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Nonlinear stability results for plane Couette and Poiseuille flows

Paolo Falsaperla, Andrea Giacobbe,* and Giuseppe Mulone
Università degli Studi di Catania, Dipartimento di Matematica e Informatica, Viale A. Doria 6, 95125 Catania, Italy

(Received 8 February 2019; revised manuscript received 26 April 2019; published 26 July 2019)

We prove that the plane Couette and Poiseuille flows are nonlinearly stable if the Reynolds number is less than
ReOrr (2π/(λ sin θ ))/ sin θ when a perturbation is a tilted perturbation in the direction x′ which forms an angle
θ ∈ (0, π/2] with the direction i of the basic motion and does not depend on x′. ReOrr is the critical Orr-Reynolds
number for spanwise perturbations which is computed for wave number 2π/(λ sin θ ), with λ being any positive
wavelength. By taking the minimum with respect to λ, we obtain the critical energy Reynolds number for a fixed
inclination angle and any wavelength: for plane Couette flow, it is ReOrr = 44.3/ sin θ , and for plane Poiseuille
flow, it is ReOrr = 87.6/ sin θ (in particular, for θ = π/2 we have the classical values ReOrr = 44.3 for plane
Couette flow and ReOrr = 87.6 for plane Poiseuille flow). Here the nondimensional interval between the planes
bounding the channel is [−1, 1]. In particular, these results improve those obtained by Joseph, who found for
streamwise perturbations a critical nonlinear value of 20.65 in the plane Couette case, and those obtained by
Joseph and Carmi who found the value 49.55 for plane Poiseuille flow for streamwise perturbations. If we fix
some wavelengths from the experimental data and the numerical simulations, the critical Reynolds numbers that
we obtain are in a very good agreement both with the the experiments and the numerical simulation. These
results partially solve the Couette-Sommerfeld paradox.
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I. INTRODUCTION

The study of stability and instability of the classical lami-
nar flows of an incompressible fluid has attracted the attention
of many authors for more than 150 years: Stokes, Taylor,
Couette [1], Poiseuille [2], Kelvin [3], Reynolds [4], Lorentz,
Orr [5], Sommerfeld [6], Squire [7], Joseph [8], Busse [9], and
many others.

This problem is nowadays the object of study (see, for
instance, Deng and Masmoudi [10], Bedrossian et al. [11],
Lan and Li [12], Cherubini and De Palma [13], Liefvendahl
and Kreiss [14]) because the transition from laminar flows to
instability, turbulence, and chaos is not completely understood
and there are some discrepancies between the linear and
nonlinear analysis and the experiments (the so-called Couette-
Sommerfeld paradox).

We observe that many different conventions are used in the
literature to nondimensionalize the width of the channel. Here
we follow Prigent et al. [15] who generalize the Reynolds
number used in plane Couette flow U = z/d by considering
it as based on the (average) shear and the half gap d: Re =
Ud/ν [see also Barkley and Tuckerman [16], Eq. (A1)].

For Poiseuille flow, we use the Reynolds number based
on velocity units of the undisturbed stream velocity at the
center of the channel and the half gap d . Only at the end of
the paper, in order to compare with the results of Tsukahara
et al. [17], do we define a Reynolds number based on the
average shear and half gap [see Barkley and Tuckerman [16],
Eqs. (A10)–(A12)].

The classical results are the following:
(a) Plane Poiseuille flow is unstable for Re > 5772 (see

Orszag [18]).
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(b) Plane Couette flow and pipe Poiseuille flow (in the ax-
isymmetric case) are linearly stable for all Reynolds numbers
(see Romanov [19] and Zikanov [20]).

(c) In laboratory experiments, plane and pipe Poiseuille
flows undergo a transition to three-dimensional turbulence
for Reynolds numbers of the order of 1000. In the case of
plane Couette flow, the lowest Reynolds numbers at which
turbulence can be produced and sustained have been shown
to be between 300 and 450, both in the numerical simulations
and in the experiments.

(d) Nonlinear asymptotic L2-energy stability has been
proven for Reynolds numbers Re below some critical non-
linear value ReE which is of the order of 102. In par-
ticular, Joseph [21] proved that ReE = ReE

y = 20.65 (and
ReE

x = 44.3) for plane Couette flow, and Joseph and Carmi
[22] proved that ReE = ReE

y = 49.55 (and ReE
x = 87.6) for

plane Poiseuille flow. Here and in what follows, Rey refers
to the critical value for streamwise (or longitudinal) pertur-
bations and Rex refers to the critical value for spanwise (or
transverse) perturbations.

The use of weighted L2 energy has been fruitful for
studying nonlinear stability in fluid mechanics (see Straughan
[23]). Rionero and Mulone [24] studied the nonlinear stability
of parallel shear flows with the Lyapunov method in the
(ideal) case of stress-free boundary conditions. By using a
weighted energy, they proved that plane Couette flows and
plane Poiseuille flows are conditionally asymptotically stable
for all Reynolds numbers.

Kaiser et al. [25] wrote the velocity field in terms of
poloidal, toroidal, and mean-field components. They used a
generalized energy functional E (with some coupling parame-
ters chosen in an optimal way) for plane Couette flow, provid-
ing conditional nonlinear stability for Reynolds numbers Re
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below ReE = 44.3, which is larger than the ordinary energy-
stability limit. The method allows the explicit calculation of
so-called stability balls in the E norm, i.e., the system is stable
with respect to any perturbation with E norm in this ball.

Kaiser and Mulone [26] proved conditional nonlinear sta-
bility for arbitrary plane parallel shear flows up to some
value ReE which depends on the shear profile. They used
a generalized (weighted) functional E and proved that ReE

turns out to be Rex
E , the ordinary energy-stability limit for

perturbations independent of y (spanwise perturbations). In
the case of the experimentally important profiles, viz., linear
combinations of Couette and Poiseuille flow, this number is at
least 87.6, the value for pure Poiseuille flow. For Couette flow,
it is at least 44.3.

Li and Lin [27] and Lan and Li [12] gave a contribution
towards the solution of the Sommerfeld paradox. They argue
that even though the linear shear is linearly stable, slow orbits
(also called quasisteady states) in arbitrarily small neigh-
borhoods of the linear shear can be linearly unstable. They
observe: “The key is that in infinite dimensions, smallness
in one norm does not mean smallness in all norms” [12], p.
1. Their study focuses upon a sequence of two-dimensional
(2D) oscillatory shears which are the Couette linear shear plus
small-amplitude and high spatial frequency sinusoidal shear
perturbations.

Butler and Farrell [28] observed that transition to turbu-
lence in plane channel flow occurs even for conditions under
which modes of the linearized dynamical system associated
with the flow are stable. By using variational methods, they
found linear three-dimensional perturbations that gain the
most energy in a given time period.

Cherubini and De Palma [13] used a variational proce-
dure to identify nonlinear optimal disturbances in a Couette
flow, defined as those initial perturbations yielding the largest
energy growth at a short target time T , for given Reynolds
number Re and initial energy E0.

Recently, Bedrossian et al. [11] studied Sobolev regularity
disturbances to the periodic, plane Couette flow in 3D incom-
pressible Navier-Stokes equations at high Reynolds number
Re with the goal to estimate the stability threshold—the
size of the largest ball around zero in a suitable Sobolev
space Hσ —such that all solutions remain close to Couette.
In particular, they proved the following remarkable result:
“Initial data that satisfies ‖uin‖Hσ < δRe−3/2 for any σ >

9/2 and δ = δ(σ ) > 0 depending only on σ is global in
time, remains within O(Re−1/2) of the Couette flow in L2

for all time, and converges to the class of ‘2.5-dimensional’
streamwise-independent solutions referred to as streaks for
times t � Re1/3” [11], p. 541.

Prigent et al. [15] conducted experiments at the CEA-
Sanclay Centre to study, by decreasing the Reynolds number,
the reverse transition from the turbulent to the laminar flow. At
the beginning of their paper, they wrote: “In spite of more than
a century of theoretical and experimental efforts, the transition
to turbulence in some basic hydrodynamical flows is still far
from being fully understood. This is especially true when
linear and weakly nonlinear analysis cannot be used” [15,
p. 100]. They further observed that “a continuous transition
towards a regular pattern made of periodically spaced, in-
clined stripes of well-defined width and alternating turbulence

strength....” [15, p. 100] “For lower Re, a regular pattern is
eventually reached after a transient during which domains,
separated by wandering fronts, compete. The oblique stripes
have a wavelength of the order of 50 times the gap. The pattern
is stationary in the plane Couette flow case …The pattern was
observed for 340 < Re < 415 in the plane Couette flow”, [15,
p. 102].

Barkley and Tuckerman [16,29,30] studied numerically
a turbulent-laminar banded pattern in plane Couette flow
which is statistically steady and is oriented obliquely to the
streamwise direction with a very large wavelength relative to
the gap. They wrote: “Regimes computed for a full range of
angle and Reynolds number in a tilted rectangular periodic
computational domain are presented...The unusual but key
feature of our study of turbulent-laminar patterns is the use of
simulation domains aligned with the pattern wave vector and
thus tilted relative to the streamwise-spanwise directions of
the flow” [16], p. 109, p. 111. For their numerical simulations,
they are guided by the experiments of Prigent et al. [15]. In
their numerical simulation, the domain is oriented such that
“the streamwise direction is tilted at angle θ = 24◦ to the
x-direction” [16], p. 112. In their Table 3, they, in particular,
reported turbulent-laminar banded patterns in plane Couette
and plane Poiseuille flows. Parameters reported by Prigent
et al. [15] and in other papers are converted to a uniform
Reynolds number based on the average shear and half gap.
They show, for plane Couette flow, two columns that corre-
spond to the values at the minimum and maximum reported
Reynolds number: Re = 340 for θ = 37◦ and Re = 395 for
θ = 25◦. For plane Poiseuille flow, one has (values from
Tsukahara et al. [17]) the following: Re = 357.5 for θ = 24◦
and wavelength λ = 41.

We recall that Moffat [31] proved the stability of the basic
motion with respect to 2D-streamwise perturbations for any
Reynolds number. Here we give sufficient energy linear and
nonlinear stability conditions of the basic plane Couette and
Poiseuille flows with respect to tilted perturbations (see the
definition below), which form an angle θ with the stream
direction (x direction), for any Reynolds number less than the
critical number,

R̄ = ReOrr(2π/(λ sin θ ))
sin θ

,

where ReOrr is the Orr [5] critical Reynolds number for span-
wise perturbations evaluated at the wave number 2π/(λ sin θ ).
These results, in particular, confirm the results of Orr and
improve those obtained by Joseph [21] and Joseph and Carmi
[22]. Moreover, we note that for fixed wavelengths, from
experiments and numerical simulations, our results are in a
good agreement with the experiments of Prigent et al. [15]
and the numerical computations of Barkley and Tuckerman
[16], and Tsukahara et al. [17].

We underline that the scope of the paper is to find sufficient
energy-stability conditions under which the basic transla-
tional motion (plane Couette or Poiseuille flows) is stable
against tilted perturbations and compare the obtained critical
Reynolds numbers with those of the experiments. We do not
investigate the type of the turbulence at the criticality as
done in the experiments and in the numerical simulations.
Moreover, our critical energy Reynolds numbers hold for
tilted perturbations both in the linear and nonlinear case.
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The plan of the paper is the following. In Sec. II, we write
the nondimensional perturbation equations of laminar flows
in a channel and we recall the classical linear stability and
instability results. We study the linear stability with the classi-
cal L2 energy and obtain the critical Reynolds numbers found
by Orr [5]. In Sec. III, we give sufficient nonlinear stability
conditions of the plane Couette and Poiseuille flows with
respect to tilted perturbations of an angle θ with respect to
the direction of the motion and prove that they are nonlinearly
exponentially stable for any Reynolds number less than

ReOrr(2π/(λ sin θ ))
sin θ

,

where ReOrr is the critical Reynolds number for spanwise per-
turbations defined above. In Sec. IV, we make a comparison
with the experimental and numerical results and give some
final comments.

II. LAMINAR FLOWS BETWEEN
TWO PARALLEL PLANES

Consider, in a reference frame Oxyz with unit vectors
i, j, k, the layer D = R2 × [−d, d] of thickness 2d with hori-
zontal coordinates x, y and vertical coordinate z.

Laminar shear flows U = U (z)i, p = p(x) are solutions to
the stationary Navier-Stokes equations,{−U · ∇U + ν�U − ∇ p̄ = 0,

∇ · U = 0,
(1)

where U is the velocity field, p̄ is the pressure, ν is the
kinematic viscosity, ∇ is the gradient operator, and � is the
Laplacian.

To nondimensionalize the equations and the gap of the
layer, in the Couette case, we use a Reynolds number based
on the shear and half gap d . So we obtain the nondimensional
domain DC = R2 × [−1, 1] of thickness 2 with horizontal
nondimensional coordinates x, y and nondimensional vertical
coordinate z.

Couette flow, i.e., the solution of the Navier-Stokes equa-
tions, is then characterized by the functional form

U = f (z)i = zi. (2)

The function z : [−1, 1] → R is the shear profile.
In the case of Poiseuille flow, we have the nondimensional

domain D1P = R2 × [−1, 1] and

U = f (z)i = (1 − z2)i. (3)

The perturbation equations to the plane parallel shear flows,
in nondimensional form, are⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut = −u · ∇u + Re−1�u − ( f ux + f ′w) − ∂ p
∂x ,

vt = −u · ∇v + Re−1�v − f vx − ∂ p
∂y ,

wt = −u · ∇w + Re−1�w − f wx − ∂ p
∂z ,

∇ · u = 0,

(4)

where u = ui + vj + wk is the perturbation to the velocity
field, p is the perturbation to the pressure field, and Re is the
Reynolds number.

Throughout the paper, we use the symbols hx as ∂h
∂x , ht as

∂h
∂t , etc., for any function h.

To system (4), we append the rigid boundary conditions

u(x, y,±1, t ) = 0, (x, y, t ) ∈ R2 × (0,+∞),

and the initial condition

u(x, y, z, 0) = u0(x, y, z) in DC or DP,

with u0(x, y, z) the solenoidal vector which vanishes at the
boundaries.

We recall that the streamwise (or longitudinal) perturba-
tions are the perturbations u, p which do not depend on x, i.e.,
they are translational invariant in the downstream direction;
the spanwise (or transverse) perturbations are the perturba-
tions u, p which do not depend on y.

We note that for spanwise perturbations, either v → 0
exponentially fast as t → ∞ or v ≡ 0.

Linear stability and instability

Assume that both u and ∇p are x, y periodic with wave-
lengths l1 and l2 in the x and y directions, respectively,
with wave numbers (a1 = 2π/l1, b1 = 2π/l2) ∈ R2

+. In the
following, it suffices therefore to consider functions over the
periodicity cell,


 = [0, l1] × [0, l2] × [−1, 1].

We recall that the classical results of Romanov [19] prove
that plane Couette flow is linearly stable for any Reynolds
number. Instead, plane Poiseuille flow is unstable for any
Reynolds number bigger than 5772 (see Orszag [18]).

We observe that in the linear case, the Squire theorem holds
and the most destabilizing perturbations are two dimensional,
in particular the spanwise perturbations (see Drazin and Reid
[32], p. 155). The critical Reynolds value, for Poiseuille flow,
can be obtained by solving the celebrated Orr-Sommerfeld
equation (see Drazin and Reid [32]).

As the basic function space, we take L2(
), which is the
space of square-integrable functions in 
 with the scalar
product denoted by

(g, h) =
∫ l1

0

∫ l2

0

∫ 1

−1
f (x, y, z)g(x, y, z)dxdydz

and the norm given by

‖ f ‖ =
[∫ l1

0

∫ l2

0

∫ 1

−1
f 2(x, y, z)dxdydz

]1/2

.

We note that if we study the linear stability with the
Lyapunov method, by using the classical energy

V (t ) = 1
2 [‖u‖2 + ‖v‖2 + ‖w‖2],

we obtain sufficient conditions of linear stability.
The Orr-Reynolds energy identity is given by

V̇ = −( f ′w, u) − Re−1[‖∇u‖2 + ‖∇v‖2 + ‖∇w‖2], (5)

where V̇ is the orbital time derivative [i.e., the Lagrangian
derivative computed along the solutions of (4)]. To obtain
(5), it is sufficient to integrate in 
 and take into account the
zero-boundary conditions at the planes z = −1 and z = 1, the
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periodicity in x and y, and the solenoidality of the perturbation
velocity field u.

We have

V̇ = −( f ′w, u) − Re−1[‖∇u‖2 + ‖∇v‖2 + ‖∇w‖2]

=
(

−( f ′w,u)
‖∇u‖2+‖∇v‖2+‖∇w‖2 − 1

Re

)
‖∇u‖2

�
(

1
R̄ − 1

Re

)‖∇u‖2,

(6)

where

1

R̄
= max

S

−( f ′w, u)

‖∇u‖2 + ‖∇v‖2 + ‖∇w‖2
, (7)

and S is the space of the kinematically admissible fields,

S = {u, v,w ∈ H1(
), u = v = w = 0 on the boundaries,

ux + vy + wz = 0, ‖∇u‖ + ‖∇v‖ + ‖∇w‖ > 0}.
(8)

Here, H1(
) is the Sobolev space of the functions which are
in L2(
) together with their first generalized derivatives.

The Euler-Lagrange equations of this maximum problem
are given by

R̄( f ′wi + f ′uk) − 2�u = ∇λ, (9)

where λ is a Lagrange multiplier.
Since, for spanwise perturbations, v ≡ 0 and ∂

∂y ≡ 0, by
taking the third component of the double curl of (9) and by
using the solenoidality condition ux + wz = 0, we obtain the
Orr equation [5]

R̄

2
( f ′′wx + 2 f ′wxz ) + ��w = 0, (10)

with no-slip boundary conditions w = wz = 0 on z = ±1.
By solving this equation, with the given boundary condi-

tions, we obtain the Orr results: for Couette and Poiseuille
flows, we have ReOrr = R̄ = 44.3 (cf. Orr [5], p. 128) and
ReOrr = R̄ = 87.6 (cf. Drazin and Reid [32], p. 163), respec-
tively.

III. NONLINEAR STABILITY

Nonlinear stability conditions have been obtained by Orr in
a celebrated paper, by using the Reynolds energy method (see
Orr [5], p. 122). In fact, the energy method used for linear
system in Sec. II still holds in the nonlinear case because,
by taking into account of the boundary conditions and the
periodicity, the integrated cubic nonlinear terms vanish.

Orr writes: “Analogy with other problems leads us to
assume that disturbances in two dimensions will be less
stable than those in three; this view is confirmed by the
corresponding result in case viscosity is neglected” [5, p. 125].
He also says: “The three-dimensioned case was attempted, but
it proved too difficult” [5, p. 125].

Orr considers spanwise perturbations (i.e., v ≡ 0 and ∂
∂y ≡

0), the same perturbations that are used in the linear case by
using Squire transformation (cf. Squire [7]; Drazin and Reid
[32]).

The critical value that he found, in the Couette case, is
Rex = 44.3, where Rex is the critical Reynolds number with

44.3
 40
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Couette critical
Orr-Reynolds number

Rc

a

FIG. 1. Plane Couette energy Orr-Reynolds number R̄ = Rc as a
function of the wave number a, for Eq. (10) with nonslip boundary
conditions. The absolute minimum is Rc = 44.3 and it is achieved
when the wave number ac = 1.9. Here the channel has gap 2 and
z ∈ [−1, 1].

respect to spanwise perturbations (see Orr [5], p. 128; Joseph
[8], p. 181).

Joseph [8], in his monograph (p. 181), says: “Orr’s assump-
tion about the form of the disturbance which increases at the
smallest Re is not correct since we shall see that the energy of
an x-independent disturbance (streamwise perturbations) can
increase when Re >

√
1708/2 � 20.66.” (Here the values are

rescaled in the interval [−1, 1]).
Joseph also gives a table of values of the principal eigen-

values (critical energy Reynolds numbers) which depend on a
parameter τ , which varies from 0 (streamwise perturbations)
to 1 (spanwise perturbations), and concludes that the value
Re = 20.66 is the limit for energy stability when τ = a = 0
(streamwise perturbations), where a is the wave number in the
x direction [8], p. 181.

However, we prove here that the conclusion of Joseph [8]
is not correct. In fact, we note that Moffat [31] proved that
the perturbations which are translationally invariant in the
downstream direction are always nonlinearly energy stable.
This means that Rey = +∞, i.e., the streamwise perturbations
cannot destabilize the basic flows.

Moreover, we prove that the critical Reynolds number for
nonlinear stability of the basic motion with respect to “tilted
perturbations” (perturbations with axes parallel to a tilted x′
direction which form an angle θ with the x direction and
which do not depend on x′) are given by ReOrr

sin θ
= 44.3

sin θ
, θ ∈

(0, π
2 ], for any wave number.

This means that the results of Orr are correct both for linear
(as we have shown in Sec. II) and nonlinear stability for 2D
perturbations. We observe that local nonlinear stability results
up to the Orr results are given by Kaiser et al. [25] and Kaiser
and Mulone [26]. In those papers, the authors use the poloidal,
toroidal, and mean flow representation of solenoidal vectors
and define suitable weighted energies.

We observe that this result is also in agreement with what
was observed by Reddy et al. [33] for the greatest transient
linear growth: “For a given streamwise and spanwise wave
number one can determine a disturbance, called an optimal,
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FIG. 2. Plane Poiseuille energy Orr-Reynolds number R̄ = Rc as
function of the wave number a, for Eq. (10) with nonslip boundary
conditions. The absolute minimum is Rc = 87.6 and it is achieved
when the wave number ac = 2.09. Here the channel has gap 2 and
z ∈ [−1, 1].

which yields the greatest transient linear growth. In channel
flows, the optimals which yield the most disturbance growth
are independent, or nearly independent, of the streamwise
coordinate” [33], p. 271.

From the result of Moffat [31], it can be proven that
for streamwise perturbations, the time-decay coefficient of
perturbations is π2/(2Re), and it is in agreement with the
time-decay coefficient of streamwise perturbations of lin-
earized equations.

In Fig. 1, we have plotted the critical energy Orr-Reynolds
number, for plane Couette flow, as a function of the wave
number a. The minimum critical Reynolds number obtained
is 44.3. To solve the eigenvalue problem (10) with boundary
conditions w = wz = 0 at the boundaries z = ±1, we have
used the Chebyshev-collocation method with 60 Chebyshev
polynomials.

In Fig. 2, we have plotted the critical energy Orr-Reynolds
number, for plane Poiseuille flow, as function of the wave
number a. The minimum critical Reynolds number obtained
is 87.6. To solve the eigenvalue problem (10) with boundary
conditions w = wz = 0 at the boundaries z = ±1, we have
used the Chebyshev-collocation method with 60 Chebyshev
polynomials.

Tilted perturbations

The experiments of Prigent et al. [15] show that at the onset
of instability, some tilted perturbations appear (see Prigent
et al. [15], Fig. 2). Here we consider tilted perturbations of
an angle θ with the x direction, i.e., the perturbations u, p
along the x′ axis which forms an angle θ ∈ (0, π

2 ] with the
direction x and does not depend on x′. We prove that for
“2.5-dimensional” (see Barkey and Tuckerman [16], p. 115)
and 2D perturbations, the most destabilizing perturbations are
the spanwise and the best stability results, in the energy norm,
are those obtained by Orr [5]. Therefore, the results given by
Joseph [21] and by Joseph and Carmi [22] are not the best
because of a nonoptimal choice of an energy function.

−

FIG. 3. Laminar flows in a horizontal channel. The direction of
motion is that of the x axis. The direction of the x′ axis forms an
angle θ with the direction of the x axis.

For this, we consider an arbitrary inclined perturbation
which forms an angle θ with the direction of motion i (the
x direction, see Fig. 3).

We recall the well-known rotation transformation in the
plane,

{
x′ = cos θ x + sin θ y

y′ = − sin θ x + cos θ y,

⎧⎨
⎩

∂
∂x′ = cos θ ∂

∂x + sin θ ∂
∂y

∂
∂y′ = − sin θ ∂

∂x + cos θ ∂
∂y .

(11)

The inverse transformations are easily obtained by substitut-
ing θ with −θ and exchanging x and x′, y and y′.

Moreover,

u = ui + vj + wk = u′i′ + v′j′ + wk,

with {
u′ = cos θ u + sin θ v

v′ = − sin θ u + cos θ v,
(12)

and

i′ = cos θ i + sin θ j, j′ = − sin θ i + cos θ j.

In the new variables, we have

∇′ =
(

cos θ
∂

∂x′ − sin θ
∂

∂y′

)
i +

(
sin θ

∂

∂x′ + cos θ
∂

∂y′

)
j

+ ∂

∂z
k, �′ = �.

Consider the perturbations system (4):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = −u · ∇u + Re−1�u − ( f ux + f ′w) − ∂ p
∂x

vt = −u · ∇v + Re−1�v − f vx − ∂ p
∂y

wt = −u · ∇w + Re−1�w − f wx − ∂ p
∂z

∇ · u = 0.

(13)

Multiply (13)1 by cos θ , (13)2 by sin θ , and add the equa-
tions so obtained. In addition, multiply (13)1 by − sin θ , (13)2

by cos θ , and add the equations so obtained.
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Then, we have the system⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u′
t = −u · ∇u′ + Re−1�u′ − ( f u′

x + f ′ cos θ w) − ∂ p
∂x′

v′
t = −u · ∇v′ + Re−1�v′ − f v′

x + f ′ sin θ w − ∂ p
∂y′

wt = −u · ∇w + Re−1�w − f wx − ∂ p
∂z

∂u′
∂x′ + ∂v′

∂y′ + ∂w
∂z = 0.

(14)

We note that if θ → 0, then x′ → x, y′ → y, u′ → u, v′ → v.
Now we consider tilted (stream) perturbations in the x′

direction, i.e., those with ∂
∂x′ ≡ 0. The first equation of (14)

becomes

u′
t = −u · ∇u′ + Re−1�u′ − ( f u′

x + f ′ cos θ w). (15)

We have the energy equation

d

dt

[
β‖u′‖2

2

]
= −β( f ′ cos θu′,w) − βRe−1‖∇u′‖2, (16)

where β is an arbitrary positive number to be chosen. (In the
Appendix, Sec. 1, we prove the decay of u′ to zero if Re < R̄).

Moreover, we have

d

dt

[‖v′‖2 + ‖w‖2

2

]
= − Re−1(‖∇v′‖2 + ‖∇w)‖2

+ ( f ′ sin θ v′,w). (17)

We note that as θ → 0, the energy equations tend to the energy
equations obtained for the streamwise perturbations. More-
over, in the case ∂

∂x′ ≡ 0, if θ → π
2 , since y′ → −x, v′ → −u,

x′ → y, ∂v′
∂y′ → ∂u

∂x , the energy equation (17) becomes that for
spanwise perturbations.

Defining

H = 1
2 [‖v′‖2 + ‖w‖2], (18)

we have

Ḣ = ( f ′ sin θ v′,w) − Re−1[‖∇v′‖2 + ‖∇w‖2]

�
(

1

R̄
− 1

Re

)
[‖∇v′‖2 + ‖∇w‖2], (19)

where

1

R̄
= max

S

( f ′ sin θ v′,w)

‖∇v′‖2 + ‖∇w‖2
, (20)

and S is the space of the kinematically admissible fields,

S = {v′,w ∈ H1(
), v′ = w = 0 on the boundaries,

v′
y′ + wz = 0, ‖∇v′‖ + ‖∇w‖ > 0}.

(21)
It is not hard to prove (see the Appendix, Sec. 2) that for a
fixed wavelength λ,

R̄ = ReOrr

(
2π

λ sin θ

)/
sin θ. (22)

In particular, we note that for θ → π
2 , we obtain the critical

Orr-Reynolds number for spanwise perturbations. For θ → 0,
we obtain that the critical Reynolds number tends to +∞ (in
agreement with the result of Moffat [31]).

From (22), we see that the R̄ does not change if we substi-
tute θ with −θ . Thus we may exchange the variables, i.e., we

may consider a domain aligned with the pattern wave vector
and thus tilted relative to the streamwise-spanwise directions
of the flow and obtain the same critical Reynolds number.

Formula (22) gives the critical value for a fixed positive
wavelength λ. The minimum with respect to λ in (0,+∞) is
the nonlinear critical Reynolds number for tilted perturbations
of an angle θ :

R̄c = min
λ>0

ReOrr

(
2π

λ sin θ

)/
sin θ = RecOrr/ sin θ, (23)

where RecOrr = 44.3 for plane Couette flow and RecOrr =
87.6 for plane Poiseuille flow.

The meaning of (23) is that when the Reynolds number
is less than R̄c, the linear and nonlinear energy of tilted
perturbations of an angle θ and arbitrary wavelength λ decay
exponentially fast as t → +∞. For instance, if we consider
tilted perturbations of an angle θ = 25◦, the critical energy
Reynolds number is R̄c = 104.82 for plane Couette flow and
R̄c = 207.51 for plane Poiseuille flow, for any λ. These values,
though lower than the experimental or numerical values,
however, are bigger than the classical ones.

In the next section, we compare our critical Reynolds
energy stability results for a given inclination angle and a fixed
wavelength with the values obtained in the experiments and
numerical simulations.

IV. COMPARISON WITH EXPERIMENTAL AND
NUMERICAL RESULTS AND FINAL COMMENTS

In order to compare the critical Reynolds numbers with the
experiments and the numerical simulations, we must return
to (22) with fixed wavelengths. It is clear that if we choose
a particular wavelength, the values R̄c = 104.82 for plane
Couette flow and R̄c = 207.51 for plane Poiseuille flow, in
general, will increase in value.

For instance, if we consider the case of the experiments of
Prigent et al. [15] (see also Fig. 29 of Barckley and Tuckerman
[16]), we have

(i) θ = 25◦, λ = 46, experimental Reynolds number is
about 395, and here we obtain approximately R̄ = 369;

(ii) θ = 26◦, λ = 48, experimental Reynolds number is
about 385, and here we obtain approximately R̄ = 383;

(iii) θ = 27, 5◦, λ = 51, experimental Reynolds number is
about 375, and here we obtain approximately R̄ = 404;

(iv) (simulation of Barckley and Tuckerman [16]) θ = 24◦,
λ = 40, Reynolds number is about 350, and here we obtain
approximately R̄ = 325; and

(v) θ = 30◦, λ = 57, experimental Reynolds number is
about 350, and here we obtain approximately R̄ = 450 and
R = 398 in [16].

In Fig. 4, we have plotted a continuous curve which is a
part of the prolongation of the curve given in Fig. 1 where
the abscissa of its points is in the interval (0.2,0.4), and
we have signed the five critical values reported in Sec. IV
from (i) to (v). The points on the curve correspond to our
critical Reynolds numbers; the other points with the same
symbols and colors are those obtained in the experiments and
numerical simulations.

In the case of Poiseuille flow, the result of Tsukahara et al.
[17] is converted to a uniform Reynolds number based on
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FIG. 4. Couette energy Orr-Reynolds numbers given by formula
(25): we plot the five critical values reported in Sec. IV from (i) to
(v), as indicated here by the different points. We have also added the
continuous curve that for fixed ratio a

sin θ
= 2π

λ sin θ
, gives ReOrr ( 2π

λ sin θ
).

On the curve, we have reported our corresponding critical Reynolds
values.

the average shear and half gap [see Barckley and Tuckerman
[16], Table 3, and (A12)]. Now the nondimensional channel is
D2P = R2 × [−2, 2] and

U = f (z)i =
(

1 − z2

4

)
i. (24)

The Orr equation we get is

− R̄ sin θ

4
(wx + 2zwxz ) + ��w = 0,

where now we need to replace x with x sin θ , with
boundary conditions w = wz = 0 on the boundaries
z = ±2.

By making the substitution Z = 2z (22), and also rescaling
the variable x, it is easy to verify that we obtain the same
values for R̄ in (22) but now divided by 2:

R̄ = ReOrr

(
2π

λ sin θ

)/
(2 sin θ ), (25)

where now ReOrr ( 2π
λ sin θ

) is the Orr number for Poiseuille flow
evaluated at 2π

λ sin θ
.

In particular, if we consider the values in [17], we have θ =
24◦, λ = 41. The Reynolds number obtained in [17] [see [16]
(A12)] is about 357; here we obtain approximately R̄ = 355.

From these results, both in the Couette and Poiseuille
cases, we see that the critical energy Reynolds numbers that
we find are in a very good agreement with the experiments
and the simulations. However, when the inclination angle in-
creases (such as in the cases θ = 30◦ to θ = 37◦), our critical
values increase, as for the results of Barckley and Tuckerman
[16], while the critical values obtained in the experiments by
Prigent et al. [15] decrease. This is not clear. What we can
say is that for Reynolds numbers less than R̄, the energy of
tilted perturbations (streamwise rolls) must decay. These rolls
probably appear at the onset of instability, as observed by Pri-
gent et al. [34]. In fact, in the final part of their paper, Prigent
et al. [34] summarize their results: “we have presented...(i)
turbulent spirals and spots are essentially the same in PCF...(ii)

all our observations are fully captured by the dynamics of
coupled amplitude equations with noise. Taken together, these
results suggest the possibility of a large-wavelength instability
within fully turbulent shear flows. The precise origin of such
an instability is at present completely unknown. The work by
Hegseth [35] suggests it is related to the emergence of vortex
type structures in the streamwise direction” [34], p. 014501–4.

Barkley and Tuckerman [16] studied numerically a
turbulent-laminar banded pattern in plane Couette flow which
is oriented obliquely to the streamwise direction. In particular,
in [16], the authors present a detailed analysis of the new
turbulent-laminar patterns in large aspect-ratio shear flows
discovered in recent years by researchers at GIT-Saclay [15]
(see Fig. 1 in [16]). They observe that “the patterns are
always found near the minimum Reynolds numbers for which
turbulence can exist in the flow” [16], p. 111.

The critical energy Reynolds numbers we obtain are in
a good agreement with the experiments and the numerical
simulations. Since experimentally the patterns are found
near the minimum Reynolds numbers, the energy Reynolds
numbers capture the physics of the problem well. As we
have remarked, the energy method gives sufficient stability
(both linear and nonlinear) conditions of the basic flows
against tilted perturbations. The critical Reynolds numbers
are obtained from the energy equation (the Orr-Reynolds
method) (17) with some estimates from above (19); therefore,
we obtain only sufficient stability conditions. If one will be
able to prove that Ḣ is positive for some Reynolds number,
this will give instability results, but it is very difficult to prove
that with the energy method.

We also remark that since the cubic terms (−u · ∇u′, u′),
(−u · ∇v′, v′), (−u · ∇w,w) vanish, the critical energy
Reynolds numbers are the same for linear and nonlinear
perturbation systems. Obviously, the nonlinear terms are re-
sponsible for the turbulence and chaos that appear for high
Reynolds numbers.

Now we make a comparison of our Reynolds numbers
with those obtained by [16]. They found a “good first
approximation for the relationship between Re, λ and θ :
Re sin θ ≈ πλ” [cf. [16] (4.2), p. 133]. They also said:
“Equation (4.2) captures the correct order of magnitude of
Re sin θ/λ; specifically 1.8 � Re sin θ/λ � 5. Moreover,
in figure 29 one sees that for fixed Re, λ increases with
increasing θ , as (4.2) predicts. Equation (4.2) does not hold
in detail, however. Most notably, figure 29 shows that when
Re is decreased at fixed θ , the wavelength λ increases rather
than decreases as one would expect from (4.2)” [16], p. 133.

In Fig. 5, we have compared our energy Orr-Reynolds
numbers R̄ = Rc as a function of the wavelength λ and the
values obtained by [16], Re = πλ

sin 24◦ , for θ = 24◦. We obtain
a very good agreement of these values. If we had used Rc =
3.56λ
sin 24◦ in the simulation of [16], then the dashed line would
have been above the continuous line in Fig. 5 because all the
values would have increased by a factor of 3.56/π .

We also note that our Reynolds numbers, for the fixed
inclination angle, increase with λ as in [16].

Finally:
(i) We underline that the results we have obtained here

continue to hold for arbitrary plane parallel shear flows.
For this, it is sufficient to compute the maximum m given
by (A4).
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FIG. 5. Comparison of our energy Orr-Reynolds numbers R̄ =
Rc as a function of the wavelength λ and the values obtained by [16],
formula (4.2), Re = πλ

sin 24◦ . The dashed line represents Rc = πλ

sin 24◦ ;
the continuous line represents our critical Reynolds values R̄ = Rc as
a function of λ.

(ii) We remark that the energy method (applied both in
the linear and nonlinear case) provides thresholds of stability
and it is not able to capture the details of the fully developed
turbulent regime. However, our work reveals a connection
between wave numbers and critical Reynolds numbers in
these two very different regimes.

(iii) The method used here can also be applied to magneto-
hydrodynamics plane Couette and Hartmann shear flows. This
will be done in a future paper.

(iv) We believe that the results obtained in the present
paper make a contribution to the solution of the Couette-
Sommerfeld paradox.
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APPENDIX

1. Decay of u′

It is easy to prove that the component u′ in (16) also tends
to zero as t → ∞ if Re < R̄. In fact, by defining

E (t ) = 1

2
[‖v′‖2 + ‖w‖2] + β‖u′‖2

2
, β > 0, (A1)

the constant β is a positive number that we can properly
choose.

The (Orr-Reynolds) energy equation is

Ė = − βRe−1‖∇u′‖2 − β( f ′ cos θ u′,w)

− Re−1(‖∇v′‖2 + ‖∇w‖2) + ( f ′ sin θ v′,w). (A2)

Now define

r = 1

R̄
− 1

Re

and suppose r < 0, i.e., Re < R̄. Since, for functions f of the
Sobolev space H1(
) which vanish at the boundaries z = ±1,
the Poincaré inequality π2‖ f ‖2 � ‖∇ f ‖2 holds, we have the
following estimate:

Ė � −rπ2(‖v′‖2 + ‖w‖2) + mβ‖w‖‖u′‖ − βRe−1π2‖u′‖2,

(A3)

where

m = max
[−1/2,1/2]

| f ′(z)| cos θ. (A4)

We first note that if θ = π
2 , then the right-hand side of the

previous inequality is always negative for r > 0. We consider
the case of θ < π

2 .
By arithmetic-geometric mean inequality, we have

mβ‖u′‖‖w‖ � βm2

2ε
‖w‖2 + βε

2
‖u′‖2, (A5)

where ε is an arbitrary positive number to be chosen.
Therefore,

Ė �
(

βm2

2ε
− rπ2

)
‖w‖2 − rπ2‖v′‖2

+ β
(ε

2
− Re−1π2

)
‖u′‖2. (A6)

By choosing ε = π2

Re and β = rπ4

m2Re , we obtain

Ė � − rπ2

2
(‖w‖2 + ‖v′‖2 + β‖u′‖2) = −rπ2E . (A7)

Taking into account that Re < R̄, i.e., r > 0, we finally have

E (t ) � E (0)e−rπ2t . (A8)

This means that the energy E (t ) goes exponentially to zero. In
particular, all the components ‖v′‖, ‖w‖, ‖u′‖ of the energy go
to zero as t → +∞.

2. Critical energy Reynolds number (22)

The Euler-Lagrange equations of the maximum problem
(20) are

R̄ sin θ ( f ′wj′ + f ′v′k) + 2(�v′j′ + �wk) = ∇μ, (A9)

where μ is a Lagrange multiplier. By taking the third compo-
nent of the double curl of this equation, we have

R̄ sin θ

2
( f ′′wy′ + f ′wy′z − f ′v′

y′y′ ) − ��w = 0. (A10)

Since, by solenoidality condition, ∂v′
∂y′ = − ∂w

∂z , and � = �′,
we obtain

R̄ sin θ

2
( f ′′wy′ + 2 f ′wy′z ) − �′�′w = 0. (A11)
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By defining ỹ = −y′, the operator �′ does not change and we
have

R̄ sin θ

2
( f ′′wỹ + 2 f ′wỹz ) + (wỹỹỹỹ + 2wỹỹzz + wzzzz ) = 0.

(A12)

Since we are considering streamwise perturbations in the
direction x′, we have ∂

∂x′ = 0. From ∂
∂x = ∂

∂x′ cos θ − ∂
∂y′ sin θ ,

we have ∂
∂x = − ∂

∂y′ sin θ = ∂
∂ ỹ sin θ . Therefore, the last equa-

tion becomes

R̄ sin θ

2

(
f ′′ wx

sin θ
+ 2 f ′ wxz

sin θ

)
+

(
wxxxx

sin4 θ
+ 2

wxx

sin2 θ
+ wzzzz

)

= 0. (A13)

This equation is linear and has coefficients which do not
depend on x. We may look for solutions of the kind w(x, z) =
eiaxW (z) to obtain

R̄ sin θ

2

(
f ′′ ia

sin θ
W + 2 f ′ ia

sin θ
W ′

)

+
(

a4

sin4 θ
W − 2

a2

sin2 θ
W ′′ + W iv

)
= 0. (A14)

This equation coincides with the celebrated Orr equation
if we substitute the critical Reynolds number ReOrr in that
equation with R̄ sin θ and evaluate ReOrr at the wave number
a divided by sin θ , a

sin θ
= 2π

λ sin θ
. a is the wave number in the

direction orthogonal to the streamwise direction x′ and λ is its
wavelength; therefore,

R̄ = ReOrr

(
2π

λ sin θ

)/
sin θ. (A15)
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