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Nonaxisymmetric magnetorotational instability in spherical Couette flow
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We investigate numerically the flow of an electrically conducting fluid in a rapidly rotating spherical shell
where the inner boundary spins slightly faster than the outer one. The magnetic field evolves self-consistently
from an initial dipolar configuration of weak amplitude, and a toroidal field is produced by winding this poloidal
field through the internal differential rotation. First, we characterize the axisymmetric field solutions obtained
at long times when the Lorentz force is negligible and the flow follows the steady, purely hydrodynamical
solution. We then examine the stability of these solutions, focusing on the regime of large magnetic Reynolds
numbers where the field is dominantly toroidal. When the ratio of the azimuthal Alfvén frequency to the rotation
frequency exceeds a certain value, a nonaxisymmetric instability develops. We show that the instability properties
are compatible with those expected for the magnetorotational instability. Finally, we compare the instability
properties with predictions obtained from a local linear stability analysis. The linear analysis agrees well with
the numerical simulation results, except in a number of cases where the discrepancies are attributed to shearing
effects on the unstable modes.
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I. INTRODUCTION

Spherical Couette flow is the flow of a viscous fluid con-
tained in a spherical shell whose boundaries rotate rigidly
about a common axis with different angular velocities. Since
the second half of the past century, this flow has been ex-
tensively studied analytically, experimentally, and, only more
recently, numerically. Despite the seeming simplicity of the
problem, a wide variety of flow solutions and instabilities ex-
ists depending on the shell aspect ratio and boundary rotation
speeds. If the fluid is electrically conducting and a magnetic
field is present, magnetohydrodynamic (MHD) effects can
lead to different solutions and distinct types of instabilities. In
this work we examine several aspects of this MHD problem,
from axisymmetric flow and field solutions to their stability.

From an astrophysical perspective, magnetic spherical
Couette flow is attractive to study how magnetic fields interact
with differentially rotating flows in a geometry relevant for
stellar and planetary interiors. Magnetic fields and differential
rotation are indeed known to exist in the internal regions of
planets and stars, with prime examples being the Earth’s core,
the liquid interior of giant planets, and the solar convection
zone. A weak differential rotation between the Earth’s inner
core and the mantle, presumably of less than 1◦ per year, has
been revealed by seismic studies [1,2]. The alternating bands
of zonal winds observed on the surface of Jupiter and Saturn
are also likely manifestations of differential rotation patterns
in the liquid interior of these planets. Within the convective
envelope of the Sun, differential rotation is relatively strong,
largely varies with radius and latitude, and is generally as-
cribed to the redistribution of angular momentum produced
by convective motions.
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In stars other than the Sun, a certain degree of differential
rotation is expected as a consequence of their evolution. The
contracting core and inflating envelope of subgiant and red
giant stars, for example, would generate large internal rotation
contrasts if angular momentum was to be conserved. Recent
asteroseismic studies of these stellar populations using data
from the Kepler satellite, however, revealed absolute internal
rotations and core to envelope rotation contrasts much weaker
than expected [3–5]. An efficient angular momentum redis-
tribution and/or extraction must then have occurred during
earlier stages of the stellar evolution. Purely hydrodynamical
models considering the transport of angular momentum in-
duced by meridional flows and shear instabilities have been
proven inefficient at imposing such small internal rotations
(see, e.g., [6]). Magnetic processes, such as the enhanced
turbulence generated by MHD instabilities, could instead
provide a viable alternative for increasing the internal angular
momentum redistribution [7–9].

In the classical hydrodynamical Couette flow configuration
analyzed by Proudman [10] and Stewartson [11], the outer
boundary rotates arbitrarily fast and the inner boundary spins
slightly faster in the same direction. In this asymptotic regime,
the interior flow solution is driven by the viscous Ekman
boundary layers and develops a free shear layer, known as the
Stewartson layer, attached to the tangent cylinder (the cylin-
drical surface parallel to the rotation axis and tangent to the
inner boundary at the equator). Hollerbach [12] investigated
numerically the effect of an imposed dipolar magnetic field on
this hydrodynamical solution and found that the Stewartson
layer is completely suppressed when magnetic forces are of
leading order. A variety of other magnetically induced flow
configurations exists depending on the imposed magnetic field
geometry and electromagnetic boundary conditions [13–15].
These include superrotating and counterrotating jets, confined
regions of the interior flow which rotate faster than the two
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boundaries in the prograde and retrograde directions, respec-
tively. Nonaxisymmetric instabilities of these basic state con-
figurations have been analyzed in the past (e.g., [16,17]) and
some of them are reminiscent of those observed in laboratory
experiments with liquid sodium [18–20].

Magnetic spherical Couette flow is in principle suscep-
tible to magnetorotational instability (MRI). In its original
formulation by Velikhov [21] and Chandrasekhar [22], the
MRI is an axisymmetric instability due to a weak axial
magnetic field threading a hydrodynamically stable Taylor-
Couette flow, the flow of a viscous fluid sheared between two
coaxial rotating cylinders, where the mean angular velocity
decreases outwards. Balbus and Hawley [23] first recognized
the importance of the MRI in the context of accretion disks,
suggesting that it is the main source of turbulence and outward
angular momentum transport. Since then, this instability has
been extensively studied.

In the presence of azimuthal magnetic fields, nonaxisym-
metric versions of the MRI can be triggered [24–29]. Ro-
bust evidence of the expected nonaxisymmetric MRI modes
in purely azimuthal fields was obtained in the liquid metal
Taylor-Couette experiment of Seilmayer et al. [30]. In spher-
ical Couette experiments, Sisan et al. [31] claim to have ob-
tained nonaxisymmetric MRI, but the observed global modes
are probably related to boundary-driven instabilities instead
[32,33].

Most MRI studies focus on regimes relevant for accre-
tion disks and are thus not directly applicable to stellar and
planetary interiors. In the Earth’s outer core, for example,
differential rotation is much weaker than in accretion disks
and resistive effects are considerably larger. Most importantly,
planetary cores are far from being weakly magnetized since
they are expected to be in magnetostrophic balance, a state
where the Coriolis and Lorentz forces partially cancel. In this
regime, Petitdemange et al. [34,35] showed that a modified
version of the MRI can nevertheless be excited, in the pres-
ence of a purely axial field but also for combined axial and
azimuthal fields.

Whereas several studies investigate the basic states and
instabilities of magnetic spherical Couette flow relevant to
laboratory experiments, i.e., with imposed axial or dipolar
magnetic fields, the same cannot be said for more complex
field geometries and for configurations where the field evolves
self-consistently in time, as expected in astrophysical situa-
tions. Moreover, recent numerical works focus on exploring
the hydrodynamically unstable regime, characterized by large
boundary differential rotations, where dynamo action has
been found to be possible in both wide [36] and thin [37] shell
gaps. In this regime, helical flows produced by hydrodynam-
ical instabilities are responsible for dynamo action. However,
MHD instabilities of hydrodynamically stable shear flows
such as MRI are also capable of generating self-sustained
magnetic fields (see, e.g., [38,39]).

In this study we perform three-dimensional numerical
simulations of a spherical Couette flow which is hydrody-
namically stable and mostly compatible with the Proudman
and Stewartson asymptotic regime mentioned above. We then
investigate numerically the ability of different magnetic field
configurations, which evolve self-consistently, to destabilize
such flow. A weak axial dipole field, used as the initial

condition, is wound within the Stewartson layer, producing an
axisymmetric azimuthal field. The initial dipole field strength
is kept weak enough that the Lorentz force has a mild or negli-
gible impact on the flow which remains close to the purely hy-
drodynamical Proudman-Stewartson solution. We first char-
acterize the axisymmetric, mixed poloidal and toroidal field
configurations obtained when varying the boundary rotation
rates and rotation contrast, as well as the fluid kinematic vis-
cosity and magnetic diffusivity. Then we examine the stability
of the dominantly toroidal field configurations. A comparison
of the numerical results with theoretical predictions obtained
from a local linear stability analysis of the MHD equations is
also discussed.

The remainder of this paper is organized as follows. In
Sec. II we describe the model formulation and the numerical
technique used to solve the equations. In Sec. III the purely
hydrodynamical solutions obtained in the explored parame-
ter range are compared with the Proudman and Stewartson
asymptotic solution. In Sec. IV we discuss the axisymmet-
ric field solutions obtained when varying the input model
parameters and we investigate the force balances leading to
such solutions. The stability of the dominantly toroidal field
configurations is analyzed in Sec. V. We interpret the nonax-
isymmetric instability found in the numerical simulations in
Sec. VI, where we provide evidence for MRI. The instability
properties are further characterized using the local linear
stability analysis of Acheson [40]. The paper closes with a
summary of the results and a discussion of their relevance
in the astrophysical context and to laboratory experiments
(Sec. VII).

II. MODEL FORMULATION

In this study we consider magnetic spherical Couette flow.
An incompressible, viscous, and resistive fluid fills a wide-gap
spherical shell where the inner and outer boundaries rotate
rigidly about the vertical axis with angular velocities �i and
�o, respectively. The inner boundary rotates faster than the
outer one and in the same direction, with the rotation contrast
defined as �� = �i − �o > 0. The initial condition for the
magnetic field is an axial dipole field. In the frame of ref-
erence corotating with the outer boundary, the dimensionless
equations governing the system are the momentum equation

Ro

(
∂u
∂t

+ u · ∇u
)

= −∇p − 2êz × u + Ek ∇2u

+ Lo2
0

Ro
(∇ × B) × B, (1)

the continuity equation

∇ · u = 0, (2)

the magnetic induction equation

∂B
∂t

= ∇ × (u × B) + Ek

Ro Pm
∇2B, (3)

and the solenoidal condition for the magnetic field

∇ · B = 0. (4)
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Here u is the dimensionless velocity, p a modified dimen-
sionless pressure which includes the centrifugal force, êz the
unit vector in the direction of the rotation axis, and B the
dimensionless magnetic field. The shell thickness d = ro −
ri, where ri and ro are the inner and outer boundary radii,
respectively, is used as the reference length scale and ��−1

as the timescale. The magnetic field is scaled with B0, the
absolute initial dipole field strength at the poles of the inner
boundary.

Five dimensionless numbers control the problem. The first
is the system aspect ratio a = ri/ro, which is fixed to 0.3 in
this study. The Ekman number

Ek = ν

�od2
(5)

quantifies the relative importance of viscous to Coriolis forces
in the momentum equation. It can also be interpreted as the
ratio of the global rotation timescale t� = 1/�o to the viscous
diffusion time tν = d2/ν, where ν is the fluid kinematic
viscosity. The Rossby number

Ro = ��

�o
(6)

defines the rotation contrast between the two boundaries rela-
tive to the outer boundary rotation rate. The magnetic Prandtl
number

Pm = ν

η
(7)

specifies the kinematic viscosity relative to the fluid magnetic
diffusivity η. The last control parameter is

Lo0 = B0√
μρd�o

(8)

and can be interpreted as the ratio of the rotation timescale t�
to the Alfvén crossing time based on the initial dipole field
tA = √

μρd/B0. Here μ denotes the magnetic permeability of
vacuum and ρ the (constant) fluid density. This dimensionless
number is sometimes referred to as the Lorentz number (e.g.,
[41]) and we adhere to this nomenclature here.

In the following, the magnetic Reynolds number

Rm = ��d2

η
(9)

will also be of particular interest. It is related to the above
control parameters by Rm = Ro Pm/Ek.

We assume no-slip flow boundary conditions typical of
spherical Couette studies, that is, u = 0 at radius r = ro/d
and u = (ri/d ) sin θ êϕ at r = ri/d . Here (r, θ, ϕ) denote di-
mensionless spherical coordinates and êϕ is the unit vector
in the azimuthal direction. The exterior of the fluid domain
is assumed to be electrically insulating. The magnetic field
boundary conditions are therefore appropriate to match a
potential field outside the fluid volume.

The above system of equations and boundary conditions
is solved numerically using the pseudospectral MHD code
MagIC [42,43] (publicly available from [44]). Since a detailed
description of the employed numerical techniques is given by
Christensen and Wicht [45], we outline only the essentials
here. MagIC employs a spherical harmonic decomposition in

the azimuthal and latitudinal directions. Chebyshev polynomi-
als are used in the radial direction to guarantee a denser grid
towards ri and ro where boundary layers need to be resolved.
The equations are integrated in time using a mixed implicit-
explicit time stepping scheme. A numerical resolution of Nr =
257 radial grid points with a maximum spherical harmonic de-
gree 
max = 170 typically suffices to resolve the less diffusive
and thus most computationally demanding nonaxisymmetric
runs considered in the following.

III. AXISYMMETRIC NONMAGNETIC SOLUTIONS

In this section we present the hydrodynamical flow solu-
tions (Lo0 = 0) obtained when varying the Ekman and Rossby
numbers. The flow regime we consider is characterized by
fast rotations (Ek � 1) and small to moderate differential
rotations (Ro � 0.2). In this regime the flow is hydrodynam-
ically stable to nonaxisymmetric perturbations, as discussed
at the end of this section. The Ekman numbers explored are
Ek = 10−4 and 10−5. Smaller values are too computationally
demanding for a systematic parameter study.

For slight differential rotations (Ro � 1), Proudman [10]
and Stewartson [11] described stationary and axisymmetric
analytical solutions valid in this limit where the Coriolis force
dominates over inertial and viscous forces in most parts of the
interior. Such flow satisfies the Proudman-Taylor constraint of
vertically invariant motions

u = uϕ (s)êϕ + s−1∇ψ (s) × êϕ. (10)

In the above equation s = r sin θ defines the dimensionless
cylindrical radial coordinate and ψ is the stream function
which defines the poloidal flow velocity up = s−1∇ψ (s) ×
êϕ . The numerical flow solution at Ro = 2.5 × 10−4 is il-
lustrated in Fig. 1 for the two Ekman numbers explored.
Left and right panels show the rotation rate �′ = uϕ/s and
the meridional flow, respectively. In the interior, the flow is
largely vertically invariant as expected. The tangent cylinder
(TC) is the cylindrical surface parallel to the rotation axis
and tangent to the inner boundary at the equator. Outside
the TC, the asymptotic state is rigid rotation with the same
angular velocity as the outer boundary. Inside the TC, the
fluid mainly rotates at �′ = 1/2. Ekman layers of thickness
Ek1/2 adjust the azimuthal flow inside the TC to the spherical
boundary rotation rates. Centrifugal forces drive the fluid
towards the equator inside the inner Ekman layer and towards
the rotation axis inside the outer Ekman layer. This secondary
flow produces a large-scale counterclockwise (clockwise)
meridional circulation in the northern (southern) hemisphere.
This meridional flow is weak compared to the O(1) azimuthal
flow, being of O(Ek1/2) in amplitude. Close to the rotation
axis, the meridional circulation goes from the outer Ekman
layer vertically down to the inner Ekman layer. Close to the
TC, a narrow jet allows the flow to recirculate from the inner
Ekman layer to the outer one.

We now compare the numerical solutions in the interior
with the analytical solution obtained by Proudman [10]. Out-
side the TC (s � ri/d) where the flow is in rigid rotation,
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FIG. 1. Nonmagnetic (Lo0 = 0) axisymmetric flow solutions at a
Rossby number Ro = 2.5 × 10−4. (a) and (b) for an Ekman number
Ek = 10−4, (c) and (d) for Ek = 10−5. (a) and (c) display the angular
velocity �′, and (b) and (d) the meridional circulation (counter-
clockwise in the northern hemisphere and clockwise in the southern
hemisphere). These solutions are representative of the asymptotic
regime of Proudman [10] and Stewartson [11], characterized by fast
outer boundary rotations and slightly faster inner boundary rotations.

we have

�′(s) = 0, (11a)

ψ (s) = 0. (11b)

For s < ri/d , the angular velocity and the stream function
are, respectively,

�′(s) = (1 − s2)1/4

(1 − s2)1/4 + [1 − (a−1 − 1)2s2]1/4
(11c)

and

ψ (s) = Ek1/2

2

s2

(1 − s2)1/4 + [1 − (a−1 − 1)2s2]1/4
. (11d)

This analytical solution is shown in Fig. 2 by the thick
gray curves, whereas numerical solutions at the small Rossby
number discussed above are displayed as solid curves. At the
two Ekman numbers explored, the angular velocity jump at
the TC is still significantly smaller than its asymptotic value.
A closer match with the asymptotic solution is obtained for
the smaller Ekman number of Ek = 10−5 as expected.
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FIG. 2. Comparison of the asymptotic solution of Proudman [10]
with different nonmagnetic numerical flow solutions. (a) and (b)
show, respectively, the angular velocity �′ and the stream function
ψ as function of the cylindrical radial coordinate s. Solid gray curves
display Proudman’s solution as given in Eqs. (11a)–(11d). This
solution is discontinuous at the tangent cylinder location. For each
Ekman number case, solid and dashed curves illustrate numerical
solutions at a small Rossby number Ro = 2.5 × 10−4 and at the
largest Ro explored in this study, respectively [see the legend in (a)].
The numerical solutions are taken at a depth of z = ro/2d , where z is
the dimensionless cylindrical vertical coordinate.

The discontinuity in the interior flow across the TC is
resolved within a free shear layer, known as the Stewartson
layer [11]. The Stewartson layer is composed of three nested
sublayers. The outermost sublayer of thickness Ek1/4 is lo-
cated just outside the TC and accommodates the main jump
in the azimuthal velocity. This sublayer also hosts most of
the meridional circulation jet, as is evident from Fig. 2(b).
The innermost sublayer of thickness Ek2/7 is attached to the
inside of the TC and mainly serves to continuously connect
the azimuthal velocity and its derivative to the interior flow.
Finally, the discontinuity in the meridional circulation, also
illustrated in Fig. 2(b), is resolved within the inner sublayer
of thickness Ek1/3 which is centered around the TC location.
Although close agreement of Stewartson’s asymptotics with
numerical solutions requires lower Ekman numbers [12,13],
we found our numerical solutions generally consistent with
these scalings. Figures 1(a) and 1(c) show, for example, that
Stewartson layer thickness clearly decreases with the Ekman
number. Moreover, the inner Ekman boundary layer thickens
near the equator where it is expected to scale as Ek2/5 to meet
the broader Stewartson layer.

For the moderate Rossby numbers considered in this study
(Ro � 0.2), the hydrodynamical flow solutions remain close
to the asymptotic state described above. Figure 2 indeed
demonstrates that the interior flow solutions for the largest
Rossby numbers explored (Ro = 0.2 at Ek = 10−4 and Ro =
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0.03 at Ek = 10−5) are nearly identical to the respective
solutions at Ro = 2.5 × 10−4. For Ro ≈ 1, inertial forces
become important and cause the development of an equatorial
meridional jet which destabilizes the Stewartson layer. In the
explored range of Ekman and Rossby numbers, however, the
hydrodynamical flow is linearly stable to nonaxisymmetric
perturbations [46,47], as we also verified numerically. The on-
set of the first hydrodynamical nonaxisymmetric Stewartson
layer instability occurs, for a given Ekman number, above a
certain critical Rossby number Roc. Numerical simulations of
wide-gap spherical Couette flows similar to those performed
in this study show that Roc ≈ 76 Ekα with α = 0.63 [47]. A
global linear analysis by Hollerbach [46] reports a similar
scaling exponent of α = 0.65, and spherical Couette flow
experiments by Schaeffer and Cardin [48] are consistent with
these numerical results. For the Ekman numbers Ek = 10−4

and 10−5 explored here, Roc is 0.20 and 0.045, respectively.
In the following, we consider only hydrodynamically stable
flow solutions with Ro < Roc.

IV. AXISYMMETRIC MAGNETIC SOLUTIONS

We now consider the magnetic case assuming as the initial
condition an axial dipole field of strength Lo0. With this initial
condition, the MHD solution remains purely axisymmetric.
In Sec. IV A we describe the global flow and field temporal
evolution. The field solutions obtained at long times when
varying the input model parameters are analyzed in Sec. IV B,
where we also discuss the different force balances leading to
such solutions.

A. Temporal evolution

The initial dipole field strengths considered in this study
are generally small such that Lo0 � 1. In this regime, Lorentz
force effects are negligible or rather limited and the flow
rapidly approaches the purely hydrodynamical solution de-
scribed in the preceding section. Toroidal field Bϕ can then
be generated through the shear across the Stewartson layer.
Values of Lo0 ≈ 1 or larger would weaken the internal shear,
thus limiting the toroidal field generation.

Figure 3 illustrates the temporal evolution of the kinetic
and magnetic energies for the case at Ek = 10−5, Ro = 0.03,
Pm = 2, and with an initial dipole field strength of Lo0 =
4.47 × 10−3. The initial evolution consists of a transient due
to the flow initial condition [Fig. 3(b)] and a growth of the
toroidal field Bϕ generated by winding the initial dipole field
through the internal differential rotation, with the toroidal
magnetic energy reaching its maximum in about 270��−1

or 9000 system rotations [Fig. 3(d)].
At later times, both field components decay since no

dynamo action can occur for a purely axisymmetric field
[see Fig. 3(c)]. Pure Ohmic decay is observed at times t �
1500 when the field largely retains its morphology and its
amplitude decreases exponentially on a timescale close to the
dipole diffusion time td = r2

o/π
2η [thin solid line in Fig. 3(c)].

During this phase, the Lorentz force is negligible, so the flow
approaches the steady hydrodynamical solution described in
Sec. III. For the sake of brevity we refer to this phase of the
field evolution as the diffusive phase hereafter. Figures 4(a)
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FIG. 3. Temporal evolution of the volume averaged kinetic (Ekin)
and magnetic (Emag) energies for the axisymmetric case at Ek =
10−5, Ro = 0.03, Pm = 2, and Lo0 = 4.47 × 10−3. (a) and (c) dis-
play the whole simulation run and (b) and (d) the initial evolution
only (note the different scales of the left and right vertical axes). The
thin solid line in (c) illustrates the Ohmic decay of a pure dipole field
occurring on the timescale td = r2

o/π
2η. The vertical dotted line in-

dicates the time at which nonaxisymmetric perturbations are applied
(run Pm2 in Sec. V). Flow and field solutions at this perturbation
time are shown in Fig. 4.

and 4(b) show a comparison of the magnetic interior flow
solution in the diffusive phase (dotted gray curves) with the
respective nonmagnetic one (solid black curves) and demon-
strate that the two are indeed indistinguishable.

An important dimensionless number in this study is the
azimuthal Lorentz number

Loϕ = ωAϕ/�, (12)

where ωAϕ = Bϕ/
√

ρμd is the Alfvén frequency based on
the axisymmetric azimuthal field Bϕ and � = �o + �′ is the
absolute rotation rate. In the diffusive phase where the flow is
stationary, the evolution of Loϕ is determined by Bϕ only and
this measure can be interpreted as a nondimensional azimuthal
field strength.

B. Field solutions during the diffusive phase

We describe here how the axisymmetric field solutions
obtained in the diffusive phase depend on the relevant model
parameters, namely, the Ekman number Ek, the Rossby num-
ber Ro, and the magnetic Prandtl number Pm. A measure
which characterizes the toroidal field production, and thus the
different solutions obtained, is the toroidal to poloidal field
ratio Bϕ/Bp. Since both field components decay at about the
same rate during the diffusive phase, Bϕ/Bp is practically
constant during this stage of the field evolution.

Order of magnitude predictions of Bϕ/Bp can be obtained
by analyzing the relative importance of the different terms in
the induction equation. Using the poloidal-toroidal decompo-
sition for an axisymmetric flow

u = up + s�′êϕ (13)

and magnetic field

B = Bp + Bϕ êϕ = ∇ × Aêϕ + Bϕ êϕ, (14)
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FIG. 4. (a) and (b) Comparison of axisymmetric interior flow solutions between nonmagnetic and magnetic cases at Ek = 10−5 and Ro =
0.03. Solid black curves show the steady nonmagnetic (Lo0 = 0) solution. Magnetic solutions at Pm = 2 and 6 are illustrated by the gray and
red curves, respectively [see the legend in (a) for their Lo0 values]. Dashed curves display solutions taken at the times t (also given in the
legend) when nonaxisymmetric perturbations will be applied. They represent the basic axisymmetric flow configurations of runs Pm2 (dashed
gray curves) and Pm6a (dashed red curves) described in Sec. V. Finally, dotted gray curves show the case at Pm = 2 during the diffusive phase
of the field evolution (note that the solution is identical to the nonmagnetic one). (c) Magnetic field solution for the case corresponding to the
dashed gray curves in (a) and (b). This represents the perturbed axisymmetric field configuration of run Pm2 in Sec. V. Color contours show
the axisymmetric azimuthal field Bϕ and dashed contour lines the poloidal field.

the induction equation (3) reduces to the scalar equations

∂A

∂t
+ 1

s
(up · ∇)(sA) = Rm−1(∇2 − s−2)A, (15a)

∂Bϕ

∂t
+ s(up · ∇)

(
Bϕ

s

)
= Rm−1(∇2 − s−2)Bϕ

+ s(Bp · ∇)�. (15b)

In the above equations, A is the scalar potential which defines
the poloidal field Bp and � is the absolute rotation rate defined
above. Note that we use the magnetic Reynolds number Rm
as the dimensionless parameter here.

The second term on the right-hand side of (15b) is respon-
sible for the toroidal field generation by shearing the poloidal
field through the differential rotation, a mechanism commonly
referred to as the � effect. An estimate for this term is

|s(Bp · ∇)�| ∝ Bp, (16)

where Bp denotes a characteristic poloidal field amplitude and
the differential rotation is taken as the global rotation contrast
between the inner and outer boundaries so that |∇�| ≈ 1.

When assuming the shell gap d as a characteristic length
scale for the azimuthal field variations and considering |up| ≈
Ek1/2 as predicted by Proudman’s solution [Eq. (11d)], advec-
tion of Bϕ by the meridional flow is∣∣∣∣s(up · ∇)

(
Bϕ

s

)∣∣∣∣ ∝ Ek1/2Bϕ. (17)

Under the above assumptions, the diffusion term in (15b)
reads

Rm−1|(∇2 − s−2)Bϕ| ∝ Rm−1Bϕ. (18)

The relative contributions of these terms clearly vary with Rm.
When Rm � 1, magnetic diffusion dominates over the other
terms in both the toroidal and poloidal induction equations.
When increasing the magnetic Reynolds number to Rm � 1,

the diffusion term (18) may become of the same order of the �

effect (16). These terms are of O(1) in the Ekman number and
therefore largely dominate when compared to the advection
scaling (17). In this regime, the expected balance between
diffusion and � effect yields

Bϕ ∝ Rm Bp. (19)

Further increasing Rm, advection by the meridional flow
starts to be important when Rm ≈ Ek−1/2. Since Ek � 1,
the � effect is expected to be equilibrated by advection and
therefore

Bϕ ∝ Ek−1/2Bp. (20)

In this regime, Bϕ/Bp is independent of Rm and smaller
Ekman numbers favor toroidal field generation. For Rm 	
Ek−1/2, the above scaling relation ceases to be valid. When
field advection is the leading term in the force balance, vari-
ations of Bϕ indeed occur on shorter length scales than those
assumed above. Moreover, advection of the poloidal field by
the vertical meridional circulation jet within the Stewartson
layer also starts to be important.

We verified numerically the above scaling relations cal-
culating 〈Bϕ〉/〈Bp〉, the toroidal to poloidal field ratio based
on root mean square (rms) volume averages of the respective
components. Figure 5 summarizes the results for the explored
range of parameters. For Rm Ek1/2 � 1, the simulation data
points obey the linear scaling predicted by (19). This regime
is referred to as the linear regime hereafter. As expected, devi-
ations from the linear scaling start at Rm Ek1/2 ≈ 1 and mark
the increasingly important role of advection relative to mag-
netic diffusion. A plateau is then reached when Rm Ek1/2 ≈
6. This regime where the toroidal to poloidal field ratio is
independent of Rm is compatible with the scaling relation
(20) derived above. Hereafter, we refer to this regime as the
saturation regime. For Rm Ek1/2 � 10, 〈Bϕ〉/〈Bp〉 first shows
a cusp and then increases with a scaling somewhat steeper
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FIG. 5. Scaling of the toroidal to poloidal magnetic field ratio
〈Bϕ〉/〈Bp〉 during the diffusive phase of the field evolution with the
magnetic Reynolds number Rm. Here angular brackets denote rms
volume averages. Squares and circles indicate simulations at the
Ekman numbers Ek = 10−4 and 10−5, respectively. The symbol color
codes the magnetic Prandtl number Pm (see the legend). The solid
black line illustrates the linear scaling 〈Bϕ〉/〈Bp〉 ∝ Rm expected for
Rm Ek1/2 � 1. Capital letters A–F indicate six cases representative of
the different field solutions obtained (see Fig. 6). These cases have
Ekman and Rossby numbers Ek = 10−5 and Ro = 0.03, respectively,
and different Pm values [case A, Pm = 5 × 10−3 (or Rm = 15);
case B, Pm = 0.5 (or Rm = 1.5 × 103); case C, Pm = 1 (or Rm =
3 × 103); case D, Pm = 1.7 (or Rm = 5.1 × 103); case E, Pm = 3
(or Rm = 9 × 103); case F, Pm = 6 (or Rm = 1.8 × 104)].

than the linear regime. A second saturation seems to occur at
Rm Ek1/2 ≈ 40.

We also verified that a local measure for the field ratio,
namely, Bϕ/Bp evaluated at the maximum of the azimuthal
field and denoted by (Bϕ/Bp)max, follows the same scalings
discussed above. Here (Bϕ/Bp)max is about 120 for the larger
Rm cases at Ek = 10−5 shown in Fig. 5 and reveals the strong
local dominance of the toroidal field over the poloidal one.

Figure 6 displays typical magnetic field solutions obtained
in the different regimes discussed above. The Ekman and
Rossby numbers are fixed to Ek = 10−5 and Ro = 0.03,
respectively, while the magnetic Reynolds number is varied

from Rm = 15 (case A) to Rm = 1.8 × 104 (case F) by
increasing the magnetic Prandtl number Pm. All these cases
are also marked in Fig. 5. As expected, the field solutions are
equatorially antisymmetric. This symmetry is imposed by the
purely poloidal initial condition, an axial dipole field, and by
the fact that the shear is equatorially symmetric, which gives
an equatorially antisymmetric � effect.

In the linear regime (case A), the azimuthal field Bϕ is
characterized by two flux patches largely spread in the fluid
domain. The azimuthal field maxima are located within the
Stewartson layer where the � effect is stronger, i.e., where the
poloidal field lines form the largest angles with the cylindrical
radial shear. No azimuthal field can be generated near the
equator where the poloidal field is mostly vertical and thus
Bp · ∇� ≈ 0. In this low-Rm regime, the poloidal field lines
are reminiscent of the initial dipolar configuration because ad-
vection plays only a marginal role compared to the dominant
diffusion.

As can be seen from Fig. 5, a significant departure from the
linear regime is observed when increasing Rm to 1.5 × 103

(case B). The meridional flow now advects Bϕ towards the
outer boundary and slightly bends the poloidal field lines close
to the inner boundary (see Fig. 6). Case C at Rm = 3 × 103

belongs to the saturation regime and presents weak Bϕ patches
of opposite polarity located close to the inner boundary in
each hemisphere. As expected, the � effect changes sign
in this region since the poloidal field lines are bent radially
outwards by the equatorward flow within the inner Ekman
boundary layer and the vertical jet within the Stewartson layer.

When further increasing Rm to 5.1 × 103 (case D), the
saturation regime is left and we observe a larger influence
of field advection by the meridional flow. Now Bϕ lobes of
opposite polarity and comparable amplitudes are present in
each hemisphere. Finally, advection has a leading role in
shaping the field solution at the larger-Rm values of 9 × 103

(case E) and 1.8 × 104 (case F). In both cases a single Bϕ flux
lobe is present in each hemisphere, clearly advected in the
direction of the meridional jet. This is particularly evident in
case F where these flux lobes are transported towards the outer
boundary. The meridional flow also expels the poloidal field
out of the Stewartson layer close to the outer boundary. The
displaced poloidal flux gets concentrated towards the rotation
axis around the polar regions.

FIG. 6. Axisymmetric magnetic field solutions during the diffusive phase of the field evolution. Color contours show the azimuthal field Bϕ

and dashed contour lines the poloidal field. The six selected cases (A–F) have different magnetic Reynolds numbers Rm and are representative
of the various regimes depicted in Fig. 5. The Ekman number is Ek = 10−5 and the Rossby number Ro = 0.03 in all cases.
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FIG. 7. Force balances for the six axisymmetric field solutions A–F (from top to bottom) shown in Fig. 6. Left and right panels illustrate,
respectively, the axisymmetric azimuthal field Bϕ and the force terms in the toroidal induction equation (15b) as a function of the vertical
coordinate z. These profiles are taken at the cylindrical radius s where |Bϕ | is maximum and shown for the northern hemisphere (z > 0) only.
The different force terms [� effect, field advection, and magnetic diffusion; see the legend in (b)] are calculated beneath the outer Ekman
boundary layer and their amplitude is normalized to the absolute maximum of the forces. The vertical dotted line in each panel indicates the
position of the |Bϕ | maximum.
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TABLE I. Selected numerical simulation runs where a nonaxisymmetric instability develops. Columns 2 and 3 list the magnetic Prandtl
number Pm and the initial poloidal Lorentz number Lo0, respectively. The Ekman number is Ek = 10−5 and the Rossby number Ro = 0.03 in
all runs. Column 4 details tpert, the time at which the nonaxisymmetric perturbations are introduced. Column 5 lists the maximum azimuthal
Lorentz number Lomax

ϕ at the perturbation time. Column 6 details the value at the perturbation time of (Bϕ/Bp)max, the toroidal to poloidal field
ratio evaluated at the maximum of Bϕ . The last three columns report estimates of the instability drift velocity in the azimuthal direction (cϕ)
and in the vertical direction z for the northern (cz>0) and southern (cz<0) hemispheres.

Run Pm Lo0 tpert Lomax
ϕ (Bϕ/Bp)max cϕ cz>0 cz<0

Pm2 2 4.47 × 10−3 351.8 1.84 × 10−2 60.7 0.118 −1.5 × 10−3 1.2 × 10−3

Pm3 3 3.65 × 10−3 351.9 2.15 × 10−2 89.4 0.123 −1.8 × 10−3 2.2 × 10−3

Pm6a 6 1.03 × 10−2 5249.6 9.93 × 10−3 118.7 0.188 −3.6 × 10−3 3.6 × 10−3

Pm6b 6 1.03 × 10−2 6590.9 7.64 × 10−3 120.3 0.190 −3.5 × 10−3 3.6 × 10−3

Pm6c 6 1.03 × 10−2 7113.6 6.65 × 10−3 121.6 0.192 −3.2 × 10−3 3.2 × 10−3

Pm8b 8 1.03 × 10−2 8406.3 7.64 × 10−3 186.5 0.192 −3.9 × 10−3 3.8 × 10−3

We verified quantitatively the expected force balances in
the six cases discussed above by comparing the different terms
in the toroidal induction equation (15b). The right panels of
Fig. 7 display the � effect, advection, and diffusion terms
as a function of the cylindrical vertical coordinate z. These
profiles are taken at the cylindrical radius s where |Bϕ| is
maximum. This radius lies within the Stewartson layer and
is representative of the global force balance elsewhere in the
domain, except for regions in rigid rotation. Since the field
is equatorially antisymmetric, only the northern hemisphere
(z > 0) is shown. The different terms are calculated beneath
the outer Ekman layer where they rapidly go to zero due to the
insulating boundary condition (Bϕ = 0 at ro). The respective
vertical profiles of Bϕ are illustrated in the left panels of the
same figure.

In the linear regime of case A, advection of Bϕ by the
meridional flow is negligible and magnetic diffusion balances
the � effect as expected [Fig. 7(b)]. Case B deviates from the
linear regime and indeed shows a somewhat larger contribu-
tion of Bϕ advection relative to the other terms [Fig. 7(d)]. In
the saturation regime, advection of Bϕ becomes comparable
in amplitude to the other terms virtually at all locations as
predicted above [case C, Fig. 7(f)]. This occurs at the expense
of the � effect and leads to the saturation of the toroidal
field generation. Only at the largest Rm value of case F, a
significantly reduced contribution of the � effect to the global
force balance is observed [Fig. 7(l)] and could explain the
second saturation of 〈Bϕ〉/〈Bp〉 mentioned before.

In the cases discussed above, the magnetic Reynolds num-
ber has been varied by increasing Pm and thus decreasing the
relative contribution of magnetic diffusion while leaving the
flow solution unchanged. However, Rm can also be varied
by increasing the Rossby number Ro for a fixed Pm value.
By proceeding this way, we verified that Rm is the key di-
mensionless parameter which characterizes the different field
solutions at long times explored here, in agreement with the
scalings shown in Fig. 5.

V. NONAXISYMMETRIC INSTABILITY OF
DOMINANTLY AZIMUTHAL FIELDS

In this section we study the stability of the axisymmetric
magnetic Couette flow solutions described in the preceding
section. For the weak initial dipole field strengths explored

(Lo0 � 10−2), Lorentz force effects remain small, so the flow
is either close or very close to the nonmagnetic solution. The
axisymmetric magnetic field then results from the kinematic
induction of the initial dipole and, for the large magnetic
Reynolds numbers Rm considered, it is dominantly azimuthal.
In the following, the Ekman and Rossby numbers will be held
fixed at Ek = 10−5 and Ro = 0.03, respectively. As discussed
in Sec. III, these Ekman and Rossby numbers ensure that,
in the absence of a magnetic field, the flow is stable to
nonaxisymmetric perturbations. Thus, any instability will be
due to the presence of the magnetic field itself.

Investigating the stability for different magnetic field
strengths and magnetic Prandtl numbers, we have found that,
for a given value of Pm, the system is unstable above a
certain azimuthal field amplitude, measured by the maximum
azimuthal Lorentz number in the domain Lomax

ϕ . The critical
value of Lomax

ϕ for the instability onset decreases when Pm
increases.

In the following we describe a selection of unstable cases,
whose control parameters and other relevant measures are
listed in Table I. Each run is named following the convention
Pmxy, where x is the magnetic Prandtl number value and y a
letter that identifies the azimuthal field strength at the pertur-
bation time, as measured by Lomax

ϕ (Table I, column 5). De-
creasing values of Lomax

ϕ are sorted in ascending alphabetical
order. To consider different azimuthal field strengths, we use
the temporal evolution of the axisymmetric field (Sec. IV A).
During the diffusive phase, the flow is stationary and the field
decays on the diffusive timescale while conserving its geome-
try. Then, by introducing the perturbations at successive times,
we can indeed study the stability for decreasing strengths
of the background azimuthal field. This is done for runs
Pm6a, Pm6b, and Pm6c, where the flow closely follows the
purely hydrodynamical solution [as demonstrated in Figs. 4(a)
and 4(b) for run Pm6a] and the field largely resembles the
configuration of case F in Fig. 6. For lower azimuthal field
strengths at Pm = 6, namely, Lomax

ϕ � 5 × 10−3, the system
is found to be stable. The axisymmetric field configurations
of runs Pm6b and Pm8b are similar to each other, and thus the
two cases differ only in their magnetic Prandtl number value.

To explore stronger azimuthal magnetic fields, the per-
turbations have to be introduced earlier in the axisymmetric
evolution. This is done for runs Pm2 and Pm3 knowing that
at this stage the flow shows some deviations from the purely
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FIG. 8. Temporal evolution of the toroidal magnetic energy of different azimuthal modes m in (a) run Pm2 and (b)–(d) the three runs at
Pm = 6. The energy is evaluated as an average over a spherical surface at depth r/ro roughly located where the axisymmetric azimuthal field
is maximum (r/ro = 0.8 and 0.5 for run Pm2 and the three runs at Pm = 6, respectively). Vertical dotted lines indicate the times at which the
snapshots of Fig. 9 are taken.

hydrodynamical solution, as demonstrated in Figs. 4(a) and
4(b) for run Pm2, due to a non-negligible role of the Lorentz
force. While the temporal evolution of the background ax-
isymmetric fields may in principle modify the instability
development, we will see that this is not the case in our
numerical simulations because the most unstable modes grow
on a timescale much shorter than the evolution timescale of
the background fields.

Another important property of the background axisymmet-
ric field is that it is always strongly dominated by the toroidal
component. The local ratio (Bϕ/Bp)max, listed in column 6 of
Table I, is indeed of about 120 for the runs at Pm = 6 and
reaches more than 180 for run Pm8b. Runs Pm2 and Pm3 have
smaller values of about 60 and 90, respectively.

The applied perturbation consists of a nonaxisymmetric
random poloidal field for all spherical harmonic degrees 
 > 0
and orders m > 0. We choose the noise amplitude to be sev-
eral orders of magnitude smaller than the maximum axisym-
metric field strength. Within few system rotations after the
perturbation time, a nonaxisymmetric instability starts to grow
in all the selected runs. Figure 8 displays the temporal evolu-
tion of the toroidal magnetic energy of the first 13 azimuthal
modes m in runs Pm2, Pm6a, Pm6b, and Pm6c. As mentioned
above, the axisymmetric field (m = 0) is practically stationary
on the typical timescale of the instability growth. The linearly
unstable modes are m � 6 for run Pm2, m � 14 for Pm6a,
m � 11 for Pm6b, and m � 9 for Pm6c. Higher azimuthal
modes in each run are initially subcritical and grow only at

later times due to nonlinear mode energy transfers. In run
Pm6a, for example, the nonlinear phase is reached after a
period of roughly 40��−1 from the perturbation time [see
Fig. 8(b)]. At this stage we find that the ratio of the nonax-
isymmetric magnetic energy to the axisymmetric one becomes
of order unity at the locations where the instability develops.
Interestingly, the nonlinear growth of m = 1 and m = 2 is
significantly faster than the linear one, presumably because of
mode interactions between the faster growing linear modes.
The most unstable linear mode is mmax = 5 in runs Pm6a and
Pm6c and mmax = 6 in run Pm6b. The growth rate of these
modes lowers when Lomax

ϕ decreases. Unstable linear modes
in runs Pm2 and Pm3 have relatively large growth rates. We
will interpret these results using predictions from a local linear
stability analysis in Sec. VI B.

Figure 9 presents the spatial distribution of the instability
during the linear phase of its growth. Left and right panels dis-
play, respectively, map projections and meridional sections of
the total nonaxisymmetric azimuthal field B′

ϕ . The instability
clearly develops over the Stewartson layer and is confined in
regions around and below the axisymmetric |Bϕ| maximum,
as can be seen by comparing the axisymmetric field solutions
displayed in Figs. 4(c) and 6 (case F) for run Pm2 and the
runs at Pm = 6, respectively. The characteristic length scale
of the instability in the meridional plane is comparable to
the Stewartson layer thickness, while the azimuthal length
scale λϕ ≈ 2πri/mmax is a few times larger in all the cases
considered.
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FIG. 10. Meridional sections (northern hemisphere only) showing the temporal evolution of the total nonaxisymmetric azimuthal field B′
ϕ

in run Pm6c. The instability drifts in the vertical direction towards the inner boundary at constant velocity and with a mostly fixed wave packet
structure. The gray dot marks the position of a mode crest. The initial vertical position of this crest is indicated by the horizontal dotted line,
which can be used as a reference to track the slow instability motion.

We observe that the instability drifts azimuthally in the
prograde direction. This drift occurs at an intermediate rate
between �o and �o + ��/2, which is compatible with the
characteristic mean flow rotations within the Stewartson layer
(see Table I, column 7 for values of the azimuthal drift
velocity cϕ in all runs explored). While drifting in the az-
imuth, the perturbations also propagate vertically towards the
inner boundary, namely in the −êz and +êz directions in
the northern and southern hemispheres, respectively, with a
mostly fixed wave packet structure (see Fig. 10). Vertical drift
velocities in the two hemispheres, also reported in Table I,
are low in magnitude, with values typically two orders of
magnitude smaller than those of cϕ . When approaching the
inner boundary, the instability structures vanish at the inter-
section between the Stewartson layer and the inner Ekman
layer where viscous effects are important.

VI. INTERPRETATION OF THE INSTABILITY

Having described the nonaxisymmetric instability ob-
served in the numerical simulations, we now closely analyze
and interpret its properties. The instability nature is charac-
terized in the following section where we provide evidence
in favor of the MRI. The observed growth rates and unstable
locations are then compared with predictions obtained from a
local linear stability analysis in Sec. VI B.

A. Evidence for nonaxisymmetric MRI

In the following we argue that the instability found in our
numerical simulations is of the magnetorotational type. In
the magnetic Couette flow considered in this study, the free
energy available for an instability to develop comes either
from the shear or from the magnetic field. Hydrodynamically
stable shear flows, like the one we are considering, can
become magnetohydrodynamically unstable through the MRI.
In this instability the magnetic field acts only as a catalyst,
enabling the kinetic energy of the shear to be drawn in.
Purely magnetic instabilities, possibly affected by the flow,
can also be triggered. For our magnetic configurations largely
dominated by the toroidal component, the most likely is the
so-called Tayler instability (TI) [49–51], which is a pinch-type

instability of purely axisymmetric toroidal fields with m = 1
the fastest growing mode.

The first indication in favor of the MRI is that the instability
we observe clearly develops where the shear is located, that
is, on the Stewartson layer. A distinct property of MRI in
the presence of azimuthal fields is its traveling wave nature.
An azimuthal drift of nonaxisymmetric MRI modes is ex-
pected both for purely azimuthal and for combined vertical
and azimuthal (helical) field configurations [29,52–54]. In
the presence of helical fields, MRI modes also propagate
along the vertical coordinate z. These oscillatory solutions,
predicted by Taylor-Couette stability studies [26,32] and also
observed experimentally [55–57], arise due to a break of the
reflectional symmetry in z introduced when considering a
helical field. The direction of propagation (parallel or antipar-
allel to the rotation axis direction êz) is determined by the
handedness of the magnetic field (left handed or right handed,
respectively). The characteristic vertical drift rate is small,
typically tens of times lower than the mean flow rotation rate.
In a spherical geometry, Petitdemange et al. [35] confirmed
the slow traveling wave nature of MRI in a helical field, for
both axisymmetric and nonaxisymmetric perturbations.

In our numerical simulations, which consider mixed
poloidal and toroidal background field configurations, the
instability drifts at constant velocities in both the azimuthal
and vertical directions as expected. The azimuthal drift is
prograde and vertically the instability propagates towards
the inner boundary, namely, in the −êz and +êz directions
in the northern and southern hemispheres, respectively. This
opposite propagation direction in z is due to the different
handedness of the background axisymmetric field in the two
hemispheres. In agreement with the above-mentioned find-
ings, the vertical drift rates are low, typically four orders of
magnitude smaller than the mean flow rotation rate.

Another property of the MRI is that it is much favored
when the mean angular velocity � decreases radially out-
wards [23,58]. We tested this property in our simulations by
slowing down the inner boundary rotation rate during the
linear phase of the instability growth. As we invert the sign
of the radial angular velocity gradient such that Ro = −0.03,
all the unstable modes quickly become subcritical.
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As discussed by Jouve et al. [59], a key parameter to
distinguish between the MRI and the TI is the azimuthal
Lorentz number Loϕ defined in Eq. (12). Large values of
Loϕ favor the TI since the strong magnetic tension resists
shear-induced field modifications required by the MRI. In our
numerical simulations, Loϕ is always small at the times when
the axisymmetric solutions are perturbed. Values of Lomax

ϕ are
indeed of about 10−2 or lower in all the explored runs (Table I,
column 5). Moreover, as expected in this MRI regime, the
most unstable azimuthal modes are m > 1 in our numerical
simulations. Modes m > 1 may also be excited by the TI but
only in regions where the latitudinal gradients ∂B2

ϕ/∂θ are
positive and large [50]. In the axisymmetric field configura-
tions explored, these regions lie mainly outside the Stewart-
son layer where the simulations show no unstable behavior.
To conclude, all the above observations strongly support
the MRI as the instability being triggered in our numerical
simulations.

B. Comparison with local linear stability analysis

Nonaxisymmetric MRI induced by toroidal fields has been
investigated in different contexts, from stellar accretion disks
(see [60,61] for reviews on the subject) to laboratory exper-
iments [30,55,57], using different types of approximations
and simplified flow configurations (e.g., [60,62,63]). For our
case, a global linear analysis would require us to solve a two-
dimensional boundary value problem because of the complex
geometry of the background flow and magnetic field. The
shearing coordinates formalism, employed, for example, by
Balbus and Hawley [24] or by Petitdemange et al. [35], would
be complicated to apply here for the same reason. In addition,
this latter framework provides transient exponential growths
of the unstable modes that are not directly comparable to
those found in the present simulations. To further analyze our
numerical results, we instead resort to the local linear stability
analysis of Acheson [40].

Acheson studied the stability of a purely axisymmetric
toroidal field Bϕ in a differentially rotating, stably stratified
Boussinesq fluid of uniform viscosity, thermal conductivity,
and magnetic diffusivity. The local linear analysis is per-
formed in cylindrical coordinates (s, ϕ, z) and assumes har-
monic perturbations in space and time of the form exp[i(kss +
kzz + mϕ − σ t )]. Here ks and kz denote the radial and vertical
wave numbers, respectively. The rate at which the perturba-
tions grow (or decay) is determined by γ = Im(σ ). These
perturbations are of small amplitude and have small length
scales compared to the characteristic scales of variation of
the background flow and field configurations. Solutions of the
linearized MHD equations proportional to the above ansatz
then satisfy a dispersion relation further simplified by assum-
ing azimuthal perturbation wavelengths much larger than the
meridional ones, namely, k2

ϕ � k2
s + k2

z , where kϕ = m/s is
the azimuthal wave number.

The resulting dispersion relation, adapted to our setup
where no buoyancy is present, is examined in the Appendix.
For the discussion here it suffices to know that, when scaling
σ with the local rotation rate � such that σ̃ = σ/�, the
dispersion relation is a function f that satisfies the condition

f (σ̃ , m, β, q, b, Lo, Re, Rm) = 0. In addition to the azimuthal
order m, the dimensionless parameters entering this relation
are the poloidal wave number ratio

β = ks/kz, (21a)

the shear parameter

q = ∂ ln �

∂ ln s
− β

s

z

∂ ln �

∂ ln z
, (21b)

a parameter related to the azimuthal field derivatives

b = 1

2

(
∂ ln B2

ϕ

∂ ln s
− β

s

z

∂ ln B2
ϕ

∂ ln z

)
, (21c)

the (local) azimuthal Lorentz number

Lo = ωA/�, (21d)

with ωA = Bϕ/
√

μρs, and finally the hydrodynamical and
magnetic Reynolds numbers

Re = �

νk2
and (21e)

Rm = �

ηk2
, (21f)

where k2 = k2
s + k2

z . The Reynolds numbers are related by
Rm/Re = Pm.

In the following we will use this dispersion relation in
two ways. First, we compute growth rates (the imaginary part
of σ̃ , or equivalently γ /�) of the most unstable azimuthal
modes mmax observed in the numerical simulations at each
point of the meridional plane. This is done by calculating
the local values of the above dimensionless parameters in
the meridional plane from the axisymmetric configurations
perturbed. Locations of positive growth rates determine an
unstable region that we then compare with the amplitude of
the unstable azimuthal modes m > 0 observed in the sim-
ulations. Second, by estimating meridional averages of the
dispersion relation parameters from the axisymmetric simu-
lations, we compute the growth rate of each mode m, which
we then compare with the values directly derived from the
simulations.

In both cases, the poloidal wave number ratio β needs to
be estimated and this is done from the numerical simulation
results by evaluating typical length scales of the instability in
the s and z directions during the linear phase of its growth. To
determine these length scales, and according to the meridional
distribution of the instability displayed in Fig. 9, the following
algorithm has been employed. Consider a meridional section
at the azimuthal numerical grid point ϕi. The relative maxima
of |B′

ϕ| are identified. For each of these maxima, we then cal-
culate the full width at half maximum in the s and z directions.
Their arithmetic means give the length scale estimates λ(i)

s and
λ(i)

z . This procedure is repeated for each of the Nϕ azimuthal

grid points, and the arithmetic means λs = N−1
ϕ

∑Nϕ

i=1 λ(i)
s and

λz = N−1
ϕ

∑Nϕ

i=1 λ(i)
z finally provide the estimate β = λz/λs.

Values of λs and λz are listed in Table II (columns 2 and 3)
for all runs explored. As mentioned in the preceding section,
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TABLE II. Estimates of the instability length scales and of the
dispersion relation parameters for the simulation runs explored.
Columns 2 and 3 list λs and λz, the characteristic instability length
scales in the cylindrical radial and vertical directions respectively.
Column 4 details the poloidal wave number ratio estimate β = λz/λs.
Columns 5–9 report meridional averages of the dimensionless pa-
rameters entering the dispersion relation and defined in Eqs. (21b)–
(21f). See the main text for further explanation.

Run λs/d λz/d β 〈q〉 〈b〉 〈Lo〉 〈Re〉 〈Rm〉
Pm2 0.058 0.086 1.54 −0.047 −0.63 0.027 222.6 445.2
Pm3 0.055 0.069 1.26 −0.050 −1.40 0.030 184.7 554.1
Pm6a 0.036 0.042 1.17 −0.052 −1.57 −0.015 74.7 448.2
Pm6b 0.038 0.042 1.11 −0.049 −1.07 −0.012 79.4 476.4
Pm6c 0.042 0.047 1.12 −0.047 −0.89 −0.011 97.1 582.6
Pm8b 0.032 0.040 1.25 −0.046 −1.47 −0.012 62.9 503.2

these length scales are generally comparable to the Stewartson
layer thickness δS/d ∼ Ek1/4 ≈ 0.056, although moderately
smaller in the larger-Pm runs. Vertical length scales λz are
mildly larger than the radial ones in all runs analyzed. These
estimates are also used to evaluate the meridional wave num-
ber entering Re and Rm as k2 = 1/λ

2
s + 1/λ

2
z .

After determining β, we calculate the unstable fluid regions
predicted by the local dispersion relation for our axisymmetric
configurations as described above. The theoretical predictions
obtained for runs Pm2 and Pm6a are compared with the re-
spective numerical simulation results in Fig. 11. Black contour
lines display the predicted growth rates for the most unstable
azimuthal mode mmax observed in each simulation. Because
of the equatorial symmetry of the problem, we evaluate these
growth rates in the northern hemisphere only. Figure 11

FIG. 11. Comparison of the unstable regions predicted by the lo-
cal dispersion relation with the numerical simulation results. Merid-
ional sections of the total nonaxisymmetric azimuthal field B′

ϕ during
the linear phase of the instability growth are shown for runs (a) Pm2
and (b) Pm6a. Black contour lines in the northern hemisphere
display the growth rates γ /� > 0 predicted by the local dispersion
relation for the most unstable azimuthal mode mmax observed in the
simulation (mmax = 4 and 5 for runs Pm2 and Pm6a, respectively).
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FIG. 12. Comparison of the growth rates γ /�o of the unstable
azimuthal modes m observed in the numerical simulations (data
points) with those predicted by the local dispersion relation (solid
curves). The theoretical predictions are obtained with the estimates
of the dispersion relation parameters listed in Table II (see the main
text for further details). (a) Runs Pm2 and Pm3 show good agreement
with the theoretical growth rates, whereas (b) runs at Pm = 6 and 8
present larger deviations.

demonstrates that the predicted unstable regions correlate well
with the observed instability locations. We found similar good
agreement when analyzing the other runs and we therefore do
not present the results here.

How does the growth rate of each unstable azimuthal
mode observed in the numerical simulations comply with the
theoretical predictions? Figure 12 displays the growth rates of
the linearly unstable modes m in all the explored runs. These
are evaluated from the toroidal magnetic energy evolution of
each mode (see Fig. 8 for run Pm2 and the three runs at
Pm = 6). For a comparison with the local linear theory, as
already anticipated above, we have to evaluate meridional
averages of the dispersion relation parameters (21b)–(21f).
These averages are calculated over an unstable region whose
boundaries are specified as follows. Because of the equatorial
symmetry of the problem, only the northern hemisphere (z >

0) is considered. In the cylindrical radial direction s, the
unstable region is bound by ri − λs/2 and ri + λs/2. In the
vertical direction z, we exclude the upper Ekman boundary
layer and the lower bound is adjusted so that the averages do
not depend strongly on its precise location. We denote these
meridional averages by the angular brackets hereafter, and
we report the values obtained for each run in Table II. These
values are used to calculate the theoretical growth rates shown
in Fig. 12 as solid curves.

Runs Pm2 and Pm3, displayed in Fig. 12(a), show good
agreement with the theoretical predictions for modes m � 4,
whereas higher unstable modes deviate more significantly.
Growth rates observed for the runs in the diffusive phase
instead differ considerably from the predicted ones for all
m [Fig. 12(b)]. The most unstable modes mmax observed in
the numerical simulations are also systematically smaller than
those predicted by the local linear theory. In runs at Pm = 6,
for example, mmax seems to decrease when decreasing the
azimuthal Lorentz number, whereas the linear theory shows
the opposite behavior. In the following section we discuss how
the linear theory can become less accurate in predicting the
growth rates in these latter cases.
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Validity of linear analysis assumptions

To explain the observed differences with the predictions
obtained from the local linear analysis of Acheson, we now
discuss in detail the validity of its assumptions and their
limitations for our numerical simulations. First, we consider
the short-wavelength approximation which requires that the
meridional wavelength of the perturbations is locally much
smaller than the scale heights of the background axisymmetric
configuration. As detailed in the Appendix, we have compared
the characteristic meridional instability length scale with the
typical scales of variation of the axisymmetric flow and field
solutions and concluded that the short-wavelength approxi-
mation is not violated. The assumption that the azimuthal
wavelength of the perturbations is much larger than the merid-
ional one is also marginally true. In fact, the characteristic
azimuthal length scale of the instability is typically 3 or 4
times larger than the meridional one in all the explored runs.

This last assumption, however, imposes additional limi-
tations that are evident when adopting shearing coordinates,
i.e., a Lagrangian reference frame locally corotating with the
fluid. In shearing coordinates, the radial wave number is time
dependent (see, e.g., [24])

ks(t ) = k′
s − m

d�

ds
t = k′

s − kϕ

s

H�

�t . (22)

Here k′
s denotes the unsheared radial wave number in the

Lagrangian frame, kϕ = m/s the azimuthal wave number, and
H� = |� (d�/ds)−1| the scale height of the mean angular
velocity. Equation (22) is valid for a vertically invariant flow,
a well satisfied assumption in our numerical simulations.
For axisymmetric perturbations (m = 0), ks does not vary in
time. In the analysis of Acheson, the time-dependent term
is also neglected for nonaxisymmetric perturbations. This is
motivated by the fact that, for times t smaller than the local
rotation period �−1, since s/H� � O(1), then ks(t ) ≈ k′

s.
Should t 	 �−1, however, shearing effects on the radial wave
number may be important and modify the instability evolu-
tion. A transient amplification of nonaxisymmetric modes,
i.e., a rapid growth occurring only for a finite period of time,
is indeed to be expected in this formalism [24,35]. Enhanced
viscous and diffusive effects acting on the small-scale sheared
modes could eventually further stabilize the system. The
larger magnetic tension of these sheared modes may also work
as an additional stabilizing effect.

In our numerical simulations, the separation between the
characteristic azimuthal and radial wavelengths of the insta-
bility is not large and shearing effects may then play a role
during the linear phase of the instability growth. The question
then naturally arises as to what the critical azimuthal mode
mS is for which these effects start to impact on the unstable
wave numbers. According to Eq. (22), the radial wave number
variations expected in a period t since the initial instability
growth at t = 0 are such that

�ks(t ) = |ks(t )| − |ks(0)| � |m|
∣∣∣∣d�

ds

∣∣∣∣t . (23)

Here we used the fact that the instability drifts in the prograde
direction and therefore m = |m|. During the e-folding time
of the most unstable azimuthal mode γ −1

max, we consider these

variations significant when

�ks
(
γ −1

max

)
� |ks(0)|, (24)

which yields

|m| � |ks(0)||d�/ds|−1γmax. (25)

The critical mode mS is then defined by the equals sign in the
above condition. Using |ks(0)| ≈ 1/λs and taking for |d�/ds|
its meridional average in the unstable region, we obtain the
estimate

mS ≈ γmax/ (λs〈|d�/ds|〉), (26)

where γmax is the growth rate of the most unstable mode
predicted by the dispersion relation (see also Fig. 12).

For runs Pm2 and Pm3, mS ≈ 2, which can be compatible
with the deviations from the predicted growth rates observed
for modes m > 4 [Fig. 12(a)]. Similar values of mS ≈ 3 are
obtained for the runs at Pm = 6 and 8, which however show
significant discrepancies with the predicted growth rates for
all azimuthal modes. Nevertheless, since higher modes m are
expected to be favored in these latter runs, shearing effects are
likely to be more important compared to the cases at low Pm.
Viscous diffusion may also be more efficient at larger Pm to
damp the small-scale sheared modes. These observations are
consistent with the behavior shown by the runs at Pm = 6 and
clearly seen in Fig. 12(b): The larger the most unstable az-
imuthal mode predicted by the dispersion relation, the smaller
the one observed in the numerical simulations.

VII. SUMMARY AND DISCUSSION

Magnetic fields and differential rotation are almost ubiq-
uitous in the interior of planets and stars. The study of
differentially rotating flows in the presence of magnetic fields
thus assumes particular relevance in astrophysics. Magnetic
spherical Couette flow is a prototype of such a problem
where the differential rotation is forced mechanically via the
boundaries. This idealized setup has the additional advantages
that it is prone to analytical treatment and can be realized in
laboratory experiments.

Previous numerical studies of magnetic spherical Couette
flow mostly considered imposed magnetic fields with rela-
tively simple topologies (e.g., [16,33–35,64]). Whereas these
studies have direct applications to interpret the results of
laboratory experiments where magnetic fields are externally
imposed, this approach falls short on astrophysical situations
where the field freely evolves in time. Moreover, these studies
often explored regimes where the flow is hydrodynamically
unstable [19,36]. In this work we have instead investigated nu-
merically the basic states and the stability of a magnetic spher-
ical Couette flow where the field evolves self-consistently
from an initial dipolar configuration, focusing on the regime
of fast outer boundary rotations and slight boundary differen-
tial rotations which is hydrodynamically stable. This allowed
us to examine instabilities which are entirely due to the
presence of a magnetic field.

In our numerical simulations the axisymmetric toroidal
field Bϕ is produced by winding the poloidal field through the
shear within the Stewartson layer. A variety of axisymmetric
field solutions is obtained depending on the importance of
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field advection relative to magnetic diffusion, which is quanti-
fied by the magnetic Reynolds number Rm. Our numerical
simulations show that the efficiency of the toroidal field
generation saturates when field advection becomes of leading
order in the force balance, namely, for 6 < Rm Ek1/2 < 10,
and then increases again for larger values of Rm.

We have then examined the stability of some of these
axisymmetric solutions, focusing on the dominantly toroidal
field configurations obtained for Rm � 6 × 103. We have
found that a nonaxisymmetric instability develops when a
certain azimuthal field strength (measured by the azimuthal
Lorentz number Loϕ) is exceeded. The critical value of Loϕ

for the instability onset decreases when the magnetic Prandtl
number Pm increases.

We argue that the instability found in our numerical simu-
lations is of the magnetorotational type. As expected for the
MRI, the instability develops in regions where the shear is
present, that is, on the Stewartson layer, and only when the
mean rotation rate decreases radially outwards.

It is well known that linearly unstable MRI modes arise as
traveling waves in the presence of helical, thus mixed poloidal
and toroidal, magnetic field configurations [29,32,52,57]. In
particular, nonaxisymmetric modes are expected to drift az-
imuthally at a rate comparable to the mean flow rotation rate
and in the vertical direction with a significantly slower rate.
Compatibly with such properties, the instability observed in
our numerical simulations drifts azimuthally in the prograde
direction and vertically towards the inner shell boundary. The
azimuthal drift occurs at rates truly comparable with the mean
flow rotations within the Stewartson layer, and drift rates in
the vertical direction are a few orders of magnitude smaller.

Similarly to what has been explored here, Petitdemange
et al. [35] studied the development of nonaxisymmetric MRI
modes in a spherical shell imposing a cylindrical radial shear
and a helical magnetic field. Although the authors focused
on the magnetostrophic regime, which is different from the
regime considered in this study, we note that the spatial
distribution of the unstable modes is nevertheless remarkably
similar to the one obtained here.

Linear analyses of the MHD equations can be used to
study and characterize the instability in further detail. They
can be performed using different types of approximations,
from fully global to local approaches. Global linear analyses
(e.g., [25,65]) could provide a close description of the unstable
modes in our numerical simulations, but they are certainly not
straightforward to apply. A local approach often employed to
describe nonaxisymmetric modes considers shearing coordi-
nates, namely, a reference frame locally corotating with the
mean flow (see, e.g., [24,35]). In this formalism only transient
amplification of the unstable modes is possible, and results
from direct numerical simulations are consequently difficult
to compare. Such shearing effects, however, can be neglected
if the characteristic azimuthal wavelength of the instability is
sufficiently large. This approach has been followed by Ache-
son [40], who derived a dispersion relation whose predictions
have been compared with our numerical simulation results.

We have shown that this local linear analysis correctly
predicts the unstable fluid regions in all the numerical sim-
ulations explored. When comparing the growth rates of the
unstable azimuthal modes m, however, certain discrepancies

occur in a few cases. The linear theory successfully predicts
the most unstable azimuthal modes and their growth rates in
runs at low Pm, whereas their values are overestimated in runs
at Pm = 6 and 8. We claim that shearing effects, associated
with time-dependent unstable radial wave numbers, are likely
more relevant in these latter cases and play a role to explain
the observed differences. Enhanced dissipative effects acting
on the small-scale sheared modes could provide an additional
stabilising mechanism leading to the small growth rates ob-
served.

It is important to stress that the local linear analysis em-
ployed, with all its simplifying assumptions, can only crudely
describe the properties of the global modes excited in our
numerical simulations. Differences of a small numerical factor
in the predicted most unstable mode and growth rate, such as
those observed here, are indeed not uncommon for this type of
analysis (see, e.g., [35,59]) and should not be overinterpreted.

The study of the stability of dominantly toroidal magnetic
field configurations, such as those considered in this work, is
certainly relevant for stellar and planetary interiors. Due to the
extremely high magnetic conductivity of the plasma in stellar
interiors, for example, the magnetic Reynolds number Rm is
so large that even a weak differential rotation can produce
strong toroidal fields. Whereas our numerical simulations
fall within this large-Rm regime, the values of Pm > 1 we
explored are far too large for stellar internal regions where
viscosity is the smallest diffusivity (in the radiative core of the
Sun, for example, Pm ≈ 10−3). Small values of Pm are also
typical of liquid metals employed in laboratory experiments of
magnetic spherical Couette flow [18,20,31]. According to our
numerical simulations, the critical value of Loϕ for the MRI
onset increases when Pm decreases. In the astrophysically
relevant regime of Pm � 1, it is therefore possible that the
type of MRI studied here cannot develop since the large
azimuthal field strengths likely required would modify the
basic axisymmetric flow beforehand.

In this work we focused on the analysis of the linear prop-
erties of the instability, while exploring its nonlinear evolution
and the saturation mechanism are deferred to future study.
Preliminary results in this context show that the instability
can modify the background shear by broadening and flattening
the internal rotation contrast, as likewise described in similar
setups by Petitdemange et al. [35,66]. As discussed in the
Introduction, understanding the efficiency of MHD instabil-
ities in redistributing the angular momentum is a question of
primary astrophysical interest and could help shed light on
puzzling helioseismic and asteroseismic observations such as
the almost rigid rotation of the Sun’s radiative core and the
reduced internal rotation rates of subgiant and red giant stars.

Given the large values of Rm of the numerical simula-
tions in the present study, we comment on the possibility
of MRI-driven dynamo action. Self-sustained magnetic fields
produced by MHD instabilities of hydrodynamically stable
shear flows are generally thought to maintain turbulence in
accretion disks, but may also develop in stably stratified stellar
interiors [7]. Dynamo action relying on the MRI of toroidal
magnetic fields in Keplerian shear flows was first observed in
local shearing-box simulations [67] and later in more realistic
setups such as rotating plane Couette flow [38]. More recently,
Guseva et al. [39] reported numerical evidence of such a

013110-16



NONAXISYMMETRIC MAGNETOROTATIONAL INSTABILITY … PHYSICAL REVIEW E 100, 013110 (2019)

dynamo in a global Taylor-Couette geometry with an imposed
azimuthal field. Studies in a spherical shell and with more
general field configurations such as those considered here are
still lacking, but they certainly deserve attention since they are
more directly relevant to stellar and planetary interiors.
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APPENDIX: LOCAL DISPERSION RELATION

We examine herein the local dispersion relation in Ache-
son [40] that we used to interpret the instability found in
our numerical simulations. First, we detail the assumptions
employed in the local linear stability analysis. Then we derive
a simplified version of the dispersion relation relevant for our
study where no buoyancy is present. Finally, we comment
on the validity of the linear analysis assumptions for our
numerical simulations.

Acheson [40] studied the linear stability of an electrically
conducting fluid rotating with angular velocity �(s, z) about
the z axis of a cylindrical coordinate system (s, ϕ, z) in
the presence of an axisymmetric azimuthal magnetic field

Bϕ (s, z). The fluid is assumed incompressible under the
Boussinesq approximation and stably stratified, with uniform
kinematic viscosity ν, magnetic diffusivity η, and thermal
diffusivity κ . The stability analysis is purely local in the sense
that it is valid only in a small neighbourhood of a point
(s, z). Two further assumptions are adopted. The first is the
short-wavelength approximation

λm � r, HB, H�. (A1)

Here λm = (λ2
s + λ2

z )1/2 denotes the meridional perturbation
wavelength, r = (s2 + z2)1/2 the spherical radius, and HB =
|Bϕ/∇Bϕ| (H� = |�/∇�|) the scale height of the azimuthal
field (angular velocity). The second assumption concerns the
azimuthal wavelength of the perturbation λϕ , which satisfies

λm � λϕ. (A2)

The MHD equations governing the system are linearized
around the background axisymmetric state and, by consider-
ing small-amplitude harmonic perturbations in space and time
of the form

exp[i(kss + kzz + mϕ − σ t )], (A3)

a dispersion relation is derived [Eq. (3.20) in 40]. Here ks =
2π/λs (kz = 2π/λz) is the radial (vertical) wave number of
the perturbation and m its azimuthal order which is an O(1)
integer. When the imaginary part of σ is positive, the applied
perturbation is unstable and grows exponentially at a rate
γ = Im(σ ).

If the fluid has no buoyancy, as in our setup, the dispersion
relation reduces to

u2
A

[
2�m

s
+ (ω + iνk2)

2

s

][
m

ω + iηk2

∂�

∂h
+ ∂Q

∂h
− 2

s

]
+

[
k2

k2
z

(
ω + iνk2 − m2u2

A

s2

1

ω + iηk2

)]

×
[

(ω + iνk2)(ω + iηk2) − m2u2
A

s2

]
−

[
∂ (�s2)

∂h
+ m u2

A

ω + iηk2

∂Q

∂h

][
2�

s
(ω + iηk2) + 2mu2

A

s3

]
= 0, (A4)

where ω = σ − m� is the Doppler-shifted frequency, uA =
Bϕ/

√
μρ is the Alfvén velocity, k2 = k2

s + k2
z , Q = ln(sBϕ ),

and finally

∂

∂h
= ∂

∂s
− ks

kz

∂

∂z
(A5)

defines the meridional derivative. When written as a poly-
nomial equation in the dimensionless frequency ω̃ = ω/�,
Eq. (A4) reads

4∑
i=0

aiω̃
i = 0, (A6)

where

a4 = 1 + β2, (A6a)

a3 = i
[
2(1 + β2)

(
R−1

e + R−1
m

)]
, (A6b)

a2 = −2(q + 2) + 2 L2
o[b − 1 − (1 + β2)m2]

− (1 + β2)
(
R−2

e + R−2
m − 4 R−1

e R−1
m

)
, (A6c)

a1 = −8m L2
o + i

{
2 L2

o[b − 1 − (1 + β2)m2]

× [
R−1

e + R−1
m

] − 4(2 + q)R−1
m

− 2(1 + β2)
(
R−2

e R−1
m + R−1

e R−2
m

)}
, (A6d)

a0 = m2L2
o

{
2q − L2

o[2(b + 1) − (1 + β2)m2]
}

− 2 L2
o[b − 1 − (1 + β2)m2]R−1

e R−1
m

+ (1 + β2)R−2
e R−2

m + 2(2 + q)R−2
m

+ i
{
2m L2

o

[
q R−1

e − (4 + q)R−1
m

]}
. (A6e)

The dispersion relation coefficients ai depend on six dimen-
sionless parameters: the poloidal wave number ratio

β = ks

kz
, (A7a)
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TABLE III. Measures used to test the validity of the local linear
analysis assumptions in the numerical simulation runs explored.
Columns 2 and 3 compare the characteristic meridional instability
length scale λm with estimates of the scale heights of the axisym-
metric azimuthal field and the angular velocity, respectively (see the
main text for further details). The last column lists the ratio of the
characteristic meridional instability length scale to the azimuthal one.

Run λm〈|HB|−1〉 λm〈|H�|−1〉 λm/λϕ

Pm2 0.59 1.1 × 10−2 0.38
Pm3 0.50 1.0 × 10−2 0.34
Pm6a 0.33 6.6 × 10−3 0.35
Pm6b 0.33 6.4 × 10−3 0.27
Pm6c 0.36 6.8 × 10−3 0.29
Pm8b 0.33 5.5 × 10−3 0.30

the shear parameter

q = ∂ ln �

∂ ln s
− β

s

z

∂ ln �

∂ ln z
, (A7b)

a parameter associated with the magnetic field derivatives

b = 1

2

(
∂ ln B2

ϕ

∂ ln s
− β

s

z

∂ ln B2
ϕ

∂ ln z

)
, (A7c)

the local azimuthal Lorentz number

Lo = ωA

�
, (A7d)

where ωA = Bϕ/
√

μρ s is the Alfvén frequency, and finally
the hydrodynamical and magnetic Reynolds numbers

Re = �

νk2
and (A7e)

Rm = �

ηk2
. (A7f)

We now discuss how well the linear analysis assumptions
on the perturbation wavelengths are satisfied in our numerical
simulations. First, we examine the short-wavelength approx-
imation (A1). To this end, we compare the characteristic
meridional instability length scale with the scale heights of the
perturbed axisymmetric solution in the numerical simulation
runs discussed in Secs. V and VI. As reported in the second
column of Table III, the product λm〈|HB|−1〉 is smaller than
0.6 in all runs explored. Here

λm = (
λ

2
s + λ

2
z

)1/2

and

〈|HB|−1〉 = [(〈|HB,s|−1〉)2 + (〈|HB,z|−1〉)2]1/2

are estimates of the meridional instability length scale and
of the inverse absolute field scale height, respectively (HB,s

and HB,z are the field scale heights in the s and z directions,
respectively). The overbar and the angular brackets denote,
respectively, the mean and the meridional average described
in Sec. VI B. Local values of λm|HB|−1 in the unstable fluid
regions are of about 2 at most. This typically occurs at
locations close to the inner and outer shell boundaries where
the azimuthal field gradients are large due to the electrically
insulating boundary conditions. However, the instability mode
amplitude is small or negligible in these regions (see Fig. 9,
right panels).

Concerning the angular velocity scale heights, values of
λm|H�|−1 never exceed 0.02 in the unstable regions for all
the runs analyzed. The estimates λm〈|H�|−1〉 are also small,
typically below 0.01 (see Table III, column 3). All the above
observations show that the short-wavelength assumption (A1)
is not violated in the numerical simulations considered in this
study.

The second assumption (A2) requires an azimuthal wave-
length of the instability much larger than the meridional one.
The ratio λm/λϕ ranges from about 0.3 to roughly 0.4 in the
runs explored (Table III, column 4), thus marginally satisfying
also this second assumption.
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