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The transient dynamics of a growing droplet in a yarn is explored following the spatiotemporal evolution
of the three-phase contact line as well as the liquid-air interface with the help of videographic techniques and
subsequent image analyses. The spontaneous capillary flow of liquids in a porous network is used to generate
a droplet on the freely hanging end of a yarn whose other end is dipped continuously in a liquid reservoir. The
growing droplet initially moves upward due to surface tension until the attainment of a critical volume, beyond
which gravity is able to pull it downward until detachment. Based upon the spatiotemporal trajectory of the
three-phase contact line of the droplet, the entirety of the associated growth dynamics can be divided in three
distinct regimes, namely, “radial growth,” “axial growth,” and “motion” stages. The transition from one to the
other is governed by the subtle interplay between the capillary and the gravity forces. Several experimental fluids
are considered to elucidate the effect of the fluid properties on the transient contact line and interfacial dynamics
of drops. The kinetics of the three-phase contact line and the radius of the droplet is found to follow two distinct
exponential scaling laws, developed through the combination of the relevant forces. A mathematical model has
also been proposed to predict the critical volume of the growing droplet in relation to its final volume, beyond
which gravity controls the transient dynamics.
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I. INTRODUCTION

The transmission of liquids through the porous network of
the naturally abundant, as well as the synthetic objects, is a
ubiquitous phenomenon and has been studied extensively both
by the researchers and industrialists since ages [1–7]. Specif-
ically, the immense potential of spontaneous capillary flows
(SCF) in transporting liquids through the porous networks of
yarns, without the use of external pumping, have been put into
use in numerous industrial and day-to-day applications which
primarily encompass textile [8,9], mold preparation indus-
tries [10], biomedical devices [11–13], forensic laboratories
[14,15], household drying [16,17], coating processes, etc. The
wicking ability of the constituent yarns emerges to be one
of the most influential parameters for successful operation of
these devices and processes, as has been envisaged in several
experimental and analytical studies [3,18–22].

Drop formation from a nozzle or orifice is another inter-
esting hydrodynamic phenomenon with a wide and varied
range of uses, such as inkjet printing [23,24], spray formation
[25,26], DNA microarray deposition [27], microencapsulation
[28,29], etc. The rich underlying physics associated with the
dynamics of growth and breakup of a liquid drop from a
nozzle (or orifice) has been explored exhaustively with the
help of experimental [30–33] and computational techniques
[34–38] over the last few decades. Two contrasting modes
of drop formation dynamics, namely, dripping and jetting
[33,39], have been identified with the help of high-speed
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visualization techniques and subsequent image processing
[40,41]. One of the pioneering attempts to capture the bifur-
cation process of pendant drops was reported by Hauser et al.
[42] and was reproduced a decade later by Peregrine et al.
[43]. In recent years, owing to the advancement of high-speed
imaging techniques, researchers are able to visibly explore
many intricate physics of drop formation and breakup, the
crucial dynamics in the vicinity of pinch-off [37,44] in par-
ticular, which remained unfathomed only until the last decade.
Such advanced experimental tools and methods have immense
contributions in uncovering the relevant phenomenon, leading
to some wonderful recent efforts, such as the formation of a
drop from a wettable nozzle [45], tilted nozzle [46], droplet
formation in dense suspension [47], etc., which has high
relevancy with the industrial processes.

Therefore, it is very much evident that numerous research
works have separately explored drop formation in nozzles
and wicking in yarns. However, we have not found any
effort toward integrating both in the form of drop generation
by wicking in the porous network of a yarn. This study
makes an honest attempt to bridge this gap by unveiling the
dynamics of drop formation from an unwoven yarn under
varying flow conditions. A simple experimental arrangement
constructed by using a yarn, as shown in Fig. 1, serves the
purpose of addressing many new aspects in the regime of
drop dripping, that have heretofore been unexplored. The
prime focus of this paper is a systematic investigation of the
transient dynamics of the three-phase (air-liquid-yarn) contact
line of the droplet during its growth in a yarn under the
effect of gravity and interfacial forces. By bringing the yarn
in contact with the liquid in a reservoir, a flow field can be
established owing to the continuous wicking of the liquid in
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FIG. 1. Schematic diagram of the experimental setup with all the
components.

the available porous network. Once the yarn is saturated, the
continuously incoming liquid generates a bulb of liquid mass
at the freely hanging end, which develops in volume with
time. The contact line of the droplet with the yarn has distinct
vertical motion during the complete growth period, which can
subsequently be classified into multiple regimes. With the
help of videographic techniques and image analyses, we try
to capture the transient dynamics in each of these regimes,
followed by the consequent data analysis to achieve a unified
description of the underlying physical phenomena in terms of
the competing forces controlling the dynamics of the contact
line movement. This kind of distinct vertical motion of the
contact line is ubiquitously seen during the capillary rise of a
liquid in a wettable tube [48] or porous material [49] or droplet
sliding along a wettable surface [50] as well as in the rare
case of drop formation in a wettable nozzle [45], while being
a rarity during the drop generation from nonwettable nozzles
[30,51,52].

The organization of the rest of the study is as follows.
The experimental procedures and materials have been dis-
cussed in Sec. II, while the results and discussions are pre-
sented in Sec. III. The concluding remarks are drawn in
Sec. IV.

II. EXPERIMENTAL METHOD AND MATERIALS

Figure 1 shows the schematic of the experimental setup
developed for this study, which involves a yarn hanging from
an infinite liquid reservoir. A filament type yarn with an
average diameter in the range of 1.5 ± 0.08 mm in the as-
procured condition plays the role of the droplet generator, and
a microtip of 1000 microliter volume behaves as the infinite
fluid reservoir, constantly supplying the fluid necessary for
drop formation. The yarn consists of 4 fibers or filaments,
having an average diameter in the range of 0.86 ± 0.03 mm.
All the yarns are cut out at a length of 40 mm from a large roll
of the same and checked for length and diameters by using an
optical microscope (Leica DM 2500M) before using in the ex-
periments. For each set of experimental conditions, a separate

TABLE I. Properties of experimental fluids. DIW = DI-water,
Gly. = Glycerol, Twn20 = Tween 20.

Density Viscosity Surface tension
Liquid (ρ, kg/m3) (η, mPas) (γ , mN/m)

DIW 1000.0 1.0 72.0
2% Twn20 sol. 1000.34 1.04 36.3
40% DIW + 60% Gly. 1165.4 12.75 69.5
Hexadecane 770.0 3.0 27.0

pair of reservoir and yarn has been used. The liquid level at the
reservoir has been kept constant for each experimental cycle to
nullify the effect of variation in the hydrostatic pressure on the
capillary flow rate. Special attention has also been given while
placing the yarn in contact with the reservoir, to ensure that the
capillary penetration takes place only due to the transplanar
wicking mode, while the rest of the wicking modes remain
suppressed [19]. Moreover, a simple knot has been provided
in the yarn at the end dipped in the liquid reservoir in order
to prohibit any sidewise leakage and to obtain drop formation
only due to capillary flow within the fiber.

The experiments have been carried out for four different
liquids, namely, DI-water (DIW, Merck Millipore, grade I,
resistivity 18.2 M� cm at 25 ◦C), hexadecane (Hexd), 60%
glycerol (aqueous) solution (Gly60), and 2% Tween 20 solu-
tion in DI-water (Twn20). The relevant thermophysical prop-
erties, namely, viscosity, surface tension, and density of each
of the experimental fluids have been measured with the help of
rheometer (PHYSICA MCR 101; Aanton Paar), tensiometer
(DY-300; Kyowa), and density meter (Aanton Paar; DMA
4500), respectively, and are listed in Table I. The working
fluids are chosen in such a way that working range of viscosity
and surface tension spans across a wide range.

The video recordings of the experiments have been carried
out with a digital camera (Cybershot DSC-HX100v, SONY
Crop. Japan) at a frame rate of 25 frames per second. A
bright LED Light (Phlox, 130000 Lux) placed opposite to the
recorder, as shown in Fig. 1, provides continuous backlighting
in all the experimental conditions. This arrangement ensures a
sharp contrast of the interfaces relative to the background. The
recorded images are then stored in a PC for subsequent image
processing and analysis. An open source image processing
software ImageJ [53] has been used for the analysis of the
captured experimental images.

The fluid properties expected to influence the dynamics
of drop formation are surface tension (γ ), density (ρ), and
viscosity (η) of the penetrating fluid, which further can be
clubbed together to form the following set of nondimensional
numbers: We, Fr, and Oh, pertinent to the physics involved in
this study. Here, the Weber number We = ρv2

avgL/γ signifies
the relative importance of the inertia force to the capillary
force, the Froude number Fr = vavg/

√
gL signifies the relative

importance of inertia force to the gravitational force, and
the Ohnesorge number Oh = η/

√
ργ L expresses the relative

importance of viscous force over the inertial force and capil-
lary force. Herein, the radius of the yarn ry has been scaled
as the characteristic length L and the average flow velocity
vavg (= Q/πr2

y ) has been scaled as the characteristic veloc-
ity while calculating the nondimensional numbers. Q is the
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TABLE II. Experimental conditions for this study. DIW = DI-
water, Twn20 = Tween 20 (2% solution), Hexd = Hexadecane,
Gly60 = 60% Glycerol + 40% DIW.

Flow rate Q×1011(m3/s) We×109 Oh×103 Fr×105

QDIW 56.8 ± 5 1078.7 ± 100 4.3 375.10 ± 10
QTwn20 8.68 ± 0.3 50.31 ± 3 6.33 57.32 ± 5
QHexd 2.06 ± 0.2 2.90 ± 0.1 24.1 13.6 ± 2
QGly60 0.63 ± 0.07 0.16 ± 0.03 51.7 4.2 ± 0.3

average flow rate of the penetrating fluid through the porous
network, measured by volumetric fluid measurement method.
Table II lists the values of the nondimensional numbers along
with the corresponding flow rates.

III. RESULTS AND DISCUSSION

This section presents a detailed appraisal of the transient
dynamics associated with the generation of a droplet from a
yarn. The discussion commences by describing the growth
history of a water droplet in yarn, subsequently evolving
into the exploration of the transient dynamics of the contact
line in case of viscous Newtonian droplets. An attempt has
further been made for developing a couple of unified scaling
laws, describing the contact line motion, and interfacial shape
change (specifically radial expansion) for all the experimental
conditions considered herein (refer Table II).

In the present experimental conditions, spontaneous capil-
lary flow within the porous network of the yarn engendered
the formation of a droplet, which grows in time due to the
accumulation of the continuously incoming mass of liquid.
This growing fluidic bulb experiences a series of changes in
geometry, starting with the barrel shape at the beginning to the
pear shape prior to the detachment, alongside the associated
contact line movements. The plethora of events, as depicted
sequentially in Fig. 2, starts with the growth of the droplet
in both radial and axial directions, which is followed by
downward motion of the liquid bulb until it reaches the free
end of the yarn, where it finally detaches, yielding a parent
droplet and a satellite one.

In order to elicit and quantify the growth history of the
droplet, the present discussion considers the spatiotemporal
evolution of the trajectory of two points around the droplet,
naming them as “tip” and “bottom” as shown in Fig. 2(a).
The “tip,” referred as zt p, corresponds to the three-phase
contact line (TPCL) of the droplet with the yarn, whereas
the bottommost point of the droplet along the yarn has been
named as “bottom” (referred as zbt ). The relative positioning
of these two points from the datum, i.e., z = 0, has been used
to quantify the movement and location of the droplet along
the axial direction of the yarn. It is to note that the free end
of the hanging yarn has been considered as the datum [please
refer Fig. 2(b)] for the ease of referencing and quantifying the
trajectories. The exact location of the “tip” has been identified
in a two-step process: first, we convert the raw images into
binary images in ImageJ software, which helps in marking of
the exact pixels representing the “tip” in the zoomed view of
the binary images. Next, we visually track the position of the
TPCL indicated by the change or movement in the intensity

FIG. 2. Schematic diagram of the different stages involved in
drop formation from a yarn, namely, (a) growth (“radial” and “ax-
ial”), (b) “motion,” (c) “necking,” and (d) “detachment.” The yellow
arrows show the sequence of the occurrence of the events. The
two red arrows in the image (a) show the position of two points
of interest, namely, “tip” and “bottom,” referred for describing the
growth dynamics of the droplets in yarn. The variables ld and rd ,
shown in image (b) with respective positions of measurements,
represent the length and radius of the droplet, respectively. The red
dashed line drawn in the free end of the yarn in image (b) represents
the position of the datum z = 0 considered for various measurements
during the study.

of the pixels between two consecutive images considered.
Similarly, to track the dynamics of the shape change, the
maximum radius of the droplet at each instant is found to be
of paramount importance and it has been identified schemat-
ically in Fig. 2(b) by a variable rd . Further, the length of the
droplet has been deduced as the difference in position between
the “tip” and “bottom” at each instance, i.e., ld = zt p − zbt . In
what follows, the temporal evolution of the trajectories (zt p

and zbt ), as well as the droplet radius rd , have been explored
for a wide range of experimental conditions (listed in Table II)
to unfurl the transient growth dynamics of the droplet as well
as different transitional regimes, as shown in Secs. III A–III E.

A. Growth dynamics of water droplets

Figure 3 (and Supplemental Material, video 1 [54]) shows
snapshots of the spatiotemporal evolution of the interface and
the contact line of a water droplet during its growth from a
yarn. Herein, the instant of detachment of the previous drop
has been considered as t = 0 in the physical timescale, which
acts as a reference for the subsequent snapshots. Also, the
position of the “tip” at each instance is marked by the red
arrows, a convention followed meticulously in the remainder
of the paper. It can be inferred from Figs. 3(a)–3(c) that, at
the onset, the contact line of the water drop, i.e., “tip” starts
moving upward, along with the continuous radial expansion of
the droplet resulting in a growing bulb. The upward movement
of the “tip” also results in augmentation in the length of
the droplet. Both this radial and axial expansion leads to
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FIG. 3. Spatiotemporal evolution of the droplet interface during
the generation of water drop from a yarn. The corresponding ex-
perimental conditions are We = 1.078 × 10−6, Oh = 0.0043, Fr =
3.76 × 10−3. The red arrows mark the position of the three-phase
contact line of the droplet (“tip”) at different instances, whereas the
yellow dashed lines in the snapshots refer to the location of datum.
The scale bar shows 1 mm in length. The events have been recorded
at 25 frames per second using a SONY camcorder.

a consequent increment in the contact angle of the droplet,
thereby changing the shape of the droplet from barrel shape
at the onset to the pear shape as seen in Fig. 3(c). However,
as soon as the value of the contact angle reaches saturation
(approximately 10◦), the upward movement of the “tip” gets
arrested, indicating the beginning of the second phase [refer
to Fig. 3(c)]. The delicate balance between the surface energy
and the gravitational energy determines this saturation contact
angle as well as the shape of the interface at each instance.
This first stage of the droplet growth has been coined as
“radial growth” stage, owing to the relatively higher rate of
radial expansion in comparison to the axial expansion, which
shall be discussed elaborately in the subsequent sections.

At the beginning of the second stage, the “tip” starts
dwelling at its maximum position, whereas, the “bottom”
starts moving away from the datum z = 0, as seen in Figs. 3(d)
and 3(e), accommodating the continuously incoming mass of
liquid. The dynamics results in a significant increase in the
total length of the droplet, although the interface of the droplet
continues to be pear shaped. This second stage having a higher
rate of expansion in the axial direction can be termed as “axial
growth” stage. The continuous radial and the axial expansion
results in a continuous enhancement in the droplet volume
until the moment it attains a critical volume (discussed later
on separately in Sec. III D), beyond which the gravitational
pull is able to overcome the resisting forces (namely, capillary
forces at the contact line). This initiates a sliding motion of the
bulbous mass in the downward direction, as seen in Figs. 3(f)–
3(l), which persists until the detachment of the droplet from
the yarn. Compared to the previous two stages, this stage
has a significantly longer time span during the growth of
the drop, named as “motion” stage. In one of the following

FIG. 4. (a) The temporal variation of the position of tip zt p and
bottom zbt points during the growth of a water drop. (b) The variation
of length ld and radius rd of a water drop during its growth stage.
Position of the tip and bottom below the datum, i.e., z = 0 (yellow
dashed line in Fig. 3) is considered as negative, while the position
above it has been considered as positive. The dashed vertical lines
delineate the three stages of drop growth in both (a) and (b). The cor-
responding experimental conditions are We = 1.078 × 10−6, Oh =
0.0043, Fr = 3.76 × 10−3. The uncertainties in the measurement of
the position of the respective identities at each instant are marked by
the error bars associated with each data point.

subsections, it will be shown quantitatively that during this
stage the change in the droplet volume is minimal, whereas
it bears the distinct sign of the movement of the contact line,
which again justifies the term coined to this stage.

An account of the temporal variation in the positions of
the “tip” (circle) and “bottom” (diamond) helps in capturing
the transient dynamics of the contact line, as well as easy
delineation of the above mentioned three stages as seen in
Fig. 4(a). Each of the three stages is found to have distinct
characterizing slopes, with the corresponding points of inflec-
tion marking the transition from one stage to the other. With
the “tip” climbing upward and the “bottom” of the droplet
dwelling at the datum, i.e., zbt = z = 0, the accumulated
fluid mass expands radially in the first regime, exhibiting

013106-4



EXPERIMENTAL CHARACTERIZATION OF THE GROWTH … PHYSICAL REVIEW E 100, 013106 (2019)

FIG. 5. (a) Spatiotemporal evolution of the interface during the generation of (i) tween 20 and (ii) hexadecane droplet from a yarn. The
red arrows mark the position of the three-phase contact line (tip) at different instants. The scale bar shows 1 mm in length. The corresponding
experimental conditions are We = 5.03 × 10−8, Oh = 0.0063, Fr = 5.73 × 10−4, and We = 2.90 × 10−9, Oh = 0.024, Fr = 1.36 × 10−4

for rows (i) and (ii), respectively. The yellow dashed lines in the snapshots of rows (i) and (ii) show the datum. (b) The temporal variation in
the position of the tip and bottom during the growth of droplets of tween 20 solution and hexadecane, in a yarn. The data of this plot correspond
to the images of Fig. 5(a). The two different colors of the same symbols represent the data corresponding to tip and bottom for the two different
experimental liquids. The differently colored dotted vertical lines delineate all the three stages seen during the drop growth period.

a time period of approximately 20 s in all the experiments
done with water as the working fluid. As calculated from
the experimental data plotted in Fig. 4(a), the contact line
achieves a maximum velocity of approximately 0.3 mm/s
while climbing upward. Although a sharp change in the slope
is present in the trajectory of the tip while it enters the second
stage, the transition of the bottom appears to be noticeably
smoother [Fig. 4(a)]. The pinning of the tip at its maximum
position is the characteristic transient dynamic of this second
regime, which seems to have a time period of approximately
15 s. Also, the plot clearly reveals the continuous movement
of the bottom, veering away from the datum during this “axial
growth” stage. The depinning of the tip happens as soon as
the weight of the continuously growing bulb overcomes the
resisting forces. In Sec. III D we try to theoretically model this
critical volume of the growing droplet through a delicate force
balance between the driving and resisting forces. Although the
trajectory of the tip further experiences a sudden change in the
slope at the beginning of the third stage, however, it moves in a
near synchronous manner with the trajectory of the bottom as
the dynamics of the third stage evolves. The tip starts sliding
toward the datum, i.e., the end of the yarn and the bottom kept
on moving away from the yarn end as shown in Fig. 4(a). The
differently colored regimes represent the extent of a particular
regime, whereas the common boundary marked by the dashed
line signifies the borderline of transition between the three
different regimes.

Furthermore, for a systematic investigation of the temporal
evolution of the interface, we plot the temporal variation of
the radius rd and the length ld of the droplet in Fig. 4(b).
Notably, both the curves clearly hint toward the presence of
three distinct regimes of droplet growth. While the different
regimes are prominent along the curve of ld due to the
presence of sharp changes in its slope, the curve of rd has a
relatively smoother transition from one regime to the other.

Qualitatively, both rd and ld increase continuously due to the
accumulation of the incoming fluidic mass. However, the rate
of radial expansion slows down as the dynamics progresses
toward detachment, as reflected from the continually decreas-
ing slope of the rd curve at each stage. Interestingly, the time
period of occurrence and transition of the dynamics of both
the movement of the contact line and the interfacial shape
change coincides with each other for all the stages during
the droplet growth as seen Figs. 4(a) and 4(b). This mutual
dependence between the contact line movement and shape
change dynamics has further been extended for the growth of
more viscous liquids (than water) in the following subsection.

B. Effect of enhanced viscosity of the penetrating fluid

This section explores the effect of an increase in viscosity
of the penetrating fluid on the dynamics of growth of a droplet
from a yarn. Increase in viscosity is achieved by allowing
capillary penetration of different experimental fluids, as listed
in Table I, with viscosity ranging from 1.04 to 12.75 mPas.
As confirmed by Washburn’s law of wicking [1,55] as well
as its modified versions for different porous structures [22],
viscosity is a key parameter that affects both the saturation
limit and the wicking rate, and even the slightest increase
in viscosity of the penetrating fluid can slow down the rate
of wicking to a great extent owing to the increment in
the viscous drag. The reduction in flow rate here delays the
growth rate of the droplet. The spatiotemporal evolution of
the liquid-air interface along with the movement of the contact
line during the growth of viscous droplet is shown in Fig. 5(a).
The representative snapshots of Figs. 5(A)–5(L) in row (i)
(and Supplemental Material, Video 2 [54]) correspond to the
generation of a droplet of tween 20 solution, whereas, the
snapshots 5(A)–5(L) in row (ii) (and Supplemental Material,
Video 3 [54]) show the growth of a hexadecane droplet on a
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yarn. The red arrows mark the position of tip of the droplet in
Fig. 5(a). The movement of the tip for both the liquids clearly
suggests the presence of all the three regimes as encountered
previously in case of water droplets. However, a one-to-one
comparison of the snapshots reveals that the onset of each
regime, as well as the transition from one regime to another, is
significantly delayed in the physical timescale, as the viscosity
of the imbibing fluid is increased even by a marginal amount.

Figure 5(b) shows the time-varying trajectories of the tip
zt p and bottom zbt of the droplets generated during the exper-
imental conditions corresponding to Fig. 5(a). The two differ-
ent colors (magenta and blue) of the corresponding symbols
(circle and diamond) signify the two different experimental
fluids tween 20 solution (Twn20) and hexadecane (Hexd),
respectively. It can be clearly comprehend that even with the
slightest increase in the viscosity value, the incipience of each
stage of droplet growth is delayed, thereby further delay-
ing the transition from one regime to the other, as claimed
previously. For example, in case of tween 20 solution, the
end of the “radial growth” stage and transition to the “axial
growth” stage takes place approximately at 50 s, whereas
for, hexadecane this marks only the beginning of the radial
growth stage in physical timescale. The interfacial shape
change of the droplet is also expected to follow the delayed
transition regimes. Notably, the shape of the droplet in all the
experimental conditions follows the Young-Laplace equations
as shown in Appendix A.

C. Self-similar contact line and interface profile evolution

A cumulative appraisal of the dynamics of the contact
line during the growth of the droplet encompassing all the
experimental conditions can be drawn by representing the
trajectory in a nondimensional framework of zt p as shown
in Fig. 6(a). The nondimensionalization of both zt p and t
has been done with the help of the maximum value of the
corresponding identities, i.e., z∗

t p = zt p/zmax
t p and t∗ = t/ttotal,

wherein ttotal is the total time taken for the generation of one
drop in each experimental cycle and zmax

t p is the maximum
value of zt p within that time period ttotal. It is to note that
ttotal signifies the total time span observed for each exper-
iment calculated from the beginning of the radial growth
stage to the final detachment of the droplet from the yarn.
This kind of unique nondimensionalization helps in extracting
information regarding the rate of evolution of each dependent
variable over a unit time span and one-to-one comparison of
each relevant quantity in different experimental conditions.
Figure 6(a) shows the variation of z∗

t p with t∗ in a log-
log scale for all the experimental conditions studied herein.
The presence of three distinct regimes during the droplet
growth becomes more evident from Fig. 6(a) wherein all the
nondimensional profiles of z∗

t p collapsed to a single trajectory,
despite starting from different initial instants. This hint toward
the presence of self-similarity in the contact line profile evo-
lution in the later stages of the droplet growth period, specif-
ically in “motion” stage, irrespective of the initial conditions.
Another important observation from Fig. 6(a) is the presence
of two shallow windows for the transition of the contact line
dynamics from one regime to the another, which are marked
by two differently hashed zones. A qualitative assessment

FIG. 6. (a) The variation of the nondimensional tip position z∗
t p

with nondimensional time t∗ is plotted in a log-log scale for all the
experimental conditions. The vertical shaded regimes correspond to
the transition regimes separating the three stages of drop growth. (b),
(c) Compare the experimental data of z∗

t p with the derived asymptotic
relation (dashed-dotted line) [Eq. (5)] for water (DIW) and 60%
glycerol (Gly60) solution, respectively.
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of the data reveals that the dynamics of the contact line
switches from the radial growth stage to the axial growth one
approximately within the first 20%–30% of total time span
for the experimental conditions studied herein. The second
transition window appears in 45%–55% of the total time taken
for droplet growth, where the dynamics transform from the
axial growth stage to the “motion” stage.

The self-similarity between the transient dynamics of the
contact line during the motion stage can be modeled by
considering the competing forces during the period, which
are, namely, capillary force, viscous drag, and gravity. The
capillary force at the tip can be expressed as [56] Fc =
2πγ rycosθc, whereas the viscous force on the droplet appears
as Fv = −2πηlwt

v

ln (
rd
ry

)
[45,57]. Herein, v, θc, and lwt signify

the vertical velocity of zt p, contact angle, and wetted length of
the yarn, respectively. The viscous drag has been derived after
solving the momentum conservation equation in cylindrical
coordinates for the droplet, subjected to the boundary con-
ditions of zero vertical velocity (vz) along the outer surface
of the yarn (r = ry) and equal to the velocity of the drop
at its interface (vz = v and r = rd ), and deriving the shear-
stress term as η

dvz

dr |r=ry = − ηv

ry ln (
rd
ry

)
, where dvz

dr is the velocity

gradient along the radial direction (r). The shear stress acts
over the surface around the cylindrical yarn 2πrylwt , resulting
in the viscous friction force Fv during the movement of the
droplet. Considering the gravitational force as Fg = mg, where
m is the instantaneous mass of the liquid drop, the governing
equation can be written in the following form:

d (mv)

dt
= 2πγ rycosθc ± 2πηlwt

v

ln
( rd

ry

) − mg. (1)

The mass of the drop can be expected to increase linearly
with time, i.e., m = ṁ(t − t0), where ṁ is the mass flux and t0
is the initial time at the beginning of the drop formation. How-
ever, qualitative analysis (refer Sec. III D) of the experimental
data clearly shows that the change in the mass of the droplet is
negligible in the motion stage, and we can consider the mass
to be constant during the period. By introducing the following
dimensionless characteristic variables

l∗
wt = lwt

L
, t∗ = t

τ
, m∗ = m

ρr3
, v∗ = v

vavg
= v

R
τ

, (2)

where L and τ = ttotal are the characteristic length and
timescale, respectively. Substituting the dimensionless char-
acteristic variables from Eq. (2), Eq. (1) can be converted to
the following nondimensional form:

d (m∗v∗)

dt∗ = 2π cosθc

We
± 2π

Re ln
( rd

ry

)v∗l∗
wt − 1

Fr2 m∗. (3)

Here, the Weber number We and Froude number Fr bear the
same definition as discussed in Sec. II. The Reynolds number
Re signifies the balance between the inertia force and the
viscous force and defined as Re = ρvavgL/η with vavg being
the characteristic velocity scale as seen in Eq. (2). Interest-
ingly, Eq. (3) bears the same form of the governing equation
as mentioned in Chang et al. [45] for droplet formation in a
wettable nozzle. Substituting Oh = We1/2

Re in Eq. (3), we obtain
Eq. (4) in terms of the nondimensional numbers considered in

this study as

d (m∗v∗)

dt∗ = 2π cosθc

We
± 2π

We1/2

Oh ln
( rd

ry

)v∗l∗
wt − 1

Fr2 m∗. (4)

Equation (4) shows the important nondimensional groups,
namely, We, Fr, and Oh, necessary for determining the scaling
law for z∗

t p with respect to time t∗ during the downward
movement of the drop. A regression analysis (explained in
Appendix B) of all the experimental data sets suggests the
following correlation between z∗

t p and t∗:

z∗
t p = 1 −

(
We0.633Oh0.407

Fr1.116 exp(4.232t∗)

)
. (5)

An account of the exponents of the nondimensional groups
of Eq. (5) clearly reflects that the gravity force dominates the
transient dynamics of the contact line zt p in this third regime
of droplet growth. Although surface tension tries to resist
the droplet motion, its effect appears to be weaker than the
weight of the droplet as soon as it starts descending along the
yarn. The asymptotic relation between z∗

t p and t∗ gives a good
agreement with the experimental data as seen in Figs. 6(b)
and 6(c), which shows the transient evolution of z∗

t p in the
third regime in case of water and 60% glycerol solution,
respectively. The scaling law reported above [Eq. (5)] has a
good resemblance with the asymptotic relation proposed by
Chang et al. [45]. However, the latter has shown a parabolic
fit of the position of the contact line of the droplet while
it descends along a wettable nozzle, whereas we observe an
exponential decrease of z∗

t p in this study.
Furthermore, the spatiotemporal evolution of the interface

of the droplet during its growth can be well understood
by plotting the variation of the nondimensional radius r∗

d
with time t∗ as shown in Fig. 7(a). Herein, the physical
timescale has been nondimensionalized as discussed previ-
ously, whereas the maximum values of the droplet radius
rmax

d over the considered time span ttotal has been used as
the scale for nondimensionalization of the radius. Figure 7(a)
clearly shows that, irrespective of the experimental conditions,
all the profiles of r∗

d follow a similar kind of asymptotic
trajectory during the growth period. However, the vertical shift
of the profiles can be attributed to the variations in their ther-
mophysical properties. Also, the initially separated profiles
converge beyond a specific time instant, as seen in Fig. 7(a).
A quantitative assessment of the experimental data reveals
that the profile converges approximately at 55% of their total
time period, which is also, coincidentally, the transition point
of the contact line dynamics from the axial growth stage to
the motion stage. Until this transition point, the radius of the
droplet grows to nearly 90%–95% of its final value. Hence,
the third stage involves very little change in the radius as well
as the droplet volume, which also strengthens our previous
claim that the mass of the droplet remains nearly constant
during that period.

Here, we wish to find a scaling law defining the self-similar
profiles of the interfaces, specifically r∗

d observed during the
first two stages of growth of the droplet with the help of
previously mentioned nondimensional groups: We, Oh, and
Fr. The regression analysis (refer to Appendix B) of the
experimental data of r∗

d suggest the following asymptotic
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FIG. 7. (a) Linear plot of variation of nondimensional radius r∗
d

with nondimensional time t∗ of a continuously growing droplet at
different experimental conditions corresponding to Table II. Loga-
rithmic plots of r∗

d with t∗ exhibit the good agreement between the
derived scaling law (dashed-dotted line) [Eq. (6)] and the experimen-
tal data for (b) water and (c) 60% glycerol solution. respectively.

scaling law:

r∗
d = 1 −

(
Fr0.670Oh0.122

We0.281 exp(−3.410t∗)

)
. (6)

The inversely proportional relation between the Weber
number We and r∗

d in Eq. (6) signifies the logical trend of a
fluid with higher surface tension trying to hold a droplet of
greater radius. The asymptotic relation of Eq. (6) also suggests
that the capillary force dominates the gravity force during the
first stages of growth and this results in the upward movement
of the tip, as well as higher radial expansion in the initial
period, as discussed previously. As per Eq. (6), the rate of
change of the droplet radius will be more in the initial periods
which eventually slows down and, finally, the radius of the
droplet will remain nearly constant, which coincides with
our observation in Fig. 7(a). The good agreement between
the experimentally measured data and theoretical prediction
can be seen in Figs. 7(b) and 7(c) plotted for two fluids,
water and 60% glycerol solution, respectively. It is to note
that the scaling relation [Eq. (6)] in this study differs greatly
from the scaling law D∗

d = (4 + 6t∗)(1/3) obtained in case of
generation of a droplet from an orifice under constant flow
condition [38]. The latter takes care of the growth of a spher-
ical droplet constantly adhering to a nozzle exit, in contrast
to this study where the droplet undergoes changes from barrel
to pear shape, and is never spherical. Equation (6) has been
derived in the purview of this difference in basic assumption,
considering the contributions of the thermophysical properties
of the experimental fluids.

D. Estimation of critical volume required for sliding

We now wish to find the critical volume V cr
sl of the droplet

which is nothing but the maximum volume attained by the
droplet prior to the beginning of downward sliding from its
maximum position and has a direct effect on the final volume
of the detached droplet. The instant of occurrence of V cr

sl is the
point of transition between the second and the third stages.
As estimated previously, rd attains nearly 90%–95% of its
final radius, whereas ld reaches nearly 80% of its total length
until the end of the second stage. Approximating the droplet
shape with an annular cylinder, i.e., V cr

sl ∼ ZR2 ∼ lcr
d (rcr

d )2,
it can be estimated that the droplet volume nearly attains
70%–80% of its total volume (i.e., volume of the detached
primary droplet) just before initiating the downward motion
in each experimental condition. Here, rcr

d and lcr
d represent the

critical radius and the length of the droplet at the instant of
measurement of V cr

sl , respectively.
By considering the delicate balance between the driving

and the resisting forces, V cr
sl can be estimated theoretically.

Along with the driving force Fg and the resisting force Fc,
mentioned in Sec. III C, the capillary force due to the presence
of a liquid film along the yarn Ff c has also been considered
as another resisting force while estimating V cr

sl . However, the
viscous drag Fv has not been considered herein, due to the
negligible velocity of the interface at the onset of sliding
motion. The transition from the axial growth stage to the
motion stage occurs once Fg just overcomes the static friction
offered by Fc and Ff c for a droplet of volume V cr

sl . Notably,
both the resisting forces are larger when the surface tension is
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FIG. 8. Force balance in case of a drop continuously growing
on a yarn just prior to the initiation of sliding motion. The different
geometrical parameters of the drop considered in the force balance
are shown with the help of dimensional arrows. Fg is the gravitational
pull experienced by the droplet due to its own weight, Fc is the
capillary force along the contact line, and Ff c is the capillary force
due to the liquid film acting along the wetting length lwt .

higher. The resisting force due to the liquid film also depends
upon the droplet wetting length lwt and becomes large with
higher film thickness.

The discussed force balance, shown schematically in
Fig. 8, can be written as

Fg = Fc + Ff c. (7)

The gravitational force experienced by the drop can be rewrit-
ten as Fg = ρgV cr

sl = 4π
3 (rcr

d )3ρg assuming the droplet to be
spherical in shape for simplifying the calculations. The cap-
illary force due to the liquid film [58] can be written as
Ff c = γ lwt , where the wetting length is lwt = 2ζ sl

l rcr
d , with ζ sl

l
as the fitting parameter that takes into account the deviation of
the droplet shape from the spherical shape. The final form of
Eq. (7) can be found as follows:

4π

3

(
rcr

d

)3
ρg − 2γ ζ sl

l rcr
d − 2πγ rycosθc = 0. (8)

The cubic equation (8) with positive polynomial discrimi-
nant has the single real solution as follows:

rcr
d = 3

√√√√3λ2rycosθc

4
+

√(
3λ2rycosθc

4

)2

−
(

ζ sl
l λ2

2π

)3

+ 3

√√√√3λ2rycosθc

4
−

√(
3λ2rycosθc

4

)2

−
(

ζ sl
l λ2

2π

)3

,

(9)

where λ = √
γ /ρg is the capillary length. Based on the value

of the critical radius rcr
d obtained from Eq. (9), the theoretical

critical volume V cr
sl = 4π

3 ζ sl
V (rcr

d )3 can be calculated where ζ sl
V

is a geometric prefactor taking into account the deviation of

V cr
sl from its actual drop volume [58]. A critical comparison of

the experimental data with the theoretical volume data shows
that irrespective of the different thermophysical properties
of the experimental fluids, the value of ζ sl

V is fixed at ζ sl
V =

0.7 ± 0.15. Also, the fitting parameter ζ sl
l accounting for the

wetting length comes out to be close to each other for different
experimental conditions and found to be in the range of ζ sl

l =
0.57 ± 0.13. The consideration of the geometric prefactor and
fitting parameter in this study nullifies the deviation in the V cr

sl ,
appearing as a result of considering the droplet to be spherical
in shape.

E. Dynamics of droplet detachment: Static pinch-off

The dynamics of the growth stage comes to an end as soon
as the tip reaches the end of the yarn and the detachment
phase of the droplet begins (refer to Supplemental Material,
Videos 4, 5, and 6 [54]). Owing to the very low flow rate of
the penetrating fluid through the capillary network of the yarn,
i.e., extremely small We conditions (of the order of 10−9),
the dynamics of detachment adheres to the laws of “static
pinch-off” regime, wherein, the subsequent outcomes such as
the size of the detached primary droplet (V pin

d ), the volume
of the remnant fluid after breakup, etc., solely depend on the
competition between the gravitational force and the capillary
force (2πγ ry) [59]. As reported by Harkins and Browns [59],
in the static-pinch-off regime, the detached primary droplet
volume V pin

d can be determined as follows:

V pin
d = ζ

pin
V

(
2πγ ry

gρ

)
, (10)

where the Harkins-Brown compensation factor ζ
pin
V is defined

as the ratio of the volume of the primary droplet detached from
the nozzle V pin

d to the maximum volume of the liquid balanced
by the capillary force at the nozzle exit [the term within paren-
theses in the right-hand side of Eq. (10)]. Conventionally,

expressed as ζ
pin
V = f (r/V pin

d

1/3
), the compensation factor

assumes different forms and numerical values depending upon
the nozzle and the liquid pair and thereby ensuring that post
detachment, a fraction of the total volume remains attached to
the nozzle exit.

Figure 9 shows the experimentally measured drop volumes
for four different liquids listed in Table I, which are being
designated by the corresponding We as listed in Table II. The
volume of the released drop decreases sharply with a decrease
in We as seen in Fig. 9, which demonstrates the fact that
higher surface tension force is capable of holding a larger drop
volume prior to pinch-off. A suitable fitting method shows
that ζ

pin
V = 0.67 allows us to adhere to the lowest limit of

experimentally measured volumes for the entire range of We
explored in this study, as shown by the lowermost solid line
(with symbols) in Fig. 9. The uppermost curve corresponds
to the maximum volume of the hanging drop that can be
supported by the yarn, i.e., ζ

pin
V = 1, which is nothing but the

weight of the “ideal drop” as determined by Tates law [60]. In
the absence of a unique value of ζ

pin
V in literature, the present

approach of representing the measured data via a range of
parameters (0.67–1.0) seems to be the only viable option and
hence has been adopted in the present analyses. If the surface
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FIG. 9. Comparison between the experimentally measured pri-
mary drop volume and theoretical law from Harkins and Browns
[59].

tension of the fluid is known beforehand, the reported values
of the compensation factor may help in predicting the final
volume of a droplet detached from a yarn.

IV. CONCLUSIONS

This study reports a qualitative assessment of the dynamics
of the generation and detachment of a droplet from a yarn
under different experimental conditions. A simple drop gener-
ation facility has been engendered by the continuous capillary
flow within the yarn, which facilitates a comparison of the
present system with the existing methods of drop formation
from a capillary tube. The study focuses on the temporal evo-
lution of the three-phase contact line, as well as the interface
of a growing droplet. Here, the contact line follows a distinct
repetitive pattern, characterized by sequential radial and axial
growth, which is contrary to the existing drop generation
systems, where the contact line constantly adheres to the outer
wall of the capillary tube (or nozzle). Depending on the rela-
tive positioning of the contact line, the complete growth cycle
of a Newtonian droplet on a yarn can be divided into three
distinct regimes, namely, “radial growth,” “axial growth,”
and “motion.” During the former, the radius of the drop
expands rapidly with a relatively moderate rate of increase
in the length. The “tip” of the drop moves upward in this
stage due to the dominance of the surface tension force over
the gravity force, while the “bottom” remains fixed around the
free end of the yarn. A relatively higher increment in the drop
length and slower expansion of radius are the characteristics
of the second stage, with the “tip” adhering to its maximum
position over the entire span and the “bottom” point continu-
ously moving away from the datum. The second stage comes
to completion with the droplet reaching a critical volume,
enabling it to overcome the resisting forces preventing it from
sliding downward. Interestingly, the critical volume required
for the drop to initiate sliding has been found to be 70%–80%
of the final drop volume after pinch-off, a value deduced
from the quantitative analysis of the experimental images,

as well as theoretically. The contact line dynamics during
the “motion” stage is found to be self-similar irrespective of
the initial experimental conditions, which can be described
by an asymptotic scaling relation based on the combined
effect of driving and resisting forces. The scaling relation
suggests that gravity force dominates upon the capillary forces
during the third stage. Another asymptotic relation has been
proposed for the evolution of the radius of the droplet during
its growth. The derived relations suggest that the surface
tension force dominates the growth rate of the droplet during
the initial two stages, which in turn controls the final droplet
volume. By using a number of fluids, spanning across a wide
range of viscosity, we found that for the macroscale contact
line dynamics occurring over a physical timescale, viscosity
plays the role of rate limiter. Furthermore, the very low flow
rates during the experiments directed the dynamics of drop
formation in the “static-pinch-off” regime.

The findings of this study may stimulate further inves-
tigations on the transient dynamics of a droplet generating
from a yarn with different chemical and physical textures.
Also, more experiments with liquids having wider ranges of
the relevant properties including nonwetting fluids can be
performed to extend the validity of the proposed asymptotic
relations. Moreover, careful numerical simulations may shed
light in understanding the dynamics of drop formation in
naturally observed as well as synthetic hierarchical porous
structures.
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APPENDIX A: ESTIMATION OF THE DROP SHAPE

In this study, although drop formation has been engendered
by a flow field with very low flow rate, the well-established
Young-Laplace equation could predict the shape of the drop
at all the three stages mentioned previously. The differential
equations that define the axisymmetric shape of a growing
drop attached to the yarn are as follows;

dr

ds
= cos(θ ), (A1)

dz

ds
= sin(θ ), (A2)

dθ

ds
= 2κ0 −

(
1

λ2

)
z − sin(θ )

r
, (A3)

with the initial conditions prescribed as r(0) = 0; z(0) = zmin

and θ (0) = 0.
As shown in Fig. 10(a), s represents the arc length, κ0 is

the curvature at the apex, zmin is the position of the apex, and
λ is the capillary length as defined previously. The droplet
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FIG. 10. (a) Schematic of an axisymmetric drop attached to a
capillary with all the spatial and angular variables defining the shape
at each instant. (b) Comparison between the numerically obtained
droplet shape (yellow curve) with the shape obtained experimentally
by fitting the former upon the latter. The axisymmetric equations are
able to describe the shape well as the yellow curve fits completely
the experimental shapes. The experimental conditions encountered
are QTwn20 = 8.68 × 10−11 m3/s, We = 5.03 × 10−8, Oh = 0.0063,
and Fr = 5.73 × 10−4.

shapes obtained after solving Eqs. (A1)–(A3) numerically
when fitted over the experimentally generated droplet shapes
show a good match as shown in Fig. 10(b), wherein the yellow
curve is the shape of the interface obtained numerically.
Figure 10(b) corresponds to the different stages of growth of
a drop of tween 20 solution from a yarn with experimental
conditions QTwn20 = 8.68 × 10−11 m3/s, We = 5.03 × 10−8,
Oh = 0.0063, and Fr = 5.73 × 10−4. Also, as ascribed in
Chang et al. [45] the contact angle has not been considered
as boundary conditions due to the prevalence of contact angle
hysteresis between the advancing and receding contact angle
while moving along the yarn. Further, the good agreement
between the experimental data and theoretical prediction also
confirms the universality of the Young-Laplace axisymmetric
equations describing the interfacial shape change of a drop
growing in a yarn.

APPENDIX B: DETAILS OF REGRESSION ANALYSIS

By having a closer look in Fig. 6(a), the relation between
z∗

t p and t∗ in the “motion stage” can be defined as below:

z∗
t p = 1 − [WeaOhbFrcexp(dt∗)], (B1)

where, a, b, c, and d are experimentally fitted constants.
The regression analysis is carried out using the Levenberg-
Marquardt algorithm, which is being popularly used in many
industrial optimization processes including the pendant drop
shape optimization routines [61]. This nonlinear least-square
optimization algorithm combines the speed and the accuracy
of both Gauss-Newton optimization and the steepest descent
method and optimizes the iterations by considering the min-
imization of the sum of the squared residuals between each
experimental data point and corresponding theoretical data
points [62,63]. The parametric convergence criteria have been
set as 1E−8 for the present regression analysis, which resulted
in 38 iterations for evaluation of the constants of Eq. (B1).
The regression analysis of the experimental data resulted in
the following equation:

z∗
t p = 1 −

(
We0.633Oh0.407

Fr1.116 exp(4.232t∗)

)
. (B2)

The standard values of the fitted coefficients in Eq. (B2) are
a = 0.633 ± .031, b = 0.407 ± .015, c = −1.116 ± .064,
and d = 4.323 ± 0.109. The corresponding values of the re-
gression coefficient R2 and the mean squared error (MSE) are
found out to be 0.930 and 0.009, respectively.

A similar type of regression analysis has been carried out
for obtaining the scaling relation (6) between r∗

d and t∗. The
values and range of the fitted coefficients a, b, c, and d in
the case of Eq. (6) are found out to be 0.281 ± .022, 0.122 ±
.008, 0.670 ± .048, and −3.410 ± 0.045, respectively. The
value of the regression coefficient R2 is 0.963, whereas the
mean squared error has been found out as 0.0001.
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