between these two stages, T2 = ∂t S2 = 0. Note that this should be interpreted as a general trend, which might be disrupted by
small fluctuations induced by turbulence and intermittency.

Sudden field-fluid slippage, motion of the field relative to the fluid, will generally lead to particle acceleration by extracting
energy from magnetic field: D2 = ∂t E2 � 0. As the slippage peaks and the stochasticity level reaches its maximum T2 = ∂t S2 =
0, the magnetic field dissipation also ramps up. The evolution of the cross energy, as discussed before, is related to the parallel
component of the induction equation at any scale. We also have

D2(t ) = 1

E2

∫
V

(
BlBL

2

)2[∂t
(
B2

L/2
)

B2
L

+ ∂t
(
B2

l /2
)

B2
l

]
d3x

V

= 1

E2

∫
V

(
BlBL

2

)2[(∇ × (ul × Bl )‖Bl

Bl
+ ∇ × (uL × BL )‖BL

BL

)
︸ ︷︷ ︸

magnetic-velocity field interaction

− (�‖
l + σ

‖
l + �

‖
L + σ

‖
L )︸ ︷︷ ︸

magnetic dissipation

]
d3x

V
. (64)

Since BL is obtained by averaging (coarse graining) the mag-
netic field over the length scale L, it is in fact a weighted
sum of fine-grained magnetic fields. Indeed, BL(x, t ) =∫

V GL(r)B(x + r, t )d3r can be thought of as the expected
value of B with respect to the probability distribution function
GL(r). Therefore, on average, less aligned fine-grained fields
at smaller scales in a volume V would mean a weaker

∫
V B2

L/2
(because of local cancelations) especially if

∫
V B2

l /2 decreases
as well. In other words, we expect that T2 = ∂t S2 � 0 and∫

V ∂t (B2
l /2) � 0 lead to

∫
V ∂t (B2

L/2) � 0. Using the first equa-
tion in Eq. (64), it is easy to see that D2 = ∂t E2 � 0. In
an analogous manner, T2 = ∂t S2 � 0 and

∫
V ∂t B2

l � 0 would
lead to

∫
V ∂t (B2

L/2) � 0; therefore D2 = ∂t E2 � 0. During

magnetic reconnection at scale l , the kinetic energy of acceler-
ating particles has to be extracted from the available magnetic
energy. Apart from small fluctuations and deviations from the
global trend, at the peak of reconnection, E2 reaches a min-
imum whereas S2 reaches a maximum. Therefore, magnetic
reconnection may be defined as a field-fluid slippage in which
(a) the stochasticity level increases toward a maximum, (b)
the magnetic energy is maximally dissipated, and (c) there are
magnetic nulls at which Bl = 0 or BL = 0,

{
∂S2

∂t
= 0,

∂2S2

∂t2
� 0;

∂E2

∂t
= 0,

∂2E2

∂t2
� 0

}
, (65)
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or equivalently {T2 = D2 = 0; ∂t T2 � 0, ∂t D2 � 0}. As the
field lines disconnect and reconnect, the magnetic field dis-
sipates and stochasticity increases; hence as the reconnection
peaks, so do the relative field dissipation and stochasticity
level. Note that the scale l (as well as L taken as the system
size here) is arbitrary and the arguments and conditions dis-
cussed above are applied at any scale in the renormalization
range: Reconnection occurs on all scales.

It should be emphasized that the relationship between the
magnetic stochasticity level Sp(t ) and cross energy Ep(t )
discussed above is to be interpreted as a global pattern. After
all, this is a statistical approach and we should expect small
deviations from the general pattern. The chaotic motions
and small fluctuations, inherent features of turbulence, will
certainly affect the relationship between the stochasticity and
cross energy during short-time intervals. Apart from the prob-
lem of intermittency, which we have ignored here, even the
volume-averaged quantities such as Sp(t ) and Ep(t ) can gen-
erally suffer from turbulent fluctuations. Also strong magnetic
energy dissipation, e.g., in regions where the magnetic field
is efficiently annihilated, may affect the relationship between
S2(t ) and E2(t ). This would require then a consideration of
kinetic energy too. In fact, because of the interplay between
magnetic and velocity fields, this formalism should also be
applied to the velocity field. The relationship between mag-
netic and kinetic topology changes is beyond the scope of the
present work.

This is all theory so far. In practice, i.e., in experiments
and numerical simulations, it may be difficult or impossible to
work with monstrous expressions such as Eq. (63) and their
derivatives. We can obtain coarse-grained fields Bl and BL, in
a volume V and on a range of scales [l, L]. It is straightforward
then to find φ and χ and spatially average them to obtain S2

and E2 at any given time. These time-dependent functions
may be obtained as a discrete set of values measured at
different times with fluctuations rather than a smooth graph.
This requires a time series analysis to be briefly discussed in
Sec. IV. In any case, reconnection would correspond to a time
interval �t = t − t0 during which S2 reaches its maximum
while E2 reaches its minimum value: ∂t T2 � 0 and ∂t D2 � 0.
At a later time t = t0 + τ , when T2 and D2 change sign,
the conditions ∂t T2 � 0 and ∂t D2 � 0 change to ∂t T2 � 0
and ∂t D2 � 0. This can be used to define a reconnection
rate τ−1.

Definition 7. The reconnection intensity (or field-fluid slip-
page intensity) in time τ , during which ∂2

t Sp � 0 and ∂2
t Ep �

0, is

Ip(τ ) =
∣∣∣∣
∫ t0+τ

t0

Tp(t )dt

∣∣∣∣ = |Sp(t0 + τ ) − Sp(t0)|. (66)

Note that generally field-fluid slippage may or may not be
associated with magnetic null points. If it is, and the above
conditions hold, magnetic field lines disconnect and reconnect
again, and therefore close points on the field lines will not
generally remain close to each other as the field lines dis-
connect. Hence magnetic reconnection is field-fluid slippage
in which magnetic energy is reduced, magnetic connectivity
breaks apart, and topology changes. Topological deformation
Tp then also indicates topology change.

Note that σ⊥
l dominates at the dissipative range where �⊥

l
is negligible. Thus, field-fluid slippage at small scales is driven
by the nonidealities. On the other hand, �⊥

l dominates in the
inertial range where σ⊥

l is negligible, which indicates that
field-fluid slippage is driven by the nonlinearities at larger
scales. As an order of magnitude estimate, |Rl | ∼ |δu(l ) ×
δB(l )|, where δu(l ) and δB(l ) are, respectively, the velocity
and magnetic field increments across distance l . Therefore,
the vector field �l = (∇ × Rl )/Bl is of order of

�l ∼
∣∣∣∣δu(l )

l
× δB(l )

Bl

∣∣∣∣ � δu(l )

l

δB(l )

Bl
. (67)

In the inertial range of turbulence, Kolmogorov scaling [36]
leads to δu(l )/l ∼ l−2/3. In the next section we will see
that this is related to Richardson two-particle diffusion and
stochastic reconnection. Note that in the dissipative range
of turbulence, Kolmogorov scaling yields δu/l ∼ ν−1/2ε1/2

where ν is viscosity and ε the energy dissipation rate. In fact,
|∇ × Rl | increases as we go to smaller scales in the inertial
range and finally approaches the nonideal term |∇ × P| at the
turbulence microscale ld :

∂

∂l
|∇ × Rl | � 0 (inertial range).

Therefore, |∇ × Rl | � |∇ × Pl | for l � ld in the inertial
range (see [3,6]). One may expect to find larger values for
|∇ × Rl | at smaller scales in the inertial range than the larger
scales. However, any such small effect would be magnified
by Richardson diffusion at larger scales. We find connections,
therefore, to the stochastic model of reconnection proposed by
Lazarian and Vishniac [21].

In fact, Lazarian and Vishniac [21] showed that a stochastic
magnetic field would enhance magnetic reconnection because
stochasticity causes more efficient fluid diffusion from the
reconnection region. In other words, the stochastic reconnec-
tion model implies the existence of negative feedback. They
also pointed out that in a turbulent medium “if the magnetic
field is too smooth, reconnection speeds decrease and the
field becomes more tangled. If the field is extremely chaotic,
reconnection speeds increase, making the field smoother.”
This argument is intimately connected to the picture we have
advanced in this section in terms of stochasticity Sp(t ), cross
energy Ep(t ), and their time derivatives. In fact, the original
derivation of stochastic reconnection was based on a simple
geometric picture in which the field lines have some small-
scale wandering. In this context, weak stochasticity means
that on any given scale the typical angle by which field lines
differ from their neighbors is very small θ � 1. If one makes
this argument mathematically more precise, using renormal-
ization methodology rather than scale separation invoked by
Lazarian and Vishniac, one recovers a picture analogous to the
one advanced in this section based on θ = cos−1 φ. A detailed
numerical evaluation of these theoretical predictions is beyond
the scope of the present work.

In passing, note that the completely different derivation
of the stochastic reconnection model based on Richardson
diffusion by Eyink et al. [22] is even more indicative of the
indeterministic behavior of the magnetic field. In fact, Eyink’s
[6] general reconnection elaborately connects stochastic re-
connection to field-fluid slippage in a precise mathematical
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treatment, which was very briefly touched on Sec. II B. Gen-
eralization of stochastic reconnection to viscous media by
Jafari et al. [23] too relies on the stochasticity and lack of
preserved identity over time for magnetic field lines even in
the dissipative range.

Topological time series and regression

One way to study the magnetic field evolution in complex
systems, e.g., in astrophysical objects, and in particular mag-
netic reconnection is to use time series analysis. The values
of the stochasticity level Sp(t ) measured at different times can
be considered as a discrete set of random variables instead of
taking Sp(t ) as a continuous function of time. This approach
naturally leads to a time series analysis to be discussed in the
next section. Consider the stochasticity level as a stochastic
process

{St = Sp(t ), t ∈ T }, (68)

where T is an arbitrary set called an index. If observations are
made at times t = 1, 2, . . ., or generally if T ⊆ Z , the above
set defines a time series. The mean and covariance can be
defined in the conventional way

μS (t ) = E [St ], γS (t ) = Cov(Sr, Sτ ),

where E [St ] is the expectation value and Cov(Sr, Sτ ) is the co-
variance. Similarly autocovariance γS (h) and autocorrelation
ρS (t ) are defined as

γS (t ) = Cov(St+h, St ), ρS (t ) = γS (h)

γS (0)

for any h (called the lag).
Definition 8. The stochasticity (self-entanglement) of a

given magnetic field is weakly stationary if the following
conditions for all t, r, τ ∈ Z hold:

Var(St ) < ∞,

μS (t ) = μ = const,

γS (r, τ ) = γS (r + t, τ + t ).

For nonstationary stochastic (entangled) magnetic fields,
instead of time derivatives, we may use the backshift B and
difference L operators

LSt = St − St−1 = (1 − B)St , (69)

with BSt = St−1, BnSt = St−n, and Ln ≡ L(Ln−1). Note that
Tt := LSt is the discrete analog of Tp = ∂t Sp.

Trend and seasonality can also be defined in conventional
ways. For example, we can decompose the stochasticity in
terms of a long-run trend Tt , which is a slowly changing func-
tion; a seasonal component Pt , which is a periodic function;
and a stationary time series Rt , which is called the residual
component:

St = Tt + Pt + Rt . (70)

One main goal usually is to find the deterministic components
Tt and Pt in such a way that the residual component can be
approximated as a stationary time series.

These are all well known in time series analyses and there
are standard methods to describe the emerging pattern, explain

how the past values affect the future values, and forecast future
values. For the magnetic fields in which we are interested here,
the residual component is expected to arise because of turbu-
lence, while the seasonality may be the result of a dynamo
action (e.g., solar cycles). The abrupt changes in stochasticity
may be related to magnetic reconnection (Sec. IV), which
can be studied using (univariate) temporal event detection
methodologies. Regression analyses can also be applied to
the stochasticity level in order to gain deeper insight into the
magnetic topology in turbulent media. For example, simple
autoregressive models of order k [called AR(k) models] may
be applied to the time series {St , t ∈ Z} to estimate St at a
given time as a linear function of its earlier values St = β0 +
β1St−1 + · · · + βnSn−k + wt , with parameters βi, 0 � i � n −
k, and white noise wt . Such a detailed approach in which
incompressible, homogeneous MHD numerical simulations
can be used to evaluate stochasticity level S2(t ) as a time series
to infer local field reversals (topology changes) and a global
Sweet-Parker-type [37,38] reconnection event is deferred to
future work.

V. CONCLUSION

The quantitative description of the topology and stochastic-
ity of turbulent magnetic fields, presented in this paper, shows
that field-fluid slippage, magnetic reconnection, stochasticity
level, and magnetic topological deformation are all intimately
related and should be studied using a renormalized (coarse-
grained) version of MHD equations. Renormalization of mag-
netic and velocity fields in turbulent media resolves the issue
of the singularity of these fields, which otherwise would make
the notion of field lines ill-defined since the integral curves
of Hölder-singular vector fields are not uniquely defined. As
shown in this paper, the magnetic topology change is related
to the perpendicular component of the induction equation,
whereas the evolution of the magnitude of the field, which is
related to magnetic energy, is governed by the parallel compo-
nent of the induction equation. In the presence of turbulence
and stochasticity, a renormalized version of the induction
equation should be used. This in turn allows the topology
and energy of a given magnetic field to be studied separately,
introducing the notion of the scale-split energy density ψl,L =
Bl · BL/2 for the vector field B(x, t ) renormalized at scales
l and L. In general, replacing the notion of scale separation
in turbulence, which is convenient but mathematically vague,
with the robust concept of renormalization (coarse graining)
yields a unified and systematic formulation of the evolution
of turbulent vector fields. In a more general treatment, in
magnetized fluids, this formalism should be applied to both
magnetic and velocity fields.

We have shown in particular that magnetic reconnection
can be thought of as a relaxation process which allows the
magnetic field tangled by the turbulent flow to untangle itself
by slipping through the fluid. Previous work has shown that
this field-fluid slippage is related to magnetic reconnection.
In our formulation, this tangling and untangling translate
into the increase and decrease in stochasticity level which is
used to quantify the topological deformations. In this respect,
magnetic reconnection corresponds to a maximum in the
stochasticity level Sp(t ) or equivalently a change in the sign of
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topological deformation Tp(t ). This formalism can be readily
applied to the turbulent velocity field as well, connecting mag-
netic stochasticity and topology to their kinetic counterparts.
We also emphasize in passing that the predicted relationship
between stochasticity and cross energy should be interpreted
statistically in terms of a global trend since small deviations
and fluctuations will certainly plague the evolution of stochas-
ticity and cross energy. We have also briefly touched on the
idea that the stochasticity level and topological deformation
introduced here can be studied in the context of time series and
regression analyses. Such a consideration would be different
from conventional statistical methods currently used to study
turbulent magnetic fields since such an approach relies on the
self-entanglement of a stochastic field relative to two different
scales in a renormalized version. A detailed numerical treat-
ment of the formalism presented here is postponed to future
work.

Finally, we point out that our results are in favor of
stochastic reconnection, proposed by Lazarian and Vishniac
[21], whose connections with spontaneous stochasticity and
Richardson diffusion were explored by Eyink et al. [5,22].
Also our formalism is closely related to the general reconnec-
tion theory of [6], which introduced the slip-velocity source
term �, extensively used in the present paper.

APPENDIX

Here we briefly discuss the concept of spontaneous
stochasticity [32] and stochastic flux freezing [4]. One way
to understand the fact that even in the absence of any nonideal
term in Ohm’s law, flux freezing would not hold in turbulence
is through considering particle advection. Following the nota-
tion of Eyink [4], we write

d

dt
x̃(t ) = ũν (x̃(t ), t ) +

√
2κ η̃(t ), x(t0) = x0, (A1)

where the advecting velocity is perturbed by a Gaussian white
noise η̃(t ). Here κ is a constant and velocity field is smooth at
scales smaller than the viscous scale l < lν with viscosity ν.
Note that the velocity realization uν is nonrandom, which can
be used to write the transition probability for a fluid element

Gν,κ
u (x f , t f |x̃0, t0) =

∫
x(t0 )=x0

Dx δ3(x f − x(t f ))

× exp

(
− 1

4κ

∫ t

t0

dτ |ẋ(τ )−uν (x(τ ), τ )|2
)

.

This path-integral formulation resembles the Feynman path
integral, related to the Schrödinger equation, in quantum
mechanics. Here and in other similar contexts, Dx denotes
integration over all paths x. Similarly, the above formulation
can be used to solve the advection-diffusion equation

∂tθ + uν · ∇θ = κ∇2θ, (A2)

where κ denotes the molecular diffusivity now. The solution
is obtained using the Feynman-Kac formula

θ (x, t ) =
∫

d3x0θ (x0, t0)Gν,κ
u (x f , t f |x0, t0). (A3)

In a more explicit form, for t0 < t , we can write

θ (x, t ) =
∫

a(t )=x
Da θ (a0, t0)

× exp

(
− 1

4κ

∫ t

t0

dτ |ȧ(τ ) − uν (a(τ ), τ )|2
)

, (A4)

which corresponds to solving backward in time the stochastic
equation

d

dt
ã(t ) = ũν (ã(t ), t ) +

√
2κ η̃(t ) for t < τ < t0. (A5)

One might naively assume that as the molecular diffusivity
tends to zero κ → 0, the transition probability collapses to a
δ function

Gν,κ
u (x f , t f |x0, t0) → δ3(x f − x(t f )), (A6)

where x(t ) solves dx/dt = u(x, t ) with x(t0) = x0. However,
this argument would break down if at the same time ν → 0
too and uν → u for a nonsmooth and singular velocity field
u. This means that as the molecular diffusivity and viscosity
simultaneously tend to zero κ, ν → 0, we get

Gν,κ
u (x f , t f |x0, t0) → Gu(x f , t f |x0, t0). (A7)

This is a remarkable result: The Lagrangian trajectories can
remain random in the limit κ, ν → 0. This phenomenon of
spontaneous stochasticity [32] resembles spontaneous sym-
metry breaking in QFT and has been discussed in great detail
in recent decades (for more details see [4] and references
therein).

One can apply a mathematical treatment analogous to the
one presented above to magnetic field evolution in a turbulent
fluid. As we showed in Eq. (41), expanding ∇ × (u × B) =
B · ∇u − B∇ · u − u · ∇B + u∇ · B, one can write the bare
induction equation as DB/Dt = B · ∇u − B∇ · u + λ∇2B
with Lagrangian derivative D/Dt ≡ ∂t + u · ∇. Here we de-
note magnetic diffusivity by λ. The continuity equation
Dρ/Dt + ρ∇ · u = 0 then yields

D

Dt

(
B
ρ

)
=

(
B
ρ

)
· ∇u,

which is, as discussed in the main text [Eq. (41)], another
way to represent the magnetic flux-freezing theorem presum-
ing that MHD equations remain well behaved in the limit
λ → 0 and the integral curves of B/ρ are advected with the
fluid. In general, there is no way to find a velocity field
u∗ such that the resistive induction equation can be written
in the ideal form (20). However, one still can describe the
motion as a stochastic advection. Here we briefly discuss this
approach, which naturally leads to the notion of stochastic
flux freezing (for a detailed treatment see [4] and references
therein). The starting point is to note that the induction equa-
tion can be expanded in a form that resembles the diffusion
equation (A2):

∂B
∂t

+ (u · ∇)B = (B · ∇)u − B(∇ · u) + λ∇2B. (A8)
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The path-integral formula given by Eq. (A4) can be applied to
(A8). The solution of the induction equation (A8) is

B(x, t ) =
∫

a(t )=x
Da B[a(t0)]·J (a, t )

× exp

(
− 1

4λ

∫ t

t0

dτ |ȧ(τ ) − uν (a(τ ), τ )|2
)

, (A9)

which is a sum over histories a(t ). Here B is taken as a row
vector in three dimensions and J (a, t ) is a 3 × 3 matrix which
satisfies

d

dτ
J (a, t ) =J (a, t )∇xu(a(τ ), τ )

− J (a, t )(∇x · u)(a(τ ), τ ), (A10)

with J (a, t0) = I (3 × 3 identity tensor). Similar to the scalar
diffusion equation, with the condition a(t ) = x as the initial
point, the path-integral trajectories correspond to the solution
of the following stochastic equation integrated backward in
time from τ = t to τ = t0:

d

dτ
ã(τ ) = u(ã(τ ), τ ) +

√
2λη̃(τ ), ã(t ) = x. (A11)

Of course, Eq. (A11) can also be solved in the usual way, that
is, forward in time from τ = t0 to τ = t . To do so, exactly the
same trajectories can be obtained if one considers only those
particles with initial locations selected to arrive at x at time
t for a given white noise η̃(t ). Such a group of time histories
x̃(τ ) solves the equation

d

dτ
x̃(a, τ ) = u(x̃(a, τ ), τ ) +

√
2λη̃(τ ), x̃(a, t0) = a,

(A12)

with τ > t0. Here the inverse mapping ã(x, τ ) to x̃(a, τ ) fixes
the starting point by a = ã(x, t ). Applying the operator ∇a to
(A12) shows that a solution for Eq. (A10) is given by

J̃ (a, t ) = 1

det[∇ax̃(a, t )]
∇ax̃(a, t ). (A13)

As a result, we can write the path integral given by Eq. (A9)
in the following form:

B(x, t ) =
〈

1

det[∇ax̃(a, t )]
B0(a) · ∇ax̃(a, t )

∣∣∣∣
ã(x,t )

〉
. (A14)

Here 〈·〉 indicates the average over realizations of the random
white-noise process η̃(t ) used in Eq. (A12). We call the
expression (A14) the Eyink-Lundquist formula, which is the
stochastic generalization of the standard Lundquist formula
obtained by Eyink [4]. The determinant can be interpreted as
the ratio of initial and final mass densities:

det[∇ax̃(a, t )] = ρ0(a)

ρ̃(x̃(a, t ), t )
. (A15)

The important implication is that the vector field B̃/ρ̃ is
stochastically frozen in and is advected along stochastic La-
grangian trajectories, where B̃ is given by the term inside the
angle brackets in Eq. (A14), that is,

B̃(x, t ) = 1

det[∇ax̃(a, t )]
B0(a) · ∇ax̃(a, t )

∣∣∣∣
ã(x,t )

. (A16)

Magnetic flux freezing in turbulent fluids should be under-
stood only in this stochastic form (for details and numerical
evaluations see [4,5]). Note that Eq. (A14) is the stochastic
version of Eq. (41).
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