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Electrical conductivity and tortuosity of solid foam: Effect of pore connections
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Numerical and analytical methods at both micro- and mesoscales are used to study how the electrical resistivity
and the high-frequency tortuosity of solid foam are modified by the presence of membranes that partially or
totally close the cell windows connecting neighbor pores. Finite-element-method simulations are performed on
two pores connected by a single-holed membrane and on well-ordered Kelvin foam. For two pores connected
by a single-holed membrane, we show that the equation for pore access resistance obtained by Sahu and Zwolak
[Phys. Rev. E 98, 012404 (2018)] can predict, after a few modifications, the electrical resistivity at the membrane
scale for a large range of membrane apertures. Considering these analytical results, we build a pore-network
model by using two kinds of conductances at the pore scale: interpore conductance and intrapore conductance.
Local interpore resistances govern foam electrical conductivity at small membrane aperture size, but when the
membrane aperture has the same order of magnitude as the pore size, the intrapore resistances are no longer
negligible. An important success of this pore-network model is that it can be used to study the effects of
percolation on the foam electrical conductivity by using pore-network simulations on larger samples containing a
few thousand pores and having different proportions of closed membrane randomly distributed over the sample.
The tortuosity is found to be drastically larger than one in foam containing membranes with small apertures or a
significant fraction of closed membranes.
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I. INTRODUCTION

When an acoustic wave propagates through a viscous fluid-
saturated porous medium having a motionless skeleton (rigid
frame), the relative displacement between the fluid and frame
generates fluid shear at the surface of the pore walls. This
results in a viscous dissipation and an attenuation of the sound.
Due to its diffusive propagation, any vorticity generated at
the pore walls decays to zero as one moves away from the
pore wall into the bulk of the pore [1]. Therefore, viscous
dissipation occurs in a boundary layer located at the surface
of the pore and of thickness δ. This length δ, called the
viscous skin depth, is frequency dependent: δ ≈ √

μ/ρ f f ,
where μ and ρ f are the dynamic viscosity and density of
the fluid, respectively, and f is the frequency. In the limit
of high frequencies, the viscous skin depth becomes much
smaller than any characteristic pore size and the fluid tends
to behave as an ideal fluid having no viscous effect (except
in the thin boundary layer). More generally, the dynamic
behavior of fluid-saturated porous media is due to a balance
between the power developed by the fluid pressure gradi-
ent and both the viscous dissipative power and the inertial
power developed in the fluid [2,3]. The viscous dissipative
power dominates the inertial power at low frequency and
inversely at high frequency. The viscoinertial frequency fv
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defining the transition between low- and high-frequency be-
havior corresponds to the frequency for which the viscous
dissipated and kinetic (inertial) powers are equal [3]. Like-
wise, the distinction between the low- and high-frequency
behavior depends also on whether the viscous skin depth is
large or small compared to a characteristic pore size [1].
An estimate of fv follows from this phenomenological de-
scription and is given by fv = μ/Kα∞ρ f , where K is the
permeability, a parameter associated with the low-frequency
behavior, and α∞ is the tortuosity, a parameter associated
with the high-frequency behavior. In the high-frequency limit,
the effective density ρe only depends on the tortuosity,
ρe = α∞ρ f .

The tortuosity is a key parameter describing dispersion
of microscopic velocities with respect to the average value
of microscopic velocities (A4). Because at high frequency
the potential flow is formally identical to electric conduction
assuming that the porous solid is insulating [4], the tortuosity
can be experimentally estimated by electrical conductivity
measurement or calculated for specific pore geometries by
solving the electrical boundary-value problem (A3). Several
properties of α∞ are important to mention. (i) The tortuosity
α∞ is a scale-invariant parameter, i.e., remaining unchanged if
the sample is uniformly dilated or contracted by a scale factor,
and is greater than or equal to one. (ii) The tortuosity α∞
is dependent on the shape of the solid matrix, for example,
it accounts for both sinuosity and converging-diverging pore
geometry. (iii) In the theory proposed by Biot, α∞ is a
structure constant defined as a purely geometric parameter,
independent of material parameters, which relates an inertial

2470-0045/2019/100(1)/013115(12) 013115-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.013115&domain=pdf&date_stamp=2019-07-26
https://doi.org/10.1103/PhysRevE.98.012404
https://doi.org/10.1103/PhysRevE.98.012404
https://doi.org/10.1103/PhysRevE.98.012404
https://doi.org/10.1103/PhysRevE.98.012404
https://doi.org/10.1103/PhysRevE.100.013115


V. LANGLOIS, V. H. TRINH, AND C. PERROT PHYSICAL REVIEW E 100, 013115 (2019)

fluid-solid coupling density ρa to the density of the fluid filling
the pore space ρ f , ρa = (α∞ − 1)ρ f [2,4,5]. This coupling
term is related to the force applied to a fluid to prevent its
displacement when the solid is accelerated. (iv) At high fre-
quency, the effective sound speed is proportional to 1/

√
α∞,

meaning that the effective distance of travel for the wave
between two points is increased by

√
α∞ due to the tortuous

path [6].
Foam is a dispersion of gas in a liquid or solid matrix.

Its structure consists of membranes (also called films for
liquid foams), ligaments or Plateau’s borders (junction of
three membranes), and vertices or nodes (junction of four
ligaments). Whereas closed membranes are necessary to en-
sure the mechanical stability of liquid foam [7], they can
be open or totally absent in solid foam, allowing the foam
cells (pores) to be connected through windows. The closed
membranes have drastic effects on transport phenomena, such
as fluid flow or electric current: Open windows participate in
the transport through the material, whereas closed windows
stop it. Therefore, the fraction of closed windows is crucial
for several applications (filtering or sound absorption). The
effects of membrane on acoustical properties are now the sub-
ject of active research [3,8–11]. It has been shown that closed
membranes can increase the effective density of foam [8] and
therefore, in agreement with the work of Johnson et al. [1],
the foam tortuosity α∞ [10]. Moreover, closed membranes
imply some percolation effects at the mesoscale which can
drastically reduce the foam permeability K as shown in [9].

Addressing the percolation issue of the electric conduc-
tivity of porous media requires numerical simulations with
large samples involving a few thousand pores [12]. As the
size of samples increases, the computational costs for the
major numerical methods (finite-element, finite-volume, and
boundary-element methods) become prohibitive, so alterna-
tive approaches are preferable. Such methods involve deter-
mining the flow behavior at the local scale, i.e., a throat
between two linked pores, by numerical simulations or an-
alytical solutions, e.g., the Hagen-Poiseuille equation, and
then pore-network simulations at the mesoscopic scale are
performed [13,14]. This intermediate scale between micro-
and macroscales is necessary to capture collective effects such
as percolation behavior. Such a method was used by Johnson
et al. to study the electrical conductivity of porous media. In
their simple model, the pores are connected by tubes for which
the electrical resistance is perfectly known. The electrical
conductivity of the porous media is determined by calculating
the equivalent resistance of the tube network. Moreover, it was
recently shown that the pore-network method can successfully
predict the effects of closed membranes on foam permeability
and can be used to validate a model of effective permeabil-
ity [9]. As the problem of foam electrical conductivity and
the one of foam permeability share some similarities [15],
it is appealing to check if the method used to estimate the
effective permeability of foam could be transposed to compute
the effective electric conductivity and the tortuosity of foam
with membrane.

In this paper we use a multiscale approach to study the
electrical conductivity of solid foam with various window
configurations. First, we deal with the case of two pores
separated by a thin membrane having a circular hole. We

calculate both the electrical conductance and the fluid flow
conductance by using the finite-element method (FEM). Then
we consider a more realistic pore geometry by using a Kelvin
partition of space. We conduct FEM simulations on periodic
unit cells (PUCs) containing two interconnected pores with
various open membrane fractions. The two previous steps are
used to build a pore-network model able to reproduce the FEM
results. Then mesoscopic effects induced by the structure of
the pore network are studied by pore-network simulations on
large (16 × 16 × 32 pores) networks of electrical resistances.

II. FLUID PERMEABILITY AND ELECTRICAL
CONDUCTION IN POROUS MEDIA

In this section we recall the definition of the macroscopic
parameters involved in this paper: permeability for the issue
of Newtonian fluid flow through the pore space and electrical
conductivity for the issue of electrical current through a
conducting fluid filling the pore space.

Permeability K can be determined by measuring the rate of
fluid flow Q through a surface of porous media when the latter
is subjected to a pressure difference �Psp between its opposite
faces [15,16],

K = [μQHsp]/[Asp�Psp], (1)

where μ is the dynamic viscosity of the fluid, Hsp the thick-
ness of the sample, and Asp its cross-section area. Effective
electrical conductivity σe is determined by measuring the total
current I passing through the surface of porous media when
this one is subjected to an electrical potential difference �Vsp

applied across the system:

σe = [IHsp]/[Asp�Vsp]. (2)

As shown in [4], the high-frequency tortuosity α∞ is related
to the electrical conductivity as

φ

α∞
= σe

σ f
= 1

F
, (3)

where φ is the porosity, σ f the electrical conductivity of the
fluid filling the pore space, and F the formation factor (like
α∞, a scale-invariant property).

The macroscopic behavior of porous media regarding the
transport of viscous fluid and electrical current results from
the cumulative effects of specific local mechanisms. In the
case of foam permeability [9], the dominating local mech-
anism of viscous fluid flow corresponds to the flow passing
through a single membrane aperture. Hereafter, we reexamine
local mechanisms governing electrical conduction properties
in order to elaborate on the simplest description that provides
a reliable estimate of the tortuosity α∞ in micro-macro models
of partially closed foam.

III. TWO PORES CONNECTED BY A SINGLE
PERFORATED MEMBRANE

In this section we consider the simplest model of foam: two
pores connected by a thin membrane containing a circular hole
of radius ro (Fig. 1). Periodic conditions are applied on the
lateral faces of the pore space. By using FEM simulation, we
determine the effective fluid flow conductance G f l (defined as
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FIG. 1. Two pores connected by a single perforated membrane.
Depending on the physical problem under study, the boundary
conditions are different. For the fluid flow case, a pressure drop is
applied between the top and the bottom faces, a no-slip condition
is applied over the membrane, and a slip condition is applied on
the lateral faces. For the electrical conductivity case, an electrical
potential difference is applied between the top and bottom faces and
the electrical field is parallel to all the others faces (membrane and
lateral faces).

the ratio of the fluid flow to the pressure difference applied
between the opposite faces of the pore space volume) and
the effective electrical conductance Ge (defined as the ratio of
the total current to the electrical potential difference applied
between the opposite faces of the pore space volume). A
commercial code, COMSOL MULTIPHYSICS (version 5.2), was
used (Creeping Flow and Electrostatic modules). Details of
the boundary-value problems solved for each fundamental
case are given in Appendix A. Figure 2 shows that the fluid
flow conductance is strongly dependent on the membrane
aperture and quite insensitive to the aspect ratio H/Db of the
pore space. This result shows that the viscous losses are essen-
tially dominated by a mechanism acting in the vicinity of the
membrane aperture. Indeed, when the membrane disappears
(2ro/Db → 1), the viscous loss disappears and the fluid flow
conductance diverges [Fig. 2(b)]. Moreover, as shown in [9],
the fluid flow conductance can be estimated by a Sampson

FIG. 2. Fluid flow conductance Gf l of two interconnected pores
as a function of the membrane aperture size for various aspect ratios
H/Db. Dots are the FEM results. The solid line is plotted by using
Sampson’s equation.

FIG. 3. Cylindrical pores: electrical conductance Ge = 1/Re of
two interconnected pores normalized by the electrical conductance
without membrane (D2

bσ f /H ) as a function of the membrane aperture
size for various aspect ratios H/Db. (a) Comparison between FEM
results (symbols) and predictions of Eq. (6) from Sahu and Zwolak
(dashed lines) and Eq. (7) (solid lines). (b) Comparison between
FEM results (symbols) and predictions of Eq. (5) from Rosenfeld
and Timsit (dashed lines) and Eq. (7) (solid lines). The same data are
used in (b) and in its inset.

law [17]

G f l = r3
o

3μ
. (4)

Figures 3 and 4 show that the electrical conductance in-
creases when the membrane aperture size increases. For low
membrane aperture sizes, the electrical conductance exhibits
a linear dependence on the aperture size [Fig. 3(b), inset].
Note that when the membrane thickness is taken into account,
this linear dependence is no longer observed at very low
membrane aperture sizes. If the electrical conductivity and the
permeability follow the same trend as previously described,
they have a different behavior when the membrane aperture
reaches the lateral side of the pore space. Indeed, unlike
permeability, the electrical conductance tends to a finite value
equal to D2

bσ f /H , where σ f is the electrical conductivity of
the fluid. This result is fundamental because it reveals that
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FIG. 4. Rectangular pores: normalized electrical conductance
Ge = 1/Re of two interconnected pores as a function of the mem-
brane aperture size for various aspect ratios H/Db. Symbols are the
FEM results. Dashed and solid lines are plotted by using Eqs. (6)
and (7), respectively.

the whole pore space, and not only a part located in the
vicinity of the membrane aperture, contributes to the electrical
conductivity.

In the past century, the effect of constrictions on electric
conductance (Fig. 5) was studied by several authors in differ-
ent scientific communities. Hall [18] showed that the electrical
resistance Re (the inverse of the electrical conductance Ge) due
to a circular aperture in an isolating membrane immersed in a
conducting fluid having an infinite size (electrodes are located
at infinity) is given by 1/Re = 2σ f ro. Earlier, in the context
of electrical conduction through two conducting bodies in
contact, several authors [19–21] showed that electrical resis-
tance for the low area of contact between bodies is given by
1/Re = 2σ f rc, where rc is the contact radius. Later, Rosenfeld
and Timsit [22] found the exact solution for the electrical
resistance of a long constricted cylinder (the cylinder length is
much greater than the constriction radius, which is equal to the
membrane aperture radius) Re = H/σ f Ac + Rs, where Ac is

FIG. 5. Shape of current streamlines in a pore associated with
four regions: I, bulklike; II, transition region; III, access region;
and IV, membrane thickness channel. Note that the first region is
observed only if the pore is long enough (H � Db).

the cross-sectional surface of the tube (Ac = πD2
b/4, where Db

is the cylinder diameter). The first term H/σ f Ac corresponds
to the resistance of the cylinder without constriction and
the second term Rs is the spreading resistance due to the
constriction effect. As the exact solution found by Rosenfeld
and Timsit implies an infinite sum of terms, the authors gave a
compact expression for the spreading resistance Rs. The total
resistance is then given by

Re = H

Acσ f
+ Rs = H

Acσ f
+ 1

2σ f ro
P

(
r0

Db

)
, (5)

where P(x) = 1 + C1x + C2x2 + C3x3 + C4x4, with C1 =
−2.831 62, C2 = 0.252 88, C3 = 1.220 88, and C4 =
3.199 68. Note that the polynomial P is formed with the
constraints P( 1

2 ) = 0 and P(0) = 1 with the aim of recovering
the asymptotic solutions (ro → Db/2 corresponds to a finite
uniform cylinder and ro → 0 corresponds to an infinite
constricted cylinder).

Recently, Sahu and Zwolak [23] have studied the resistance
of two interconnected pores having cylindrical or rectangular
shape and finite size with various aspect ratios H/Db. The
authors break down the pore volume into several parts, each
contributing to the electrical conductance of the pore space
(Fig. 5). The first part, only observed for long cylinders
(H > Db), is located far from the membrane aperture where
the current streamlines are almost parallel to the external
electrical field as in a uniform conductor. The third part is
located in the vicinity of the membrane aperture where the
current streamlines converge to the aperture. The second part
is a transition region between the first and the third, where
the current streamlines change their behavior. The fourth
part corresponds to the small channel inside the membrane
thickness itself. The first and fourth parts can be approximated
by uniform conductors having a known resistance [RI = (H −
L2)/σ f A with L2 ≈ Db/2 and RIV = hm/πσ f r2

o , respectively].
For the third part, Sahu and Zwolak use an approximation
based on the Taylor expansion of the analytical solution for the
access resistance with a spheroidal electrode, RIII = 1

2σ f ro
{1 −

2r0
πL1

+ O([ r0
L1

]3)}, where L1 ≈ Db/2 is the size of the spheroid
region (Fig. 5). For the transition region, the authors consider
a contribution proportional to RII = 1/σ f Db. Therefore, by
considering a series connection of the parts’ resistances and
after some calculations, the total resistance Re is given by

Re = H

	σ f D2
b

+
[

1

σ f

(
1

2ro
− fl

	Db
+ hm

πr2
o

)]
, (6)

where 	 and fl are coefficients depending on the geometric
details of the cell: 	 = 1 and fl ≈ 1.2 for rectangular pores
or 	 = π/4 and fl = 1.0 for cylindrical pores [24]. Note that
the authors determined the coefficients fl by adjusting the
equation’s predictions to their numerical simulation results.

The term in square brackets in Eq. (6) corresponds to the
spreading resistance Rs as defined by Rosenfeld and Timsit.
Similarly to the case of a long constricted cylinder, the spread-
ing resistance of a finite constricted cylinder should be equal
to zero when the membrane aperture is equal to the cross-
section radius or more precisely when the surface of the mem-
brane aperture is equal to the cross-section surface (2ro = Db

for cylindrical pores and
√

πr0 = Db for rectangular pores).
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However, the equation given by Sahu and Zwolak does not
satisfy this constraint since fl �= 	 for cylindrical pores and
Db = H . Therefore, by comparison with FEM results, we
show in Fig. 3(a) that Eq. (6) cannot predict the electric
resistance for high membrane aperture size (2r0 → Db).

Because we aim at generating an expression enabling us
to recover bulk and membrane effects for the whole range
of membrane aperture sizes (and not only for tiny holes
corresponding to graphene nanopores) with great accuracy, a
modification of Eq. (6) is further proposed in order to improve
the transition region mixing the access and bulklike behavior

Re = H

	σ f D2
b

+ 1

σ f

{
1

2ro

[
1 + C1

ro

Db
+ C3

(
ro

Db

)3
]

+ hm

πr2
o

}
,

(7)

with C1 = −2.89 and C3 = −8(1 + 1
2C1) for cylindrical pores

and C1 = −2.52 and C3 = −π1.5(1 + 1√
π

C1) for rectangular
pores. Note that C1 is determined by fitting the equation’s pre-
dictions to our numerical simulation results and C3 is chosen
with the aim of recovering the resistance without membrane
Reσ f = H

	D2
b

(by neglecting the membrane thickness term).

The relative difference between FEM simulations results and
resistances calculated by using Eq. (7) does not exceed 1% as
long as the aspect ratios H/Db are superior to 0.75 and the
aperture size ro is inferior to 0.9Db. Figure 3(a) shows that
Eq. (7) predicts FEM results for a wide range of membrane
aperture size with a better accuracy than Eq. (6). Moreover,
Fig. 3(b) compares the prediction of Eq. (7) to the solution
given by Rosenfeld and Timsit [Eq. (5)]. Both equations
have identical values of resistance except when the membrane
aperture size is close to the radius of the cylinder. In this
case, the predictions of Rosenfeld and Timsit’s equation are
slightly better even for short cylinders. However, for very
short cylinders (H/Db � 0.25), all equations fail in their
predictions. Finally, in Fig. 4 we compare both the predictions
given by Sahu and Zwolak [Eq. (6)] and provided by Eq. (7)
to FEM results on rectangular pores. As observed for the case
of cylindrical pores, Eq. (7) predicts FEM results for a wide
range of membrane aperture size with a better accuracy than
the Sahu-Zwolak expression.

Before moving to the next section, we briefly discuss the
golden aspect ratio introduced by Sahu and Zwolak [23,24].
For this special aspect ratio (H/Db)∗, finite-size effects should
be eliminated in numerical simulations, i.e., for any L or Db

such as H/Db = (H/Db)∗, Re = lim{L,Db}→∞(Re). According
to Eq. (5) or (7), it is possible to find a particular aspect ratio
for which the first term of the spreading resistance expansion

1
2ro

C1
ro
Db

and the bulk resistance H
	D2

b
cancel each other out. The

golden aspect ratio is then given by (H/Db)∗ = −C1	/2 and
is equal to 1.26 for rectangular pores and 1.13 for cylindrical
pores (or 1.11 if the Rosenfeld-Timsit equation is used for
the spreading resistance). As these values of golden aspect
ratios are in the range of aspect ratios where Eqs. (5) and (7)
give accurate predictions, our calculation is justified. Note that
Sahu and Zwolak [23] find 1.2 for rectangular pores and 1.07
for cylindrical pores from FEM simulations and molecular
dynamics simulations. Finally, finite effects are canceled as
long as the higher terms in the expansion of the spreading

FIG. 6. Periodic unit cell based on the Kelvin structure (φ =
0.995). Depending on the physical problem considered, the boundary
conditions are different.

resistance are negligible compared to one. From Rosenfeld
and Timsit’s equation (5), this condition is verified with a
relative error inferior to 1% if 2ro < 0.28Db.

IV. ORDERED KELVIN FOAM

In this section we describe the properties of high porosity
ordered foam exemplified by a Kelvin structure. As shown in
Fig. 6, a PUC of characteristic size Db is used to represent
the pore structure in foam samples [10,25]. The number of
pores Np contained within the unit cell is equal to 2. The cell
is based on the Kelvin partition and is a 14-sided polyhedron
(eight hexagonal and six square faces) corresponding to win-
dows shared with the Nv = 14 neighbors. The cell skeleton
is made of idealized ligaments having length L = Db/2

√
2

and an equilateral triangular cross section of edge length r =
0.58Db(1 − φ)0.521, where φ is the gas volume fraction. The
thickness of the membranes is taken to be equal to hm/L =
0.001 so that the effect of the channel inside the membrane
thickness can be neglected (because hm � ro). As we are
interested in the effect of partial closure of the cell windows by
membranes, we partially close the windows by adding holed
membranes having a circular aperture of radius ro. Note that,
in the reference configuration K0 [Figs. 6 and 7(a)], the 14
windows are fully open (i.e., contain no membrane). However,
we study how closed membranes modify the electrical con-
ductivity by testing PUC configurations containing different
repartitions of closed membranes as shown in Fig. 7. In
perfect agreement with the previous results of Ref. [9], Fig. 8
shows that the permeabilities of the simulated PUCs follow
the power law (4) given in Sec. III. Moreover, because most
of the pressure drop is located in the vicinity of the membrane
aperture, a simplified calculation of the permeability based on
the pore-network hypothesis is possible. In this framework, a
value of fluid pressure is associated with each pore and the
flow between two connected pores is based on the Sampson
fluid flow conductance [Figs. 9(a) and 9(b)]. The foam per-
meability calculation based on a pore-network model needs
to compute the amount of flow passing through the median
plane of the PUC, as shown in Fig. 10. Due to the symmetries
of the PUC configurations, the pressure difference associated
with the flow passing through the square windows is twice
that associated with the hexagonal windows. Therefore, it is
straightforward to show that the permeability of the studied
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FIG. 7. Top view from the median plane of the tested configura-
tions showing the positions of the closed membranes: (a) K0, (b) K1,
(c) K2, and (d) K3. Note that the horizontal median plane is a plane
symmetry.

PUC is given by

K = μ

Db

[
nsqG f l,sq + 1

2 nhexG f l,hex
]
, (8)

where G f l,sq and G f l,hex are the fluid flow conductances asso-
ciated with each window and nsq and nhex are the numbers of
open square and hexagonal windows, respectively. Note that

10−7

10−6

10−5

10−4

10−3

10−2

1.010.0

FIG. 8. Permeability K of PUCs having different configurations
of closed membranes for various membrane apertures. Symbols are
the FEM results. Solid and dashed lines are plotted by using Eq. (8).

FIG. 9. (a) Flow pattern and (b) its equivalent pore-network
scheme. (c) Pore-network scheme to solve the electrical conduction
problem by using two kinds of conductances: interpore conductance
and intrapore conductances. (d) Intrapore conductances for square
and hexagonal windows of a Kelvin cell.

from the FEM simulations, G f l,sq = G f l,hex = r3
o

3μ
. It can be

checked that this formula has the ability to predict all the FEM
results as shown by Fig. 8, whichever way the membranes are
distributed throughout the PUC.

We further focus on the calculation of foam electrical
conduction. As has been shown for the case of two inter-
connected pores, we also demonstrate here that the electrical
conductivity increases with the membrane aperture size and
the degree of interconnections between pores (see Fig. 11).
For small membrane apertures, the electrical conductivity
exhibits a linear dependence on the aperture size. As noted
for the case of two interconnected pores, this behavior also
reveals that the membrane aperture governs most of the elec-
trical resistivity for small apertures. In that case, the electrical
conduction is dominated by a mechanism acting at the scale of

FIG. 10. Fluid flow passing through the K0 configuration of the
PUC [Fig. 7(a)]. Colored lines correspond to the active bond in the
pore-network model for foam permeability [Fig. 9(b)].

013115-6



ELECTRICAL CONDUCTIVITY AND TORTUOSITY OF … PHYSICAL REVIEW E 100, 013115 (2019)

FIG. 11. (a) Electrical conductivity σe and (b) tortuosity α∞ of
the PUCs as a function of the membrane aperture size for various
configurations of closed membranes (K0, K1, K2, and K3) with φ =
0.995. The same data are used to the inset graph of (a). Symbols
correspond to the FEM results. Dashed lines are plotted by using
Eq. (8), taking into account only interpore electrical conductances
[Fig. 9(b)]. Solid lines are plotted by using pore-network calcula-
tions, taking into account both intra- and interpore electrical conduc-
tances [Fig. 9(c)]. Due to the symmetries of the PUC configurations,
analytical expressions for effective conductivity can be found for
each configuration (see Appendix B).

the membrane aperture just as observed for the permeability.
Based on this cross-property relation, it therefore seems pos-
sible to employ the structure of Eq. (8) in order to calculate
the electrical conductivity σe. As a result, K is replaced by
σe, μ by 1, and G f l by Ge = σ f [ 1

2ro
+ hm

πr2
o
]−1. Figure 11(a)

shows that this approach allows us to estimate the electrical
conductivity for small aperture, 2ro/Db < 0.1. By contrast,
for higher membrane aperture sizes, the contribution of the
pore volume is no longer negligible. We now focus on the
elaboration of a pore-network model able to describe most
of the electrical conduction effects in foam. As the whole
pore volume must be considered in the electrical conduction
issue, the general scheme used for permeability, which only
accounts for interpore conductances [Fig. 9(b)], does not
apply in this case. Additional intrapore conductances must be
introduced in the network as shown in Fig. 9(c). Compared
to the pore-network model for permeability which uses only

one node for each cell, we introduce 14 nodes per cell in
the pore-network model for electrical conduction. The nodes
are associated with the different windows of the cell and are
linked to the neighbor windows’ nodes sharing the same cell
by the intrapore conductance and to a node of a neighbor
cell by the interpore conductance if the membrane sepa-
rating the cells is opened. Moreover, the neighborhoods of
windows are not equivalent: The hexagonal windows within
a cell have two kinds of neighbor windows, squares and
hexagons, whereas the square windows have only hexagons
as possible neighbors. Consequently, we introduce two in-
trapore conductances: Gi,sh, which links square to hexagon,
and Gi,hh, which links hexagon to hexagon. For the interpore
conductance Gep, we consider the term due to the mem-
brane aperture in Eq. (7) with appropriate values of C1 and
C3, 1

Gep
= 1

2σ f ro
[1 + C1

ro
di

+ C3( ro
di

)3], where di = 1/
√

2π for

square windows and (31.5/4π )0.5 for hexagonal windows. We
do not take into account the term involving the thickness of
membrane as its effect is negligible in the range of membrane
aperture sizes and thicknesses that we investigate (ro 	 hm).
The coefficients C1 and C3 and the intrapore conductances are
chosen to best fit the results of FEM simulations. As shown
in Fig. 11(a), good agreement between both numerical meth-
ods is achieved with Gi,sh/Dbσ f = 0.16, Gi,hh/Dbσ f = 0.30,
C1 = −2.53, and C3 = 1.32. Finally, from a practical point of
view, it is possible to estimate the electrical conductivity for
the reference configuration K0 with good accuracy (error less
than 2% with φ = 0.995) by using the following equation:

σe,K0 = 4σ f

[
Db

2ro
+ hmDb

πr2
o

]−1
[

1 + 2.7
ro

Db
+ 5.1

(
ro

Db

)2
]−1

.

(9)

Figure 11(b) shows the tortuosities of each PUC con-
figuration for various membrane aperture sizes. When the
membrane aperture size is high, the tortuosity is closed to 1.
However, when the membrane aperture size or the number of
open windows decreases, the tortuosity increases. Tortuosity
can be significantly larger than one in foam containing mem-
branes with small aperture. Therefore, this model predicts
a significant increase of the dynamic effective density of
the effective fluid in the high-frequency inertial regime. To
reach the inertial regime, the frequency has to be higher
than the viscoinertial characteristic frequency fv . Figure 12
shows the viscoinertial characteristic frequency fv as a func-
tion of the membrane aperture size for each configuration.
For a fully open foam K0, the membrane aperture size for
which the tortuosity is higher than 10 is equal to ro/Db ≈
0.0125. For foam having millimetric pores and filled with
air, the corresponding viscoinertial characteristic frequency
fv is approximately equal to 100 kHz, which is higher than
the audible frequency range. However, for foam containing a
fraction of closed membrane as in the configuration K3 and
with Db ≈ 2 mm, the viscoinertial characteristic frequency
can reach the audible frequency range ( fv ≈ 5000 Hz). As the
porosity is a parameter which is involved in the relationship
between the tortuosity and the electrical conductivity, we eval-
uated the effect of porosity on each parameter by performing
FEM simulations on K0 configurations for various values of
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FIG. 12. Viscoinertial characteristic frequency fv of the Ki con-
figuration as a function of the aperture size calculated from FEM
results. On the left abscissa, the frequency is normalized, and on the
right abscissa, the frequency corresponds to the case of foam filled
by air with Db = 1 mm and φ ≈ 1.

φ. As shown in Fig. 13, the dependence of the electrical
conductivity on φ is low when compared to the dependence
of the tortuosity on φ. This is due to the fact that the effective
electrical conductivity σe depends on r0 only when r0 → 0,
i.e., bulk effects are vanishing [Eq. (6)], whereas the tortuosity
involves a factor φ to account for the scaling from the fluid
phase to the overall volume of the porous aggregate [Eq. (3)].

V. ELECTRICAL CONDUCTION IN FOAM WITH
RANDOMLY DISTRIBUTED CLOSED MEMBRANES

The effects of pore network features on electrical con-
ductivity are studied on lattices having a structure similar
to Kelvin’s structure: Each pore is surrounded by Nv = 14
neighbor pores. The samples have a size L2Hsp = 163 (Db

units) and contain 8192 pores. As we are interested in the
effect of closed membranes on electrical conduction, we close
a part of the windows by randomly canceling some electrical

FIG. 13. Electrical conductivity σe and tortuosity α∞ of the K0

configuration as a function of the porosity.

(a)

(b)

FIG. 14. Pore-network simulations on random Kelvin foam with
various fractions of open windows and identical membrane aperture
size (φ = 0.995): (a) electrical conductance σe and fraction of open
porosity φo/φ as a function of the open window fraction xow and ratio
σe(1)/σe(xow ) as a function of the open window fraction xow , and (b)
ratio σe(1)φo/σe(xow )φ as a function of the open window fraction
xow . Note that (b) leads to the ratio α∞(xow )/α∞(1) in considering
the pore space volume to use in the definition of the tortuosity, the
open-pore space. Moreover, σe(1) = σe,K0 can be calculated by using
Eq. (9).

bonds between two nodes connecting two pores. The values
of intrapore conductances Gi,sh and Gi,hh found previously on
Kelvin foam having φ = 0.995 are used in this pore-network
calculation. Boundary effects are avoided by resorting to
periodic conditions imposed in the directions perpendicular
to the macroscopic gradient. Details of the calculations of
electrical conductivity are given in Appendix B.

Figure 14 shows the electrical conductivity calculated with
simulations performed on large samples having random posi-
tions of closed windows and various open window fractions
xow having identical membrane aperture sizes. Below a crit-
ical concentration xow < xp ≈ 0.1 ≈ 1.5/Nv , the network of
interconnected pores does not connect the top of the sample
to the bottom. Therefore, the open porosity (porosity of the
percolating pore space) is null and no electrical conduction
through the foam is possible. In the range [0.1,0.2] of open
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window fraction, on the one hand, the fraction of open
porosity increases from 0 to 0.93 and, on the other hand,
the electrical conductance gently rises. For xow > 0.2, the
electrical conduction gradually increases as the fraction of
open windows rises. For low aperture size, the electrical con-
duction exhibits a quasiaffine dependence on the open window
fraction xow similar to the one observed in [9] for permeability.
As we previously saw, the fluid flow conductance corresponds
to an interpore conductance, Therefore, as the interpore resis-
tance dominates the electrical conduction at low membrane
apertures, a similar behavior between electric conductivity
and permeability was expected for low membrane apertures.
In that case, electrical conductivity and tortuosity can be
estimated by using the effective model for foam permeability
of Langlois et al. [9] (see Appendix C).

VI. CONCLUSION

In order to study the effects of both the fraction of open
windows and their aperture sizes on both electric conductivity
and high-frequency tortuosity of foam, we performed simu-
lations at different scales: (i) FEM simulations computing the
flow of electric current at the pore scale and on ordered Kelvin
foam and (ii) at the higher scale, pore-network simulations
capturing the physics at the lower scale without describing the
entire velocity field. The effects of the membrane aperture size
and the open window fraction on the permeability are recalled
to highlight the difference between permeability and electrical
conductivity. The FEM simulations at pore scale were useful
to identify the mechanisms of electric conduction through a
single pore. The analysis reported in this paper shows that, for
low membrane aperture size, the foam electrical conductivity
can be described by a mechanism acting at the scale of the
membrane aperture. However, when the membrane aperture
size is comparable to the pore size, another mechanism
acting on the whole pore volume must be considered. By
considering these results, we develop a pore-network model
at the pore scale by using two kinds of conductance: interpore
conductance and intrapore conductance. By using appropriate
conductances, we show that pore-network model can repro-
duce the FEM results performed on ordered Kelvin foam
having different configurations of closed membranes. Pore-
network simulations on large samples having random position
of closed windows show that percolation occurs when the
fraction of open windows is close to xp = 1.5/Nv (≈0.11 for
Kelvin foam having Nv = 14) and that the fraction of closed
windows can significantly increase high-frequency tortuosity.

An experimental confirmation of this numerical study
would require the production of well-controlled monodisperse
foam having a known (controlled or measured) fraction of
closed membranes. Emulsion and foam templating techniques
can be used to produce tailor-made porous polymers (see,
for instance, Ref. [26] and references therein). In particular,
experimental results were reported [27] to generate porous
polyurethane by a sphere templating method as an attempt
to control the interconnection size for a given bead diame-
ter (bead sintering). We are not aware of any experimental
setup able to produce well-defined (geometrically) polymeric
structures having closed and open pores of different ratios.
Millifluidic techniques were however employed to generate

monodisperse foams with various membrane contents [10],
(geometrically) characterized according to the proportions of
closed and open windows and aperture size. While tortuosity
estimates were reported using acoustical measurements [28]
by Trinh et al. [10], the acoustical method failed to provide
tortuosity results when the membrane content was too high.
This suggests that the acoustical method is not appropriate
for the characterization of foam having a large proportion of
fully closed membranes and/or very low membrane aperture
sizes due to the low amplitude of signal transmitted through
the sample at the third microphone and the high values of
the viscoinertial frequency (i.e., the inertial regime is out
of the audible frequency range). Moreover, in all treatments
of acoustical characterization it is assumed that the fluid
motion is completely decoupled from the solid motion. This
is certainly not true if the tortuosity is much larger than one.
For example, in the case of porous media with a soft and/or
lightweight frame, sound propagation through fluid can in-
duce frame resonance at specific frequencies as observed
in [8]. It should be possible in the future to see a comparison
between the predictions of the present model and the results
from direct experiments using alternative techniques, such as
(i) electrical conductivity measurements [4,29], (ii) superfluid
acoustics (He II) taking advantage of the fact that the acoustics
of He II can become identical to the acoustics of an ideal
fluid [29,30], or (iii) ultrasonic measurements of velocity
dispersion in porous media saturated by various fluids [31].

We conclude this section with a summary of the main
results.

(i) A unified set of viscous fluid flow and electrical con-
duction calculations has been carried out on a family of
idealized three-dimensional model foams with emphasis on
membrane effects.

(ii) We studied ordered cellular foams, for which ex-
cellent analytical estimates of the permeability K and tor-
tuosity α∞ were provided. More particularly, the structure
of the equations predicting K and α∞ is determined based
on phenomenological considerations and the relevant coef-
ficients fitted against numerical results. Moreover, the ra-
dius of a perforated membrane r0 is the most important
geometrical parameter governing the viscous fluid flow and
electrical conduction properties. This is especially true when
r0/Db → 0.

(iii) Estimates of α∞ were derived based on a bulk and a
membrane effect contribution, the latter mechanisms dominat-
ing the overall effective properties of the flow of the electric
current when r0/Db → 0.

(iv) The relation K/D2
b ∝ (r0/Db)3 based on the Sampson

law appears to be valid over the entire range of membrane
aperture with different configurations of closed membranes in
Kelvin cells.

(v) These analytical results then enabled the use of pore-
network simulations to study the behavior of the tortuos-
ity, including percolation effects in foams containing large
number of cells (∼163) having randomly distributed closed
membranes. It is quite interesting to see that this leads to a
drastic increase of the tortuosity α∞ with the closed window
fraction 1 − xow.

(vi) Finally, we examined the relationship between perme-
ability K and tortuosity α∞ when both the aperture size r0/Db

013115-9



V. LANGLOIS, V. H. TRINH, AND C. PERROT PHYSICAL REVIEW E 100, 013115 (2019)

and the membrane thickness hm were very small: K/D2
b ∝

(r0/Db)3 and α∞ ∝ φ/(r0/Db).

APPENDIX A: CALCULATION OF TRANSPORT
PARAMETERS

In this Appendix we briefly introduce the boundary-value
problem used for computing the permeability and the electric
conductivity.

1. Viscous flow

The low-Reynolds-number flow of an incompressible
Newtonian fluid is governed by the usual Stokes equations in
the fluid phase [32]

η�v − ∇p = −∇pm with ∇ · v = 0 in � f , (A1a)

v = 0 on ∂�, (A1b)

v and p are � periodic, (A1c)

where ∇pm is the macroscopic pressure gradient acting as
a source term. The symbols v and p are the velocity and
pressure of the fluid, respectively.

It can be shown that the local field of the static viscous
permeability is obtained from the local velocity field as v =
−k0/η∇pm. The static viscous permeability k0 is calculated
by the standard definitions

k0 = φ〈k0〉. (A2)

2. Inertial flow

At the high-frequency range with ω large enough, the
viscous boundary layer becomes negligible and the fluid tends
to behave as perfect, since it has no viscosity. Consequently,
the perfect incompressible fluid formally behaves according
to the electrical conduction problem [33]

∇ · E = 0 with E = −∇ϕ + e in � f , (A3a)

E · n = 0 in ∂� f , (A3b)

ϕ is � periodic, (A3c)

where e is a given macroscopic electric field, E is the solution
of the boundary problem having −∇ϕ as a fluctuating part,
and n is unit normal to the boundary of the pore region. The
high-frequency tortuosity α∞ is calculated as

α∞ = 〈E2〉
〈E〉2

. (A4)

APPENDIX B: PORE-NETWORK SIMULATIONS

The general principle of calculation of the electric conduc-
tivity of a tube network as a model of porous media can be
found in [1]. Details about the use of pore-network simulation
for the calculation of foam permeability can be found in [9].
Hereafter, we give some details about the pore-network simu-
lations for the case of foam electrical conduction.

In the pore-network model, the details of electrical po-
tential fluctuations within a single pore are not described in
detail. To take into account the current displacement within
a pore, the inner volume of a pore is decomposed into 14

FIG. 15. Conductance pore network associated with each PUC
configuration: (a) K0, (b) K1, (c) K2, and (d) K3.

parts, each associated with a node in the electrical pore
network. The nodes are linked by intrapore conductance for
two neighboring nodes located within the same pore or by
interpore conductance for two pores located in two different
pores linked by an open window. The first step is to build the
conductance network.

We consider, for each node, a unique value of potential
without calculating its fluctuations inside the pore. At the local
scale, the current Jj→i from node j to node i is governed by the
differential electrical potential difference between the nodes
�Vi j = Vj − Vi: Jj→i = Gi j�Vi j

where the coefficient Gi j is the conductance between the
nodes i and j.

At steady state, the sum of current coming from neighbor
nodes is equal to zero, leading to

∑Nv

j=1 Gi j (Vj − Vi) = 0. To
generate a current displacement through the sample, a poten-
tial difference is imposed between the top and bottom faces of
the sample (Vtop = �Vsp and Vbot = 0). By considering these
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TABLE I. Effective electrical conductivity σe for each PUC
configuration (Fig. 7).

PUC σe

K0 2D−1
b [2G1G2 + Geh(G1 + G2)][G1 + G2 + 2Geh]−1

with G1 = (G−1
i,sh + 2G−1

es )−1

and G2 = 2(Gi,sh + Gi,hh )

K1 4D−1
b {2G−1

es + G−1
i,sh + [2Gi,hh + 2Gi,sh]−1}−1

K2 D−1
b {[2Geh]−1 + [2(Gi,sh + Gi,hh )]−1}−1

K3 D−1
b {G−1

eh + [ 3
2 (Gi,sh + Gi,hh )]−1−1}−1

boundary conditions, the previous equation can take a matrix
form

GVi = Si, (B1)

where Vi is a vector containing the electrical potential of
nodes (except that the nodes located on top and bottom faces
are excluded), G is the matrix defined from local conduc-
tances (−∑

j Gi j along the diagonal and Gi j elsewhere),
and Si is a vector containing zeros except for nodes located
on the top face of the sample as neighbors where Si =
−∑

jtop
Gi jtop�Vsp.

When the pore network is linked from top to bottom of
the sample, and by considering only the nodes located in the
interconnected pores, Ḡ can be inverted and the electrical po-
tential in each node can be calculated from Eq. (B1). Finally,
the macroscopic current I and the effective conductivity σe

can be calculated as follows:

I =
∑
ibot

∑
jv

Jjv→ibot =
∑

ibot, jvi

Gibot jvi�Vibot, jvi , (B2)

σe = IHsp/L2�Vsp. (B3)

For simple networks, it is possible to derive analytical
expressions for the effective electrical conductivity. Due to
the symmetries of the PUC configurations (Fig. 7), their

TABLE II. Coefficients nw for various lattices and weakly disor-
dered foam. Note that for sc, bcc, or Kelvin lattices, nw is isotropic.

Structure Nv nw

sc 6 1
bcc (φ � 0.88) 8 2
bcc (Kelvin) 14 4
disordered 2(n + 1) ≈ n

2

equivalent conductance pore networks can be simplified as
shown in Fig. 15. From these equivalent conductance pore
networks, a calculation of the equivalent conductance can
be performed leading to the effective electrical conductivity
given in Table I.

APPENDIX C: EFFECTIVE-MEDIUM MODEL FOR
ELECTRIC CONDUCTANCE

Here we present an effective-medium model for electric
conductivity in the case of small membrane aperture size
(2r0/Db < 0.1). This model is based on the effective-medium
model of foam permeability detailed in [9].

The mean local conductance Ḡ is iteratively calculated
from [14,16]

1

Ḡ + nḠ
=

∑
i

xi

Gi + nḠ
, (C1)

with xi the fraction of local interpore electrical conductance Gi

and n = Nv

2 − 1. The macroscopic effective conductivity σe is
then deduced from the mean local conductance Ḡ,

σe = nwḠ/Db, (C2)

where the coefficient nw depends on the structure of the
porous medium (Table II). Note that when the fraction of
open windows xow is close to the percolation threshold, it is
necessary to modify these equations to consider the structure
of the open-pore space as shown in [9].
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