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While quantities conditioned to an isosurface of reaction progress variable c, which characterizes fluid state
in a turbulent reacting flow, have been attracting rapidly growing interest in the recent literature, a mathematical
and physical framework required for research into such quantities has not yet been elaborated properly. This
paper aims at filling two fundamental gaps in this area, i.e., (i) ambiguities associated with a definition of a
surface-averaged quantity and (ii) the lack of rigorous equations that describe evolutions of such quantities. In
the first (theoretical) part of the paper, (a) analytical relations between differently defined (area-weighted and
unweighted) surface-averaged quantities are obtained and differences between them (quantities) are discussed,
(b) a unified method for deriving an evolution equation for bulk area-weighted surface-averaged value of a
local characteristic φ of a turbulent reacting flow is developed, and (c) the method is applied for deriving
evolution equations for the bulk area-weighted surface-averaged reaction-surface density |∇c|, local reaction-
wave thickness 1/|∇c|, and local displacement speed Sd , i.e., the speed of an isosurface of the c(x, t ) field with
respect to the local flow. In the second (numerical) part of the paper, direct numerical simulation data obtained
recently from a highly turbulent reaction wave are analyzed in order to (1) highlight substantial differences
between area-weighted and unweighted surface-averaged quantities and (2) show that various terms in the
derived evolution equations are amenable to accurate numerical evaluation in spite of appearance of the so-called
zero-gradient points [C. H. Gibson, Phys. Fluids 11, 2305 (1968)] in a highly turbulent medium. Finally, the
obtained analytical and numerical results are used to shed light on the paradox of local flame thinning and
broadening which is widely discussed in the turbulent combustion literature.
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I. INTRODUCTION

A problem of the influence of turbulence on reaction waves
is straightforwardly relevant to various phenomena ranging
from reactions in aqueous solution [1], combustion [2–6], and
deflagration-to-detonation transition [7,8] under terrestrial
conditions to evolution of thermonuclear type Ia supernovae
[9,10] in the Universe. This nonlinear and multiscale problem
attracted much attention since the 1940’s when significant
acceleration of flame propagation by turbulence was found.
Following pioneering work by Damköhler [11] and Shelkin
[12], the effect is commonly attributed to an increase in the
flame-surface area due to wrinkles of the surface, caused
by turbulent eddies. While such a simple explanation was
applied to weakly and moderately turbulent reacting flows
over decades, recent direct numerical simulation (DNS) data
[13–15] have indicated that the flame-surface-area increase
controls burning rate even if the root mean square (rms)
turbulent velocity u′ is much (by a factor of 10 or even 100)
larger than the laminar flame speed SL.

Generation of flame surface area by turbulence is com-
monly characterized using either (i) flame-surface density
(FSD) |∇c|, whose mean value yields mean flame-surface area
within an infinitesimal volume dV [16], or (ii) the local stretch
rate, which is defined as follows:

K ≡ at − Sdκ = ∇ · u − an + Sdκ (1)

and is well known [17–20] to directly quantify the rate
of change of the area δA of an infinitesimal element of a
self-propagating surface, i.e., d (δA)/dt = KδA. Here, c is a
combustion progress variable, which (i) can be defined by
properly normalizing temperature, density, or mass fraction
of a major species and (ii) is commonly used to characterize
the state of a reacting mixture (typically, c = 0 and 1 in
fresh reactants and equilibrium products, respectively); an ≡
nin j∂ui/∂x j and at = ∇ · u − an are the normal and tangen-
tial strain rates, respectively; u is the local velocity vector;
κ = −∇ · n is the local flame curvature; the unit vector n =
∇c/|∇c| is normal to the local flame surface and points to
the products; and Sd , which will be defined later, is the local
displacement speed, i.e., the speed of the considered flame
surface with respect to the local flow.

In spite of the paramount importance of the increase in the
flame-surface area, the influence of turbulence on premixed
combustion is not solely reduced to this physical mechanism.
In particular, turbulent eddies can significantly change the
local flame structure, thickness, and, hence, the local heat-
release rate, with these phenomena being of paramount impor-
tance in lean mixtures of light fuels (hydrogen or syngas) with
the air [21–27]. Such effects are also often characterized using
|∇c| and K. The former quantity directly yields the inverse
of the local flame thickness and, according to the theory of
laminar premixed flames subject to large-scale perturbations
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[17,28], difference between the local flame speed or burning
rate and its unperturbed value is controlled by the local stretch
rate.

For the above reasons, investigation of the behavior of FSD
|∇c|, its inverse value 1/|∇c|, stretch rate K, and its compo-
nents is of paramount importance for understanding the in-
fluence of turbulence on premixed flames or another reaction
wave. Accordingly, the aforementioned local quantities φ =
{|∇c|, 1/|∇c|, K, at , an, Sd , κ, Sdκ} were in the focus of
DNS research into turbulent constant-density, single-reaction
waves [15,20,29], turbulent single-step-chemistry flames
[30–39], or turbulent complex-chemistry flames [40–43]. In
such papers, either statistics of φ(x, t ) conditioned to an
isosurface of c(x, t ) = ĉ are analyzed or different mean or
filtered terms in a transport equation for φ(x, t ) are extracted
from DNS data and compared.

However, results obtained using these two methods (condi-
tioned statistics and mean transport equations) cannot directly
be compared because transport equations for mean quanti-
ties are well known to be different from transport equations
for the counterpart conditioned quantities [21]. For instance,
divergence of velocity conditioned to a particular mixture
state does not vanish in constant-density turbulent flows [44].
Therefore, there is need for deriving transport equations for
quantities conditioned to isosurfaces and extracted from vari-
ous DNS databases. This work aims at making a first step to
fill this gap by (i) developing a unified method for deriving an
evolution equation for the bulk (i.e., averaged over the entire
flame volume) value of the surface-averaged quantity φ and
(ii) applying the method to φ = |∇c|, 1/|∇c|, and Sd .

While the use of such bulk quantities results in missing
information about evolution of the surface-averaged quan-
tities along the normal to the mean flame brush, various
surface-conditioned quantities integrated along the normal
were widely studied to explore flame-turbulence interaction in
the recent literature [35,38,42,43,45–47]. Thus, research into
such quantities has its own fundamental value. In some sense,
conventional transport equations for the mean quantities and
evolution equations for the bulk surface-averaged quantities
complement one another and offer an opportunity to ex-
plore flame-turbulence interaction from different perspectives.
The former approach allows for variations within the mean
flame brush, but does not address differences between the
mean and bulk surface-averaged quantities, whereas the latter
approach addresses the difference, but do not address the
variations.

In addition to the major goal stated above, this work also
pursues two other closely related, supplementary goals. First,
certain terms in the derived evolution equations are singular
in the so-called zero-gradient points [48], i.e., points where
|∇c|(x, t ) = 0, but 0 < c(x, t ) < 1. Such points can appear
when an isosurface becomes too complicated to stay “regular,”
i.e., to have a finite curvature everywhere and to have no self-
intersections, critical points, or edges [18]. While the zero-
gradient points can appear during collisions of locally planar
reaction waves in moderate and even weak turbulence, they
are much more expected in highly turbulent reacting flows.
Accordingly, applicability of the derived evolution equations
to analyzing DNS data obtained from highly turbulent reac-
tion waves will be addressed in this paper.

Second, surface-averaged quantities can be evaluated using
different methods. On the one hand, following Veynante and
Vervisch [16], we can define an instantaneous area-weighted
surface average as follows:

〈φ〉
s
|ĉ,t ≡ φ|∇c|δ(c − ĉ) / |∇c|δ(c − ĉ). (2)

Here, ĉ is a reference value of the reaction progress variable
on an isosurface, δ(c − ĉ) is Dirac delta function, and q
designates a value of an arbitrary quantity q, obtained by
sequentially taking both ensemble and volume averages of
q, i.e., q ≡ limM→∞ 1

M

∑M
i=1

1
|V |

∫∫∫
V q(i)(x, t ) dx, where M is

the number of realizations in the ensemble, q(i) pertains to the
ith realization, and |V | is the volume of the considered three-
dimensional (3D) domain V characterized by ε < c(x, t ) <

1 − ε. While the choice of ε � 1 affects the magnitude of
|V |, the latter value does not affect the magnitude of 〈φ〉

s
|ĉ,t ,

because |V | in the nominator of Eq. (2) and |V | in the
denominator cancel one another.

On the other hand, unweighted surface-averaged quantities
can be defined by removing |∇c| from the numerator and
denominator in Eq. (2). Then,

〈φ〉
v
|ĉ,t ≡ φδ(c − ĉ) / δ(c − ĉ). (3)

Unweighted surface-averaged quantities appear to be ad-
dressed in experimental papers aiming at evaluation of, e.g.,
local flame thickness [49–55] by measuring |∇c|, local flame
curvature κ [54–57], or local strain rate at [58].

In spite of the wide use of surface-averaged quantities,
the method applied to extract them from DNS data is rarely
discussed in detail and the difference in area-weighted and
unweighted values of the same surface-averaged quantity φ is
often disregarded implicitly, leading to potential ambiguity.
While the two definitions given by Eqs. (2) and (3) are
different and results of applications of the two equations are
also expected to be different, the present authors are not aware
on a target-directed research into the issue and, in particular,
on a discussion of effects that could stem from the difference.

Therefore, this work aims at filling this gap by comparing
differently defined surface-averaged quantities and relevant
evolution equations in order to show that the difference
referred to is of fundamental importance. For instance, as
will be argued later, such a difference should be taken into
account when discussing an apparent physical paradox, i.e.,
contradiction between data [49,50,59] that indicate thinning
of local reaction waves in turbulent flows and data [40,51,55,
60–63] that show the opposite effect. A detailed review of
relevant experimental and DNS data can be found elsewhere
[63,64].

Following the one major and two supplementary goals
stated above, relations between area-weighted and un-
weighted surface-averaged quantities are discussed in Sec. II.
Subsequently, in the same section, a general method for deriv-
ing evolution equations for bulk surface-averaged quantities
is developed and such evolution equations are derived for
FSD |∇c|, local thickness 1/|∇c|, and displacement speed Sd ,
starting from transport equations for these quantities. In this
regard, it is worth noting that while transport equations for |∇c|
and 1/|∇c| are well known, derivation of a transport equation
for Sd appears to be a different result. In Sec. III, the numerical
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approach used to evaluate various terms in the derived evolu-
tion equations is described and the simulation conditions are
reported. Results of the simulations are discussed in Sec. IV,
which aims at showing that (i) the difference between area-
weighted and unweighted surface-averaged quantities can be
of fundamental importance and (ii) all terms in the derived
evolution equations can be extracted with good precision
from DNS data obtained from highly turbulent reacting flows.
Conclusions are summarized in Sec. V. Appendices A–C
and D supplement the analysis performed in Sec. II and the
information provided in Sec. IV, respectively.

II. ANALYSIS

A. Differently defined surface-averaged quantities

Equations (2) and (3) result straightforwardly in the fol-
lowing relations:

〈φ〉
s
= 〈φ|∇c|〉

v
/〈|∇c|〉

v
, (4)

〈φ〉
v
= 〈φ/|∇c|〉

s
〈|∇c|〉

v
(5)

between area-weighted and unweighted surface-averaged val-
ues of the quantity φ.

Accordingly, the difference between area-weighted and
unweighted surface averages is

〈φ〉
s
− 〈φ〉

v
= Rφ,|∇c||v

〈φ′2〉1/2
v

〈|∇c|′2〉1/2
v

〈|∇c|〉
v

, (6)

where

Rφ,|∇c||v ≡ 〈φ′|∇c|′〉
v

〈φ′2〉1/2
v

〈|∇c|′2〉1/2
v

(7)

designates the correlation between φ and |∇c|, the prime sym-
bol represents fluctuations within the unweighted framework,
i.e.,

φ′ ≡ φ − 〈φ〉
v
, (8)

and 〈φ′2〉1/2
v

is the standard deviation of φ within the same
framework.

From the physical perspective, differences in 〈|∇c|〉
s

and
〈|∇c|〉

v
stem from variations of |∇c|(x, t ) along the consid-

ered isosurface. Such variations are caused by perturbations
of the local reaction wave structure by turbulent eddies and,
hence, appear to be of minor importance in weakly turbulent
[u′/SL ∼ O(1)] flows. On the contrary, in a highly turbulent
(u′ 
 SL) flow, the perturbations and variations are expected
to be significant.

Equation (6) shows that the difference in area-weighted
and unweighted values can vanish either in an unlikely
case of zero correlation between φ and |∇c| or in the
trivial case of zero fluctuations, i.e., 〈φ′2〉1/2

v
= 0. If φ =

|∇c|, then 〈|∇c|〉
s
− 〈|∇c|〉

v
= 〈|∇c|′2〉

v
/〈|∇c|〉

v
� 0 be-

cause R|∇c|,|∇c| = 1. If φ = b/|∇c|, where b is a positive con-
stant, the difference 〈b/|∇c|〉

s
− 〈b/|∇c|〉

v
� 0 due to nega-

tive correlation of R b
|∇c| ,|∇c| � 0 by virtue of Cauchy-Schwartz

inequality.

Using these inequalities and applying Eq. (5) to φ = 1, we
arrive at

1

〈|∇c|〉
s

� 1

〈|∇c|〉
v

=
〈

1

|∇c|
〉

s

�
〈

1

|∇c|
〉

v

. (9)

Therefore, if the local wave thickness is characterized with a
surface-averaged value of |∇c| or 1/|∇c|, then, results of eval-
uation of the area weighted 〈|∇c|〉

s
or 〈1/|∇c|〉

s
, respectively,

which are often obtained when processing DNS data, are
associated with a smaller thickness when compared to results
found for the unweighted 〈|∇c|〉

v
or 〈1/|∇c|〉

v
, respectively,

with the latter quantities being more relevant to experiments.
This difference should be borne in mind when qualitatively
comparing published data on the thickness. This difference is
unlikely to be the sole cause of opposite trends reported for the
influence of turbulence on the local reaction-wave thickness,
but this difference can contribute to the inconsistency of the
reported trends.

Definitions of the area-weighted and unweighted surface-
averaged quantities, given by Eqs. (2) and (3), can be intro-
duced in another form, by removing Dirac delta function in
Eq. (2) using the following identity [65–67]:∫∫∫

V
φ|∇c|δ(c − ĉ) dx =

∫∫
S|ĉ,t

φ ds. (10)

Then, the area-weighted surface-averaged values can be eval-
uated as follows:

〈φ〉
s
|ĉ,t =

̂

∫∫
S|ĉ,t φ ds

̂

∫∫
S|ĉ,t ds

=
̂

∫∫
S|ĉ,t φ ds

Â|ĉ,t
. (11)

Here, S|ĉ,t designates the isosurface of c(x, t ) = ĉ, whose total
area is equal to

A|ĉ,t ≡
∫∫

S|ĉ,t
ds, (12)

and the long-hat operator over any expression ψ

represents the ensemble-averaged value of ψ , i.e.,
ψ̂ ≡ limM→∞ 1

M

∑M
i=1 ψ(i). Consequently, the volume and

ensemble-averaged value ψ is equal to (1/|V |) ̂

∫∫∫
V ψ dx.

To study the evolution of 〈φ〉
s
|ĉ,t , one can rewrite Eq. (11)

as follows:

Â|ĉ,t 〈φ〉
s
|ĉ,t =

̂

∫∫
S|ĉ,t

φ ds (13)

and take the time derivative of the right-hand side (rhs) and
the left-hand side (lhs) of this equality. The derivation will
be performed in Sec. II C, but before doing so, it is worth to
briefly summarize well-known equations, which constitute the
basis of the subsequent analysis.

B. Basic equations

Let us consider a reaction wave described by the following
convection-diffusion-reaction equation:

∂c

∂t
+ u · ∇c = D + W, (14)

where t , u, D, and W designate time, flow velocity vector,
diffusion term, and reaction rate, respectively. In the case
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of a single reaction, the two terms on the rhs read as D =
∇ · (ρD∇c)/ρ and W = W/ρ, where D is the molecular
diffusivity of c and W is the mass rate of product creation.

By (i) excluding zero-gradient points from consideration,
(ii) defining the unit normal vector n, the local displacement
speed Sd , and the “total flame speed” u∗ [19] using the
following three equations,

n ≡ ∇c

|∇c| , (15)

Sd ≡ D + W

|∇c| , (16)

u∗ ≡ u − nSd , (17)

respectively, and (iii) introducing the “convective derivative
based on the total flame speed” [19]

∂∗

∂∗t
φ ≡ ∂

∂t
φ + u∗ · ∇φ, (18)

which is taken following an isosurface of c(x, t ) = ĉ; Eq. (14)
can be rewritten in a “kinematic” form

∂c

∂t
+ u · ∇c = Sd |∇c| (19)

or

∂∗

∂∗t
c = 0, (20)

which is trivial, because any point on the isosurface always
retain the same value of c(x, t ) = ĉ.

It is worth stressing that, as the displacement speed is
defined by Eq. (16), the right-hand sides of Eqs. (14) and (19)
are equal to one another and both equations are equivalent
in a spatial domain where |∇c|(x, t ) > 0 (effects caused by
appearance of zero-gradient points are addressed in the nu-
merical part of this work). Both equations describe evolution
of the entire c(x, t ) field (i.e., a reaction wave of a finite
thickness) and, for each isosurface of c(x, t ) = ĉ within the
field, the displacement speed Sd has a clear physical meaning:
it is the speed of the isosurface with respect to the local flow.
Moreover, Sd (x, t ) is of fundamental value because it is an
important component of the local stretch rate [see Eq. (1)],
which controls the rate of change of the local isosurface
area [17–20]. Therefore, while Eq. (19) looks similar to the
level-set equation [68], the two equations are fundamentally
different provided that Sd is given by Eq. (16). If another
model expression for Sd , e.g., Sd = SL − MaδLK where δL is
the laminar wave thickness and Ma is a Markstein number
[17,28], is substituted into Eq. (19), then, the basic properties
of the obtained kinematic equation can fundamentally dif-
fer from the basic properties of the second-order Eq. (14)
[69–71], but such a case is not relevant to this study, which
deals with Eq. (16).

C. Derivation of a general evolution equation for
surface-averaged quantity

To take the time derivatives of various terms in Eq. (13),
let us substitute G = nφ into the following transport

theorem [19]:

d

dt

∫∫
S(t )

G · n ds =
∫∫

S(t )

[
∂

∂t
G + (u∗ · ∇)G

− (G · ∇)u∗ + G∇ · u∗
]

· n ds. (21)

We arrive at

d

dt

∫∫
S|ĉ,t

φ ds =
∫∫

S|ĉ,t

[
∂

∂t
(nφ) + (u∗ · ∇)(nφ)

−φ(n · ∇)u∗ + (nφ)∇ · u∗
]

· n ds

=
∫∫

S|ĉ,t

[
∂

∂t
φ + u∗ · ∇φ

]
ds

+
∫∫

S|ĉ,t

[−nn : ∇u∗ + ∇ · u∗]φ ds

=
∫∫

S|ĉ,t

∂∗

∂∗t
φ ds +

∫∫
S|ĉ,t

φK ds. (22)

Combining this equation written for φ = 1 with the definition
of the area-weighted, surface-averaged stretch rate, given by
Eq. (11), and taking ensemble average, we arrive at

〈K〉
s
= 1

Â

∂

∂t
Â. (23)

Henceforth, the symbol of partial derivative is used to stress
that bulk surface-averaged quantities like Âĉ,t depend not only
on time, but also on ĉ, but subscript ĉ, t is skipped for brevity.

Equations (13) and (23) allow us to easily derive an evo-
lution equation for the area-weighted surface-averaged value
〈φ〉

s
of the quantity φ. Indeed, differentiation of the former

equation with respect to time yields

Â
∂〈φ〉

s

∂t
+ 〈φ〉

s

∂Â

∂t
=

̂

∫∫
S

∂∗φ
∂∗t

ds +
̂

∫∫
S
φK ds (24)

using Eq. (22). Finally, dividing the rhs and the lhs of Eq. (24)
with Â and using Eqs. (11) and (23), we arrive at the following
general evolution equation for the bulk area-weighted surface-
averaged value of the quantity φ:

∂〈φ〉
s

∂t
=

〈
∂∗

∂∗t
φ

〉
s

+ 〈φK〉
s
− 〈φ〉

s
〈K〉

s
. (25)

The derived evolution equation (25) holds (i) for an arbitrary
quantity φ, (ii) for any isosurface of c(x, t ) = ĉ with ĉ ∈
(0, 1), and (iii) for any time instant t . An evolution equation
for the second moment of conditioned fluctuation is derived
in Appendix A.

Equation (25) directly shows that the time derivative of
the bulk area-weighted surface-averaged quantity 〈φ〉

s
(t ) (see

the lhs) differs from the bulk area-weighted time derivative
of φ(x, t ), taken by following the surface (see the rhs). The
difference between the two time derivatives is controlled by
the bulk area-weighted correlation between φ and the stretch
rate K. Therefore, evaluation of all surface-averaged terms on
the rhs of a transport equation for φ(x, t ) does not allow us
to study the evolution of 〈φ〉

s
because the sum of the local

and instantaneous rhs terms is equal to ∂∗
∂∗t φ at any point at
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any instant, but the surface averaged 〈 ∂∗
∂∗t φ〉

s
does not equal

to the time derivative of 〈φ〉
s
. The point is that a statistical

subensemble that the surface average is taken over depends
on x and t due to the random motion of the surface. Thus,
there is fundamental need for studying evolution equations
for various 〈φ〉

s
, but this task has not yet been addressed in

the combustion literature, to the best of the present authors’
knowledge.

D. Particular evolution equations for
surface-averaged quantities

If we know a transport equation for φ(x, t ), then the evolu-
tion equation for 〈φ〉

s
can simply be obtained by substituting

the transport equation into the first term on the rhs of Eq. (25).
Let us consider some particular examples.

Using the following well-known transport equation

1

|∇c|
∂∗

∂∗t
|∇c| = K + ∇ · (Sd n) − ∇ · u (26)

for FSD [18,19], which is derived in Appendix B for com-
pleteness, we arrive at

∂

∂t
〈|∇c|〉

s
= 2〈|∇c|K〉

s
+ 〈|∇c|∇ · (Sd n)〉

s

−〈|∇c|∇ · u〉
s
− 〈|∇c|〉

s
〈K〉

s
(27)

and

∂

∂t

〈
1

|∇c|
〉

s

= −
〈

1

|∇c|∇ · (Sd n)

〉
s

+
〈

1

|∇c|∇ · u
〉

s

−
〈

1

|∇c|
〉

s

〈K〉
s

(28)

because ∂|∇c|−1/∂t = −|∇c|−2∂|∇c|/∂t . The former and
latter equations describe evolutions of the bulk area-weighted
surface-averaged FSD and local flame thickness, respectively.

It is worth stressing that the area-weighted thickness
〈1/|∇c|〉

s
= 1/〈|∇c|〉

v
[see Eq. (9)] and, consequently, it is

unlikely to be notably affected by zero-gradient points. On the
contrary, the unweighted thickness 〈1/|∇c|〉

v
can be affected

by very large local values of 1/|∇c|(x, t ) in the vicinity
of such points. Accordingly, the former thickness 〈1/|∇c|〉

s

appears to be substantially more robust when compared to
〈1/|∇c|〉

v
.

Using the equality 〈1/|∇c|〉
s

and 1/〈|∇c|〉
v

and substitut-
ing 1/|∇c|, ∇ · (Sd n)/|∇c|, and ∇ · u/|∇c| into Eq. (4), the
evolution equation (28) for the bulk area-weighted surface-
averaged flame thickness 〈1/|∇c|〉

s
can be rewritten in the

form of an evolution equation for the bulk unweighted
surface-averaged FSD

1

〈|∇c|〉
v

∂

∂t
〈|∇c|〉

v
= ∂

∂t
ln 〈|∇c|〉

v

= 〈K〉
s
+ 〈∇ · (Sd n)〉

v
− 〈∇ · u〉

v

= 〈K〉
s
− 〈∇ · u∗〉

v
. (29)

Since 〈1/|∇c|〉
s
= 1/〈|∇c|〉

v
, Eqs. (28) and (29) describe the

evolution of the same quantity, but are written in different
forms. In the following, the latter, more compact equation will
be used. It is worth remembering that one term, i.e., 〈K〉

s
,

on the rhs of Eq. (29) is area weighted, whereas other terms,
i.e., 〈∇ · u〉

v
and 〈∇ · (Sd n)〉

v
or their difference 〈∇ · u∗〉

v
, are

unweighted.
Application of the area-weighted surface average to the rhs

of the transport equation (26) multiplied with |∇c| and to the
counterpart transport equation for the thickness 1/|∇c|(x, t )
allows us to compare the surface-averaged transport equa-
tions with the newly derived evolution equations for the
bulk surface-averaged quantities. For the FSD |∇c|, the area-
weighted surface-averaged rhs of Eq. (26) multiplied with
|∇c| differs clearly from the rhs of Eq. (27) because the latter
equation involves a correlation of the surface averaged K and
|∇c|. The unweighted surface-averaged rhs of Eq. (26) mul-
tiplied with |∇c| looks almost similar to the rhs of Eq. (29),
but the stretch rate in the latter equation is area weighted. As
will be shown later, 〈K〉

s
differs significantly from 〈K〉

v
and

substitution of the former quantity with the latter one yields
large errors in a highly turbulent reaction wave (see Figs. 4
and 5 in Sec. IV).

For the thickness 1/|∇c|, the surface-averaged rhs of the
transport equation (26) multiplied with |∇c|−1 looks almost
similar to the rhs of Eq. (28), but the latter rhs involves a
product of 〈 1

|∇c| 〉s
and 〈K〉

s
, contrary to 〈 1

|∇c|K〉
s

on the former

rhs.
Thus, simple application of a surface-averaged operator to

both sides of a transport equation for φ does not allow us to
explore evolution of the surface averaged φ. As already noted,
differences between evolutions of mean and conditioned (e.g.,
surface-averaged) quantities stem from the fact that a statisti-
cal subensemble that the surface average is taken over depends
on x and t due to the random motion of the surface.

A common feature of the transport equation (26) and the
evolution equations (27)–(29) is as follows. The evolutions
of both FSD |∇c| and thickness 1/|∇c| are controlled by
a balance of appropriately averaged stretch rate K, self-
propagation term ∇ · (Sd n), and dilatation ∇ · u. In the case
of a constant density (∇ · u = 0) and a material surface (Sd =
0), the evolutions are solely controlled by turbulent strain rate
(K = at in this case), in line with Batchelor’s classical result
[72]. Contributions of the aforementioned terms to the evo-
lutions of various surface averaged |∇c| and 1/|∇c| will be
discussed in a followup paper [73]. Here, we restrict ourselves
to noting that the stretch-rate (self-propagation) terms work
to increase (decrease, respectively) |∇c| and make the flame
thinner (thicker, respectively), whereas the dilatation terms
play a minor role in developing highly turbulent flames.

Finally, the following evolution equation for the bulk area-
weighted surface-averaged displacement speed,

∂

∂t
〈Sd〉s

= −〈Sd∇ · (Sd n)〉
s
+ 〈Sd∇ · u〉

s
− 〈Sd〉s

〈K〉
s

− 2

〈
D∇∇c : ∇u

|∇c|
〉

s

+ 〈Dn · ∇2(Sd n)〉s

+ 2

〈
D∇∇c : ∇(Sd n)

|∇c|
〉

s

− 〈Dn · ∇2u〉s , (30)

can be obtained using a transport equation for Sd , newly
derived in Appendix C under conditions of a constant diffu-
sivity and a reaction rate depending solely on c. Note that
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substitution of Eq. (16) in the nominator of Eq. (2) shows
that 〈Sd〉s

= 〈D + W〉
v
/〈|∇c|〉

v
. Consequently, appearance of

zero-gradient points is not associated with potential singu-
larity of 〈Sd〉s

, but could make the bulk unweighted surface-
averaged displacement speed 〈Sd〉v

unbounded. However, the
latter quantity is not addressed in this paper.

As far as the rhs of Eq. (30) is concerned, the first, fifth, and
sixth terms could potentially be unbounded. Accordingly, this
evolution equation is of particular interest for investigating the
numerical robustness of the developed approach in the vicinity
of zero-gradient points.

E. Relations for statistically stationary
surface-averaged quantities

By definition, when a reaction wave evolves into a statis-
tically stationary state (denoted as t∞ in the following), the
time derivative of any statistical quantity becomes zero, i.e.,
∂t 〈φ〉

s
|ĉ,t∞ = 0 and ∂t 〈φ〉

v
|ĉ,t∞ = 0, ∀ ĉ ∈ (0, 1). Moreover,

due to Eq. (23) the fully developed mean stretch rate must
vanish, i.e.,

〈K〉
s
|ĉ,t∞ = 0. (31)

Consequently, Eq. (27) reduces to

2〈|∇c|K〉
s
|ĉ,t∞

= −〈|∇c|∇ · (Sd n)〉
s
|ĉ,t∞ + 〈|∇c|∇ · u〉s |ĉ,t∞ (32)

∀ ĉ ∈ (0, 1) at t∞. Similarly, Eq. (29) reads as

〈∇ · (Sd n)〉
v
|ĉ,t∞ − 〈∇ · u〉

v
|ĉ,t∞ = 0. (33)

Finally, Eq. (30) reduces to

〈Sd∇ · (Sd n)〉
s
|ĉ,t∞ − 〈Sd∇ · u〉

s
|ĉ,t∞

= −2D
〈∇∇c : ∇u

|∇c|
〉

s

∣∣
ĉ,t∞

+ D〈n · ∇2(Sd n)〉s

∣∣
ĉ,t∞

+ 2D
〈∇∇c : ∇(Sd n)

|∇c|
〉

s

∣∣
ĉ,t∞

− D〈n · ∇2u〉s

∣∣
ĉ,t∞

. (34)

III. COMPUTATIONAL SETUP

One of the major goals of the numerical part of this paper
is to study whether or not the three evolution equations for
surface-averaged quantities derived above, i.e., Eqs. (27),
(29), and (30), are applicable to explore heavily disturbed
turbulent reaction waves. For this purpose, these equations
are applied to analyze a representative highly turbulent case
(case C in the following) selected from a large DNS database
computed earlier [14,15,74–79].

The above task is motivated by eventual appearance of
zero-gradient points in highly turbulent reacting waves, as
already discussed in Sec. I. In numerical simulations, the
probability of appearance of such points in nodes of a dis-
crete mesh is negligible. Nevertheless, specific care should
be taken in the vicinity of zero-gradient points, where φ can
unboundedly grow, thus, making surface-averaged quantities
unbounded. To address issues associated with appearance of
zero-gradient points, two supplementary cases A and B were
designed and simulated, as discussed in Sec. III B. Evaluation

of surface-averaged quantities in the vicinity of such points is
further discussed in Appendix B to a recent paper [80].

In our earlier DNS’s [14,15,76–79], propagation of a sta-
tistically one-dimensional (1D), planar, single-reaction wave
in a homogeneous, isotropic, statistically stationary forced
turbulence was simulated in the case of a dynamically passive
wave, i.e., a wave that did not change the fluid density and
viscosity, therefore, did not affect turbulence. The invoked
simplifications allowed us to sample better statistics, as will
be discussed later, and to investigate a large number of
substantially different cases. Moreover, the simplifications
significantly facilitate analyzing and interpreting the DNS
data.

Although the above derivation of evolution equations was
performed in the case of variable density, the equations are
mainly kinematic in their nature. Accordingly, while thermal
expansion effects play an important role in premixed turbulent
combustion, as reviewed elsewhere [81,82], they seem to be of
secondary importance for the derived evolution equations. In-
deed, an analysis of other DNS data obtained from single-step
and complex-chemistry premixed turbulent flames, performed
in a followup work, indicates a minor influence of thermal
expansion on the evolution of the bulk surface-averaged FSD
and thickness 1/|∇c| in developing highly turbulent (u′ 
 SL)
flames, i.e., the magnitudes of the dilatation terms are signif-
icantly less than the magnitudes of other terms in Eqs. (27)
and (29) under such conditions [73]. Therefore, numerical
results reported in the following appear to be relevant not
only to constant-density turbulent reacting flows, but also to
premixed flames. It is also worth remembering that recent
results obtained by Dopazo et al. [20] in DNS studies of
wave propagation in turbulent flows advanced fundamental
understanding of turbulent premixed flames also.

A. DNS database

Since the DNS attributes are discussed in detail elsewhere
[14,15,74–79], we will restrict ourselves to a very brief sum-
mary of the simulations.

The propagation of a single-reaction wave is governed
by the following well-known convection-reaction-diffusion
equation

∂c

∂t
+ u · ∇c = D∇2c + W, (35)

which is a simplified form of Eq. (14) with D = D∇2c and
W = W and is widely used to model premixed combustion. In
particular, Eq. (35) is the cornerstone equation of the laminar
flame theory [83,84]. Here,

W = 1

1 + τ

1 − c

τR
exp

[
−Ze(1 + τ )2

τ (1 + τc)

]
(36)

is the reaction rate, τR is a constant reaction timescale, τ = 6,
and Ze = 6 in order for the rate W to depend on c in a highly
nonlinear manner. As discussed in detail elsewhere [78],
Eq. (36) allows us to mimic the highly nonlinear behavior of
the reaction rate in a flame by considering constant-density
reacting flows. Before each DNS run, the values of the laminar
wave speed SL and thickness δL were set and the required
values of D and the reaction timescale τR were determined
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in presimulations of the planar 1D laminar reaction wave
modeled by Eqs. (35) and (36). In line with the theory [83,84],
SL ∝ √

D/τR.
The wave propagates in a forced, homogeneous, and

isotropic turbulence described by the Navier-Stokes equations

∂u
∂t

+ (u · ∇)u = −ρ−1∇p + ν∇2u + f, (37)

where p is the pressure, a vector function f is used to maintain
turbulence intensity by applying energy forcing at low wave
numbers [85], the density ρ and kinematic viscosity ν are
constants, and, therefore, the flow is not affected by the wave
propagation, as already stressed earlier.

The governing equations are solved using an in-house
DNS solver [86] developed for low-Mach-number reacting
flows. The solver uses a second order symmetrical Strang
splitting method [87] for temporal integration. A sixth order
center difference scheme is used for all terms containing
spatial derivative with the exception of the convection term
in Eq. (35), which is discretized with a fifth order weighted
essentially nonoscillatory (WENO) scheme [88] to avoid nu-
merical overshooting.

The wave evolves in a fully periodic rectangular box with
size of �x × � × � represented using a uniform grid of
Nx × N × N cubic cells. The boundary conditions are periodic
not only in transverse directions y and z, but also in direction
x normal to the mean wave surface, as discussed in detail
elsewhere [75–77].

An initial turbulence field is generated by synthesizing
prescribed Fourier waves [89] with an initial rms velocity
u0 and the integral scale �0 = �/4. The initial turbulent
Reynolds number Re0 = u0�0/ν = 50, 100, or 200 is changed
by changing the domain width �. Subsequently, a nondecay-
ing incompressible turbulent field is obtained by integrating
Eq. (37). Implementation of the forcing scheme is discussed
in detail in Sec. III in Ref. [76], where an expression for the
forcing vector function f is reported [see Eq. (6) in the cited
paper].

In all simulated turbulent cases, the turbulent velocity,
length, and timescales showed statistically stationary behavior
[74,75] at t > t∗ = 6000t > 3.5τ 0

t . Here, τ 0
t = �0/u′ and

t = 0.028�/(Nu′) is the time step of the simulations. Ac-
cordingly, the forced turbulence is characterized by quantities
averaged over the computational domain and time at t >

t∗. The generated turbulence is homogeneous (see Fig. 2 in
Ref. [74]), isotropic (see Fig. 1 in Ref. [77]), and statistically
stationary (see Fig. 2 in Ref. [76]), with volume-averaged
values of u′ or the dissipation rate of the turbulent energy
being very close to u′

0 or weakly oscillating around 1.6u′
0

3
/�0,

respectively (see Fig. 1 in Ref. [75]).
In this work, both fully developed and transient reaction

waves are simulated. Following a common practice, the sim-
ulations of wave propagation start from the precomputed
laminar-wave profile of cL(ξ ) with dcL/dξ > 0. In order to
study a fully developed turbulent reaction wave, a planar wave
cs(x, 0) = cL(ξ ) is initially (t = 0) released at x0 = �x/2
such that

∫ 0
−∞ cL(ξ )dξ = ∫ ∞

0 [1 − cL(ξ )]dξ and ξ = x − x0.
Subsequently, evolution of this field cs(x, t ) is simulated by
solving Eq. (35). Computations of fully developed statistics
with sampling every 100 time steps t are started after the

forced turbulence has reached statistical stationary at t = t∗
and are performed over a time interval longer than 50τ 0

t .
In order to study transient turbulent reaction waves, the

same precomputed laminar-wave profiles cL(ξ ) are simul-
taneously embedded into the turbulent flow in M equidis-
tantly separated planar zones centered around xm/�x = (m −
0.5)/M, i.e., ct

m(x, t∗) = cL(ξm), where coordinates ξm = x −
xm are set using

∫ 0
−∞ cL(ξm)dξm = ∫ ∞

0 [1 − cL(ξm)]dξm and
m is an integer number (1 � m � M = 15). Subsequently,
evolutions of M transient fields ct

m(x, t ) are simulated by
solving M independent Eqs. (35), with these fields affecting
neither each other nor turbulence in the studied case of ρ =
const and ν = const. Accordingly, all M transient fields
ct

m(x, t ) are independent from each other.
The transient simulations are run over 2τ 0

t before being
reset. Subsequently, at t = t∗ + 2 jτ 0

t with 1 � j � J , the
flow is again populated by M new profiles of cL(ξm) and
the transient simulations are repeated. Therefore, the total
duration of simulations is t∗ + 2Jτ 0

t .
The time-dependent statistics for a time interval of 2τ 0

t
is computed by averaging the DNS data over the entire
ensemble (m = 1, . . . ,M) of M ct

m(x, t ) fields and over
J time intervals of t∗ + 2( j − 1)τ 0

t � t � t∗ + 2 jτ 0
t , where

j = 1, . . . , J . Accordingly, the total number of realizations is
equal to M = M × J . For comparison, the fully developed
statistics computed using a single field of cs is associated with
M = 2Jτ 0

t /(100t ) realizations.
Such a method, i.e., simulations of M independent tran-

sient fields, significantly increases the sampling counts for
calculating transient statistics and was already applied to
studying self-propagation of an infinitely thin front [74,75]
and a reaction wave of nonzero thickness [14,15,76–79] in
homogeneous isotropic turbulence.

It is worth noting that the transient data not only are
of interest in themselves, e.g., because the vast majority of
premixed turbulent flames are developing flames, as discussed
in detail elsewhere [23,90], but also offer an opportunity
to control the following numerical issue. As noted earlier,
zero-gradient points can appear in intense turbulence and
1/|∇c| or Sd can be unboundedly large in the close vicinity
of such points. Since the transient waves ct

m(x, t ) = ĉ begin
their evolution from a regular flat initial surface, monitoring
evolution of (i) isosurfaces of the transient fields ct

m(x, t ) =
ĉ and (ii) the relevant surface-averaged quantities offers an
opportunity to detect any anomaly in the developing surface-
averaged values of 1/|∇c| or Sd and to see eventual influence
of zero-gradient points on various surface-averaged terms in
the derived evolution equations.

B. Case setup

Various cases are set up by selecting one of forced turbu-
lence fields and specifying the speed SL and thickness δF =
D/SL of the laminar reaction wave, with the required reaction
timescale τR in Eq. (36) being found in 1D precomputations
of the laminar wave. Since the reaction waves are dynamically
passive, the choice of a turbulent field is independent of the
choice of SL and δF .

Totally 45 cases characterized by the Damköhler num-
ber Da = τt/τF = 0.01–24.7, the Karlovitz number Ka =
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TABLE I. Three representative DNS cases.

Case �x
�

Nx
u0
SL

L11
δF

δF
x Da Ka Pe

A 8 2048 5 5.3 24 1.07 0.94 27
B 1 1048 2 5.3 24 2.67 0.38 10.6
C 8 2048 60 1.2 24 0.02 390 69.5

τF /τη = 0.36–587, u′/SL = 0.5–90, and L11/δF = 0.39–12.4
were simulated, with a few cases being designed to show
weak sensitivity of computed results to grid resolution, �/L11,
etc. [76]. Here, τF = δF /SL is the wave timescale, τt = L11/u′
and τη = (ν/ε)1/2 are integral and Kolmogorov, respectively,
timescales of the turbulence, and ε = 2νSi jSi j is the dis-
sipation rate averaged over the computational domain and
time t > t∗. All 45 cases and reasons for selecting them are
discussed in detail elsewhere [76].

Since (i) the major goals of the numerical part of this work
are (a) to show significant difference between area-weighted
and unweighted surface-averaged quantities and (b) to assess
the influence of zero-gradient points on the robustness of
numerical evaluation of various terms in the derived evolution
equations and (ii) both the difference and the influence are
expected to be more pronounced in highly turbulent medium;
let us restrict ourselves to results obtained in a single repre-
sentative highly turbulent and well resolved case. Its major
characteristics are reported on the bottom line (case C) in
Table I, where Pe = u′L11/D is the turbulent Péclet number
and a ratio of δF /x characterizes the grid resolution in terms
of the number of grid points per the laminar wave thickness.
Moreover, in case C, L11/� = 0.11, τ 0

t /τt = 2.3, η/x =
1.1, Re0 = 200, and Reλ = u′λ/ν = 45. Here, η = (ν3/ε)1/4

is the Kolmogorov length scale and λ = (15νu′2/ε)1/2 is the
Taylor length scale. More data can be found in Table I in an
earlier paper [76], where 16 nondimensional characteristics of
this case (case D4 therein) are reported. A 2D snapshot of the
fully developed cs(x, t ) field simulated in this case is shown
in Fig. 1.

To explore eventual influence of zero-gradient points and
their neighborhoods on the evaluation of various terms in
the derived evolution equations, two supplementary two-
dimensional (2D) cases were designed. Case A is largely
identical to case C, but the turbulent field is replaced with
a frozen shear flow, i.e., u(x, y, z, t ) = −u0 cos(2πy/�), v =
w = 0, and the momentum (37) is not solved. As shown in

FIG. 1. A 2D snapshot of the fully developed cs field in case C.
Four (solid and dotted) black lines show isosurfaces of c = 0.2, 0.4,
0.8, and 0.95 from left to right.

FIG. 2. Snapshots of the c field in case A at two transient instants
of (a) t = 0.8τF and (b) 1.6τF and (c) at the fully developed state of
t∞. Five black lines show isosurfaces of c = 0.05, 0.2, 0.4, 0.8, and
0.95 from left to right.

Fig. 2, isosurfaces are only bent in case A, but there is no
zero-gradient point in the computational domain. Character-
istics of case A, reported in Table I, are calculated using
L11 = �/2, u′ = u0, and tη = tτ = L11/u0. Case B is also
based on a frozen velocity field, but the field is different, i.e.,
u(x, y, z, t ) = u′′(x, y), v(x, y, z, t ) = v′′(x, y), w = 0, and ∇ ·
u′′ = 0. The field u′′ represents a 2D, zero-mean, spatially
fluctuating velocity field generated using a reduced version
of the method for synthesizing the initial 3D turbulence.
Characteristics of case B, reported in Table I, are calculated
by analyzing the 2D velocity field (u0 and L11) and using τη ≈
τt = L11/u0 to evaluate Ka. As shown in Fig. 3, the design
of case B aims at mimicking a moderately disturbed reaction
wave passing through flow vortices and allowing appearance
of a small number of zero-gradient points during collisions of
reaction waves.

Thus, comparison of results computed in cases A (no zero-
gradient points), B (a few zero-gradient points), and C (no
restrictions on appearance of zero-gradient points) offers an
opportunity to gain insight into the influence of such points
on the evaluation of various terms in the derived evolution
equations.

Some peculiarities of the transient simulations in cases A
and B are described in Appendix D, where methods applied to
evaluate surface-averaged quantities and various terms in the
derived evolution equations are also discussed.

IV. RESULTS AND DISCUSSION

A. Residuals in the evolution equations

We used the DNS data to examine the evolution equa-
tions for three surface-averaged quantities �. All these equa-
tions, i.e., Eq. (27) for � = 〈|∇c|〉

s
|ĉ,t , Eq. (29) for � =

ln 〈|∇c|〉
v
|ĉ,t , and Eq. (30) for � = 〈Sd〉s

|ĉ,t , take the general
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FIG. 3. Snapshots of the c, vorticity, and Sd fields in case B at a single representative instant. Only a part of the computational domain,
which contains the most disturbed reaction wave is plotted. Four dashed and solid lines show the isosurfaces of c = 0.02, 0.1, 0,3 and 0.98,
local velocity vectors are plotted with line arrows.

form

∂

∂t
� =

∑
rhs (38)

and should hold (i) for all isosurfaces of c(x, t ) = ĉ such that
ĉ ∈ (0, 1) and also (ii) at all time instants t . In each simulated
case (A, B, or C), the following three terms were computed:
(a) the lhs term, i.e., the time derivative of �, (b) the sum of
all the rhs terms, i.e.,

∑
rhs, and (c) the residual difference

R ≡ ∑
rhs − ∂

∂t �.
The three aforementioned terms are compared using two

sets of figures. The first set shows evolution of the above
terms conditioned to two (or three) isosurfaces: ĉ = 0.1 as-
sociated with “mixing” zone (or “preheat” zone in flames),
ĉ = c∗ = 0.88 associated with the inner reaction zone [the
reaction rate W given by Eq. (36) peaks at ĉ = c∗ = 0.88
under conditions of the present simulations], and, sometimes,
ĉ = 0.5, associated with the middle of the local reaction wave.
Such data computed in cases A–C are plotted for � = 〈|∇c|〉

s

in Fig. 4, for � = ln 〈|∇c|〉
v

in Fig. 6, and for � = 〈Sd〉s
in

Fig. 8. In these figures, time t is normalized with τ ∗
F = τF in

cases A and B or τ ∗
F = τt (≈ τF /22.5) in case C.

The second set of figures shows dependence of the con-
sidered terms on the value of ĉ the terms are conditioned to.
Such dependencies are reported at three representative time
instants t : an early instant 0.045τ ∗

F , a middle instant 0.32τ ∗
F , or

1.125τ ∗
F , and the fully developed state t∞. Such data computed

in cases A–C are plotted for � = 〈|∇c|〉
s

in Fig. 5, for � =
ln 〈|∇c|〉

v
in Fig. 7, and for � = 〈Sd〉s

in Fig. 9.
For all three Eqs. (27), (29), and (30), the six aforemen-

tioned figures indicate a good match between the lhs term
∂
∂t �, shown in red dots, and the sum of rhs terms

∑
rhs,

shown in blue open circles. Such a good match holds for
almost all isosurfaces of ĉ ∈ (0, 1) in all three cases at almost
all time instants during a time interval of 0 < t < 2τ ∗

F , as
well as at t∞. The residual terms R shown in black stars
are sufficiently close to zero, with the exception of first two
instants of data sampling in Figs. 4, 6, and 8. This mismatch

between the lhs and rhs terms could be attributed to numerical
errors when approximating ∂

∂t � with the one-sided difference.
If the first two time instants are excluded from consider-

ation, then the three equations do show nearly perfect zero
residuals in the simplest laminar case A, which is associated
with the lack of zero-gradient points. In the highly turbulent
case C, small, but nonzero residuals are observed in Fig. 4(f)
for Eq. (27) and in Figs. 8(g) and 8(i) and 9(h) for Eq. (30)
during the late evolution stage. As discussed earlier, these
residuals could be reduced by increasing the number of re-
alizations (the shown data were obtained for M = 750) that
were used for sampling transient statistics at later evolution
stage, i.e., when a significant amount of zero-gradient points
appeared on the heavily disturbed reaction-wave surface. The
fact that the realization number for sampling the fully de-
veloped statistics (M = 2249) was significantly larger than
the transient M = 750 can explain relatively small residuals
observed in the aforementioned figures at t∞.

In order to quantify the residuals, a ratio RN of |R| to
the largest term on the rhs of each studied evolution equation
was calculated. The results show that, in all three cases A,
B, and C, RN < 0.05 for Eqs. (27) and (29) [or RN < 0.2
for Eq. (30)], provided that c ∈ (0.1, 0.9) and t/τ ∗

t > 0.05.
Nonsurprisingly, the relative large residual, i.e., 0.05 < RN <

0.2 for Eq. (30), occurs mostly at sporadic values of ĉ for
0.5 < t/τ ∗

t < 2.
The observed match between the lhs and rhs terms shows

that Eqs. (27), (29), and (30) derived in this paper can be
analyzed using DNS data obtained from highly turbulent
reacting waves and, in particular, from wave C associated with
highly complicated instantaneous reaction zone and even-
tual appearance of a number of zero-gradient points where
|∇c| = 0.

B. Comparison of differently weighted surface averages

To stress that (i) the difference between unweighted and
area-weighted surface-averaged values of |∇c| can be large
and, therefore, (ii) a method used to evaluate surface-averaged
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FIG. 4. Comparison of the lhs and the rhs of Eq. (27), as well as residuals R = ∑
rhs − lhs. Tweaked residuals R∗ are computed by

substituting all the area-weighted surface-averaged terms 〈·〉
s
|ĉ,t on the rhs of Eq. (27) with the counterpart unweighted surface-averaged terms

〈·〉
v
|ĉ,t . Fine-grained results obtained for ĉ = 0.1 and ĉ = 0.88 are plotted in the left and right columns, respectively. Results computed in

cases A, B, and C are reported in the up, middle, and bottom rows, respectively. All terms are normalized with SL/δ
2
F , time is normalized with

τ ∗
F = τF in cases A and B, or τ ∗

F = τF /22.5 in case C.

quantities should always be discussed appropriately, tweaked
residual terms R∗ were evaluated by substituting all area-
weighted terms with the counterpart unweighted terms on
the rhs of Eq. (27) and vice versa on the rhs of Eq. (29).
Such tweaked residual terms are plotted in magenta pluses
in Figs. 4, 5, 6, and 7. In each figure, magnitudes of R∗

are large, thus, showing importance of taking the appropriate
average.

As noted earlier, the differences in the unweighted and
area-weighted surface-averaged values of the quantity φ are
caused by variations of |∇c| along the considered isosurface,
which is highly wrinkled by turbulent eddies at large u′/SL.
Since such wrinkles are less pronounced during an earlier
stage of a reaction-wave development, the differences (e.g.,
the magnitudes of R∗) are lower at lower t/τ ∗

t . At t →
0, R∗ ≈ R because the two different surface averages are
identical for the undisturbed laminar 1D planar wave at t = 0.

C. Fully developed relations

As discussed in Sec. II E, for a fully developed wave at
t∞, the evolution equations (27), (29), and (30) reduce to
Eqs. (32), (33), and (34), respectively. In the constant-density
case, the latter equations can further be simplified by remov-
ing terms containing the velocity divergence ∇ · u. These
three fully developed relations are numerically examined in
the right-column subfigures in Figs. 5, 7, and 9, respectively

More specifically, Figs. 5(c), 5(f), and 5(i) report the rhs
terms in Eq. (27) and show that (i) 〈K〉

s
|t∞,ĉ plotted in green

triangles vanishes and (ii) 〈|∇c|∇ · (Sd n)〉
s
|t∞,ĉ plotted in

black pentagons is a negative mirror of term 2〈|∇c|K〉
s
|t∞,ĉ

(see blue squares) for all ĉ ∈ (0, 1) in line with Eq. (32).
Similarly, Figs. 7(c), 7(f), and 7(i) show that the rhs terms in
Eq. (29) vanish (see black pentagons and blue squares). Fur-
thermore, Figs. 9(c), 9(f), and 9(i) show that (i) 〈Sd〉s

〈K〉
s
|t∞,ĉ

plotted in magenta left pointing triangles vanishes on the rhs
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FIG. 5. Dependencies of the lhs, the rhs, and various terms on the rhs of Eq. (27) on the value of ĉ that results are conditioned to. Black
stars show residuals R = ∑

rhs − lhs. Tweaked residuals R∗ are computed by substituting all the area-weighted surface-averaged terms 〈·〉
s
|ĉ,t

on the rhs of Eq. (27) with the counterpart unweighted surface-averaged terms 〈·〉
v
|ĉ,t . Results computed at t = 0.045τ ∗

F and t = 0.32τ ∗
F are

plotted in the left and middle columns, respectively, with τ ∗
F = τF in cases A and B or τ ∗

F = τF /22.5 in case C. Results obtained from the
fully developed waves are reported in the right column. Results computed in cases A, B, and C are shown in the up, middle, and bottom rows,
respectively. All terms are normalized with SL/δ

2
F .

of Eq. (30) and (ii) the remaining terms cancel each other, with
their sum being close to zero, in line with Eq. (34).

Figures 9(c), 9(f), and 9(i) show that, at various ĉ, nu-
merically evaluated magnitudes of five terms associated with
the fully developed Eq. (30), i.e., lhs,

∑
rhs, R = ∑

rhs −
lhs, −D〈n · ∇2u〉

s
|ĉ,t∞ , and 〈Sd〉s〈K〉s, are much less than

the magnitudes of four other terms. Note that the term
〈Sd∇ · u〉s is not plotted because it vanishes in the simulated
constant-density cases. Therefore, terms −〈Sd∇ · (Sd n)〉

s
|ĉ,t∞

(see green right-pointing triangles), D〈n · ∇2(Sd n)〉
s
|ĉ,t∞

(see stars), −2D〈∇∇c : ∇u/|∇c|〉
s
|ĉ,t∞ (see pentagons), and

2D〈∇∇c : ∇(Sd n)/|∇c|〉
s
|ĉ,t∞ (see pluses) dominate in the

considered equation in the studied cases.

D. Thinning or broadening of reaction waves?

Figures 4 and 6 show the same trend for evolutions of
the lhs terms ∂

∂t � for � = 〈|∇c|〉
s

and � = ln 〈|∇c|〉
v
), re-

spectively. Initially, the lhs grows from zero, then reaches
a positive peak, then, drops to negative values, and finally
relaxes toward zero in the fully developed state. This obser-

vation indicates, in particular, that the local reaction-wave
thickness decreases (the conditioned gradient of c increases)
during an early stage of the wave evolution in a turbulent
flow. Subsequently, the trend reverses and wave broadening
is observed. Such a dynamic process can quantitatively be
studied by examining the rhs terms in Eqs. (27) and (29),
but this will be the subject of a followup paper [73]. Here,
we restrict ourselves to a brief qualitative explanation of the
emphasized trend by considering Eq. (29).

In a constant-density flow, ∇ · u = 0 and the early wave
thinning is primely attributed to a quick increase in the posi-
tive stretch-rate term 〈K〉

s
, in line with the classical theory on

stretching material surfaces by turbulence [72]. The later wave
broadening is associated with the negative term 〈∇ · (Sd n)〉

v
,

whose magnitude becomes significant and overwhelms 〈K〉
s

after a short initial stage.
Thus, the reported results indicate that not only the method

of averaging, but also the evolution stage should be properly
taken into account in studies that aim at clarifying inconsis-
tency between available data on the local flame thickness in a
turbulent flow.
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FIG. 6. Evolution of normalized terms in Eq. (29) (see caption to Fig. 4 for further details).

V. CONCLUSIONS

Two different methods for evaluating surface-averaged
quantities in turbulent reacting flows, i.e., taking the area-
weighted surface average 〈φ〉

s
|ĉ,t defined by Eq. (2) and

unweighted surface average 〈φ〉
v
|ĉ,t defined by Eq. (3), were

studied both analytically and numerically. Analytical relations
between 〈φ〉

s
|ĉ,t and 〈φ〉

v
|ĉ,t were obtained and the difference

between them was emphasized.
A general approach to derive evolution equations for

bulk area-weighted surface-averaged quantities was devel-
oped and new evolution equations, i.e., Eqs. (27) and (29)
for the area-weighted 〈|∇c|〉

s
(t ) and unweighted 〈|∇c|〉

v
(t ),

respectively, and Eq. (30) for the area-weighted displace-
ment speed 〈Sd〉s

(t ), were obtained using the developed ap-
proach. To obtain the 〈Sd〉s

-evolution equation, a new trans-
port equation for Sd (x, t ) was also derived by invoking
two additional simplifications (ρD = const and the reaction
rate is constant on any isosurface of the reaction progress
variable c). In the case of fully developed turbulent re-
action wave, the three derived evolution equations reduce
to three constraints given by Eqs. (32), (33), and (34),
respectively.

Analysis of DNS data computed in the case of a dy-
namically passive (constant-density) single reaction wave
has shown that each term in the aforementioned evolution
equations can be evaluated with a sufficiently high precision
even in the highly turbulent case C (the Karlovitz number
Ka = 390 and the Damköhler number Da = 0.02) in spite of
eventual appearance of zero-gradient points in this case.

Analysis of the DNS data has also shown that artifi-
cial substitution of the area-weighted surface-averaged terms
with their unweighted counterparts and vice versa results in
strongly increasing residuals of the evolution equations for
〈|∇c|〉

s
and 〈|∇c|〉

v
, thus, further emphasizing importance of

the use of the properly defined surface-averaged quantities.
It is worth stressing that the three derived evolution equa-

tions are not limited to the constant-density case addressed
in the present DNS for simplicity. Accordingly, the devel-
oped approach will be applied to variable-density complex-
chemistry DNS data obtained from premixed turbulent flames
[91–93] in subsequent papers.

Furthermore, this study sheds a light on the paradox of
local flame thinning and broadening, which is widely dis-
cussed in the turbulent combustion literature. In particular, the
present analytical and numerical results suggest that the use of
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FIG. 7. ĉ profiles of normalized terms in Eq. (29) (see caption to Fig. 5 for further details).

differently defined surface-averaged quantities and the neglect
of transient effects can contribute to inconsistency between
the reported data on the influence of turbulence on the local
flame thickness.

Finally, the general evolution equation (25) derived in this
paper can generate a family of new equations for various
surface-averaged quantities, e.g., quantities that characterize
the local isosurface curvature. Such equations will be ad-
dressed in future work.
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APPENDIX A: EQUATION FOR THE SECOND MOMENT
OF SURFACE-CONDITIONED FLUCTUATIONS

Substitution of φ with φ2 in Eq. (11) results in Â〈φ2〉
s
=

̂

∫∫
S φ2 ds. Differentiation of this equality with respect to time

yields the following evolution equation:

∂〈φ2〉s

∂t
= 2

〈
φ

∂∗

∂∗t
φ

〉
s

+ 〈φ2K〉s − 〈φ2〉s〈K〉s . (A1)

Multiplying Eq. (25) with 2〈φ〉
s

and subtracting the obtained
equation from Eq. (A1), we arrive at the evolution equation

∂〈φ′′2〉s

∂t
= 2

〈
φ

∂∗

∂∗t
φ

〉
s

− 2〈φ〉
s

〈
∂∗

∂∗t
φ

〉
s

+ 〈φ2K〉s

− 2〈φ〉
s
〈φK〉

s
+ (〈φ′′2〉s − 〈φ〉2

s
)〈K〉s (A2)

for the second moment

〈φ′′2〉s = 〈φ2〉s − 〈φ〉2
s
. (A3)

Here, contrary to Eq. (8), fluctuations are defined within the
area-weighted framework, i.e., φ′′ ≡ φ − 〈φ〉

s
.

APPENDIX B: ISOSURFACE-FOLLOWING
EQUATION FOR |∇c|

Application of operator ∂/∂xi to Eq. (19) followed by
multiplication of obtained equation with ∂c/∂xi yields

∂c

∂xi

∂2c

∂t∂xi
+ (u j − Sd n j )

∂c

∂xi

∂2c

∂xi∂x j

+
(

∂u j

∂xi
− Sd

∂n j

∂xi
− n j

∂Sd

∂xi

)
∂c

∂x j

∂c

∂xi
= 0, (B1)
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FIG. 8. Evolution of normalized terms in Eq. (30) (see caption to Fig. 4 for further details).

where the summation convention applies to repeated indices.
Multiplication of this equation with 1/|∇c|, differentiation of
|∇c| with respect to time and spatial coordinates, and the use
of ∂c/∂xi = ni|∇c| result in

∂

∂t
|∇c| + (u j − Sd n j )

∂

∂x j
|∇c|

+
(

∂u j

∂xi
− Sd

∂n j

∂xi
− n j

∂Sd

∂xi

)
n jni|∇c| = 0. (B2)

Finally, since n jn j = 1 and n j (∂n j/∂xi ) = 0, we arrive at

∂∗

∂∗t
ln |∇c| = 1

|∇c|
∂∗

∂∗t
|∇c| = −an + n · ∇Sd (B3)

= K − ∇ · u + ∇ · (Sd n) (B4)

= K − ∇ · u∗ (B5)

using Eq. (18).

APPENDIX C: ISOSURFACE-FOLLOWING TRANSPORT
EQUATION FOR DISPLACEMENT SPEED

Let us (i) rewrite Eq. (16) as

Sd |∇c| = 1

ρ
∇ · (ρD∇c) + W, (C1)

(ii) assume that the diffusivity ρD is constant and the reac-
tion rate depends solely on c, and (iii) take the isosurface-
following derivative of both sides of the above equation. Then,
the following equation holds:

∂∗

∂∗t
(Sd |∇c|) = D ∂∗

∂∗t
(∇2c) + ∂∗

∂∗t
W, (C2)

with the last term on its rhs vanishing due to the assumption
of W = W(c) and Eq. (20). Consequently,

∂∗

∂∗t
Sd = − Sd

|∇c|
∂∗

∂∗t
|∇c| + D

|∇c|
∂∗

∂∗t
(∇2c). (C3)

Substituting a = u∗ and b = ∇c into the identity

ai
∂2bi

∂x j∂x j
= ∂2(aibi )

∂x j∂x j
− bi

∂2ai

∂x j∂x j
− 2

∂ai

∂x j

∂bi

∂x j
(C4)

and taking into account Eq. (20), the second term on the rhs
of Eq. (C3) can be transformed to

∂∗

∂∗t
(∇2c) = ∂

∂t

∂2c

∂x j∂x j
+ u∗

i

∂

∂xi

∂2c

∂x j∂x j
(C5)

= ∂2

∂x j∂x j

(
∂

∂t
c + u∗

i

∂c

∂xi

)

− ∂c

∂xi

∂2u∗
i

∂x j∂x j
− 2

∂2c

∂xi∂x j

∂u∗
i

∂x j
(C6)
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FIG. 9. ĉ profiles of terms in Eq. (30), appropriately normalized based on SL and δF and plotted similarity as in Fig. 5. C = 1 in cases A
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= − ∂c

∂xi

∂2u∗
i

∂x2
j

− 2
∂2c

∂xi∂x j

∂u∗
i

∂x j
(C7)

= −∇c · ∇2u∗ − 2∇∇c : ∇u∗. (C8)

Subsequently, substitution of Eqs. (B5) and (C8) with u∗ ≡
u − Sd n into the first and second terms on the rhs of Eq. (C3),
respectively, yields the following transport equation for the
displacement speed:

∂∗

∂∗t
Sd = −Sd [K + ∇ · (Sd n) − ∇ · u]

−Dn · ∇2u + Dn · ∇2(Sd n)

− 2D
|∇c|∇∇c : ∇u + 2D

|∇c|∇∇c : ∇(Sd n). (C9)

The third term on the rhs of Eq. (C9) can be decomposed
as follows:

Dn · ∇2(Sd n) = D∇2Sd + DSd n · ∇2n. (C10)

Moreover, by applying Laplacian ∇2 to the identity of
nini = 1, we obtain

n · ∇2n ≡ ni
∂2ni

∂x j∂x j
= − ∂ni

∂x j

∂ni

∂x j
= −∇n : ∇n. (C11)

Then, the last term on the rhs of Eq. (C9) reads as

∇∇c : ∇(Sd n)

|∇c| = 1

|∇c|
∂2c

∂xi∂x j

(
ni

∂Sd

∂x j
+ Sd

∂ni

∂x j

)

= ∂Sd

∂x j

1

|∇c|2
∂2c

∂xi∂x j

∂c

∂xi
+ Sd

1

|∇c|
∂2c

∂xi∂x j

∂ni

∂x j

= ∂Sd

∂x j

1

2|∇c|2
∂

∂x j
(|∇c|2)

+ Sd
1

|∇c|
∂ (ni|∇c|)

∂x j

∂ni

∂x j

= ∂Sd

∂x j

1

|∇c|
∂

∂x j
|∇c|

+ Sd

(
∂ni

∂x j

∂ni

∂x j
+ 1

2|∇c|
∂ (|∇c|)

∂x j

∂ (nini )

∂x j

)
= ∇Sd · ∇(ln |∇c|) − Sd n · ∇2n, (C12)
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where factor 2D is skipped for brevity. Finally, substitution of
Eqs. (C10) and (C12) into Eq. (C9) yields

∂∗

∂∗t
Sd = −Sd [K + ∇ · (Sd n) − ∇ · u]︸ ︷︷ ︸

I

−D
(

n · ∇2u + 2∇∇c : ∇u
|∇c|

)
︸ ︷︷ ︸

II

+ D∇2Sd︸ ︷︷ ︸
III

+ 2D∇Sd · ∇(ln |∇c|)︸ ︷︷ ︸
IV

−DSd n · ∇2n︸ ︷︷ ︸
V

. (C13)

On the rhs, the five terms are associated with contributions due
to (I) the rate of change of |∇c| conditioned to an isosurface,
i.e., ∂∗ ln |∇c|/∂∗t ; (II) interaction between turbulent flow u
and reactive scalar field c; (III) “molecular transport” of Sd ;
(IV) a modified convection vector 2�Sn

d · ∇Sd , where �Sn
d ≡

D∇(ln |∇c|) is related to the normal-diffusion contribution
Sn

d ≡ n
|∇c| · ∇(D|∇c|) to the displacement speed, i.e. Sn

d = n ·
�Sn

d ; (V) spatial nonuniformities of n in the normal direction.

APPENDIX D: SOME NUMERICAL ASPECTS

1. Transient simulations in cases A and B

In the two frozen-velocity cases A and B, the transient
simulations are performed in the way already discussed above
in case C, but there are some differences. First, the duration
of transient sampling is changed from 2τ 0

t to 2τF . Second,
at each reset instant, a random number −1/4 < r∗ < 1/4 is
added to perturb the position of the embedded wave, i.e.,
xm/�x = (m − 0.5 + r∗)/M. Without use of such a random
number, the effective total number Meff

t of realizations used
for sampling transient statistics would be equal to M instead
of M × J because the evolution of each transient wave ct

m in
a frozen flow would be identical after each reset event. Even
with the random perturbations, the effective total number
Me f f

t is limited by the scales of frozen flow field, thus imped-
ing increasing realization number by increasing the number J
of the reset events.

The above limitations also affect the fully developed statis-
tics sampled using cs, but the effect magnitude is expected
to be less. When a cs wave continuously cycles through the
periodic frozen turbulence field, the evolution of wave can be
partially random. By analyzing the computed data, it has been
confirmed that the cs fields appear differently during different
evolution cycles.

2. Calculation of surface-averaged quantities

The fine-grained, area-weighted surface-averaged 〈φ〉
s
|ĉ,t

are computed using two different approaches. One method
is based on Eq. (11), which does not involve Dirac delta
function. Accordingly, Eq. (11) appears to provide a direct
method for numerically calculating the area-weighted surface
averages. In an applied CFD code, which deals typically with
a discrete grid, the fields of c(i)(x, t ) and φ(i)(x, t ) are often

represented using an isosurface extraction algorithm such as
the marching cube method [94]. Accordingly, the implicit
surface S(i) of c(i)(x, t ) = ĉ is extracted as a collection of tri-
angulated surface elements. Subsequently, the area-weighted
integration in Eq. (11) is approximated by summing the
product of each triangular area with the value of φ interpolated
to the triangle center. When applying such an algorithm, the
accuracy of the discrete representation of the isosurface S(i) is
limited by the accuracy of the adopted isosurface-extraction
method. The latter accuracy can be improved by interpolating
c and φ with a higher order accuracy from the original discrete
grid to a new, much finer grid, followed by extraction of
a discrete isosurface using the latter grid. This method is
straightforward, but potentially expensive. The accuracy can
also be improved by increasing the number of realizations M.

Another method is based on rewriting the definitions of the
area-weighted and unweighted surface-averaged quantities,
given by Eqs. (2) and (3), in the following forms:

〈φ〉
s
|ĉ,t = lim

ε→0
〈φ〉

S
|ĉ,ε,t (D1)

and

〈φ〉
v
|ĉ,t = lim

ε→0
〈φ〉

V
|ĉ,ε,t . (D2)

Here,

〈φ〉
S
|ĉ,ε,t ≡ φ|∇c|1ĉ,ε

|∇c|1ĉ,ε
= lim

M→∞

∑M
i=1

∫∫∫
V φ(i)|∇c(i)|1ĉ,ε dx∑M

i=1

∫∫∫
V |∇c(i)| 1ĉ,ε dx

(D3)

and

〈φ〉
V
|ĉ,ε,t ≡ φ1ĉ,ε

1ĉ,ε
= lim

M→∞

∑M
i=1

∫∫∫
V φ(i) · 1ĉ,ε dx∑M

i=1

∫∫∫
V 1ĉ,ε dx

, (D4)

respectively, the sifting function

1ĉ,ε ≡ H (c − ĉ) − H (c − ĉ − ε) (D5)

allows us to select c within an interval of [ĉ, ĉ + ε], ε < 1 is a
positive number, H (c) is Heaviside function. Then, the quan-
tities 〈φ〉

s
|ĉ,t and 〈φ〉

v
|ĉ,t may be interpreted as “fine-grained”

values of φ, averaged over a single isosurface of c(x, t ) =
ĉ, whereas the quantities 〈φ〉

S
|ĉ,ε,t and 〈φ〉

V
|ĉ,ε,t , defined by

Eqs. (D3) and (D4), respectively, are “coarse-grained” values
of φ, averaged over all isosurfaces of c(x, t ) = ciso such that
ciso ∈ [ĉ, ĉ + ε].

The spatial integration of Eq. (D3) can easily be performed
by summing products of each grid cell volume with the value
of (φ|∇c|1|ĉ,ε ) at the cell center. A similar method can be
adopted to evaluate the fine-grained unweighted surface aver-
ages using Eqs. (D2) and (D4). It is noted, however, that, if the
differences (c − ĉ) in two neighboring cells are larger than a
threshold ε, but have opposite signs, then this simple method
of numerically evaluating 〈φ〉

s
will not sample the isosurface

pieces that pass between the two cells. On the contrary, the
former method based on Eq. (11) and an isosurface extraction
algorithm allows us to sample such isosurface pieces. Thus,
while the numerical approach based on Eqs. (D1) and (D3)
is easy to implement, the alternative method has its own
advantages.
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Accordingly, both approaches were tested by processing
M > 20 statistically independent fields of (cs, u, p) in order
to evaluate the fully developed values of 〈φ〉

s
|ĉ,t∞ for the

isosurface S(i) of c(i)(x, t ) = 0.8. Henceforth, subscript t∞
designates the fully developed quantity. The coarse grained
〈φ〉

S
|ĉ,ε,t∞ was evaluated using Eq. (D3) with ĉ = 0.8 − ε/2

and four values of ε = 0.01, 0.06, 0.1, and 0.3. The ob-
tained results (not shown) verified that the coarse-grained
area-weighted surface averages of |∇c|, 1/|∇c|, Sd , ∇ · n did
become sufficiently close to their fine-grained counterparts at
ε = 0.01 in spite of a relatively small number of processed
realizations.

Since this test validated both approaches, solely the latter
(simpler) method with ε = 0.01 was subsequently used to
evaluate the fine-grained area-weighted averages 〈φ〉

s
|ĉ,t (or

the unweighted averages 〈φ〉
v
|ĉ,t ). To do so, the total number

of realizations was set as large as M > 1000 (or M > 400,
which corresponds to J > 27 for M = 15) in both Eqs. (D3)
and (D4) when computing the fully developed averages at t =
∞ (or the transient averages at 0 � t � 2τ 0

t , respectively).
The adopted simple implementation of spatial integration
(
∫∫∫

V . . . dx) by discretely sampling values on the original
(not interpolation-refined) computational grid required an in-
crease in M with decreasing ε in order to achieve sufficient
sampling counts. Nevertheless, results obtained using the
aforementioned M differ barely from results computed with
2M in the highly turbulent case C. Moreover, further decrease
in ε from 0.01 to 0.005 barely changed the results, thus,
also indicating that the processed number of realizations was
appropriate.

Finally, it is worth stressing that the main test of the
method adopted for evaluating surface-averaged quantities
[including the lack of any threshold for throwing out local
events characterized by abnormally large |φ(x, t )| at small
distances from zero-gradient points] consists in comparison of
the sums of terms on the lhs and rhs of the studied evolution
equations.

3. Evaluation of various terms in the evolution equations

To evaluate all terms in these equations during simu-
lations, all spatial derivatives in those terms are approx-
imated using sixth order center difference and composite
terms are evaluated by successively applying the sixth order
approximation of derivative operator to relevant intermedi-
ate quantities evaluated at the cell center. For instance, the
composite term |∇c|∇ · (Sd n) in Eq. (27) contains terms
|∇c|, Sd , n, and Sd n. The four quantities nx, ny, nz, and
|∇c| are directly obtained by evaluating the three derivatives
∂xc, ∂yc, ∂zc in the cell center using the sixth order center
difference. The same method is applied to computing ∇2c in
Sd = (D∇2c + W )/|∇c|. Then, term ∇ · (Sd n) = ∂x(Sd nx ) +
∂y(Sd ny) + ∂z(Sd nz ) is computed by applying the sixth order
center difference to the intermediate composite values of Sd nx,
Sd ny, and Sd nz, which are already obtained in the cell center.

To evaluate time derivatives of surface-averaged quantities
�(t ) on lhs’s of the studied evolution equations, a sequence
of transient values of � is calculated at 20 sampling instants
ti = (i2/200)τ ∗

F , where i = (1, . . . , 20), and, then, a discrete
approximation of the time derivative (i.e., the gradient func-
tion in “MATLAB”) is applied to this sequence.
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