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Effect of chordwise wing flexibility on flapping flight of a butterfly model
using immersed-boundary lattice Boltzmann simulations
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Wing flexibility is one of the important factors not only for lift and thrust generation and enhancement in
flapping flight but also for development of micro-air vehicles with flapping wings. In this study, we construct
a flexible wing with chordwise flexibility by connecting two rigid plates with a torsion spring, and investigate
the effect of chordwise wing flexibility on the flapping flight of a simple butterfly model by using an immersed
boundary-lattice Boltzmann method. First, we investigate the effects of the spring stiffness on the aerodynamic
performance when the body of the model is fixed. We find that the time-averaged lift and thrust forces and the
required power increase with the spring stiffness. In addition, we find an appropriate range of the spring stiffness
where the time-averaged lift and thrust forces are larger than those of the rigid wings. The mechanism of the lift
and thrust enhancements is as follows: in the downstroke the flexible wings can generate not only the lift force
but also the thrust force due to the deformation of wings; in the upstroke the flexible wings can generate not only
the thrust force but also the lift force due to the deformation of wings. Second, we simulate free flights when the
body of the model can only move translationally. We find that the model with the flexible wings at an appropriate
value of the spring stiffness can fly more effectively than the model with the rigid wings, which is consistent with
the results when the body of the model is fixed. Finally, we simulate free flights with pitching rotation. We find
that the model gets off balance for any value of the spring stiffness. Therefore, the passive control of the pitching
motion by the chordwise wing flexibility cannot be expected for the present butterfly model.
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I. INTRODUCTION

Insects fly freely in the air. The flight of insects propelled
by flapping is an interesting phenomenon not only in biology
but also in aerodynamics. In addition, its practical use for
the development of micro-air vehicles (MAVs) has recently
attracted a lot of attention [1]. Actually, the free flight of
an insect-scale flapping-wing robot modeled loosely on the
morphology of flies (a robotic fly) [2] and the stable hover-
ing of a jellyfish-like flying machine [3] have recently been
achieved. Such a technological application is also a motivation
for studying flapping flight.

Since there is no muscular system in the frames of the
insect wings unlike birds [4], the insect wings are passively
deformed by the inertial, elastic, and aerodynamic forces. This
deformation of the wings is likely to significantly affect not

*kosuzuki@shinshu-u.ac.jp
†Present address: Toyota Boshoku Corporation, Aichi 448-8651,

Japan.
‡masato@shinshu-u.ac.jp; also at Institute of Carbon Science and

Technology, Interdisciplinary Cluster for Cutting Edge Research,
Shinshu University.

only the flow around the wings but also the aerodynamic
force and torque acting on the wings. In order to reveal
the effect of the deformation or flexibility of the wings on
the flapping flight of insects, much effort has recently been
made with experimental and computational approaches. Zhao
et al. [5] experimentally measured the aerodynamic forces on
flapping wings with variable flexural stiffness. It was found
that both the drag and lift forces decreased in magnitude with
increasing wing flexibility. At angles of attack greater than
50◦, however, the flexible wings generated more lift force
than rigid wings. Zheng et al. [6] used computational models
derived from experiments on free-flying butterflies to evaluate
the effects of time-varying camber and twist deformations on
the aerodynamic performance. It was found that the observed
butterfly wing including both camber and twist deformations
improved the aerodynamic performance compared with the
rigid wing. In addition, the twist deformation occupied most
of the improvement.

In the computational approach to investigate the effect of
wing flexibility on the flapping flight, it is worthwhile to
consider the wings as flexible membranes and to reproduce the
full flexibility of the flapping wings [7]. Also, it is meaningful
to construct simple flexible wings which are composed of
some rigid parts connected by torsion springs and to consider
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the chordwise and spanwise flexibilities separately. Several
studies using such simpler models have focused on the chord-
wise wing flexibility, since it was reported that the spanwise
flexural stiffness is one to two orders of magnitude larger than
chordwise flexural stiffness for many insects [8]. Eldredge
et al. [9] constructed a two-dimensional flexible wing com-
posed of two rigid elliptical cylinders connecting by a torsion
spring. The leading portion of the wing was prescribed with
hovering kinematics. In this wing, the wing flexibility can
be controlled by the spring stiffness of the torsion spring.
Cheng and Lan [10] constructed a three-dimensional flexible
wing with hovering kinematics in the same way as Eldredge
et al. [9]. It was found that the chordwise wing flexibility
reduced the lift force and the power, and consequently a
wing with small flexibility generally achieved a marginally
higher efficiency (power-loading coefficient) than the rigid
wing. Medina and Eldredge [11] also constructed a three-
dimensional wing composed of three rigid plates, i.e., leading,
root, and tip portions, and the root and tip portions were
deflected actively. Although in this wing the flexibility cannot
be controlled, it was found that the root or tip deflection can
increase the efficiency in hovering kinematics.

The above-mentioned studies have shown that the chord-
wise wing flexibility has a significant effect on aerodynamic
performance for hovering kinematics. However, the chord-
wise wing flexibility for other wing kinematics has not been
investigated sufficiently. As one of the other wing kinematics,
it is worthwhile to consider a butterfly-like flapping wing
motion [12], where the wings are flapped downward and
backward during downstroke and upstroke to generate the
lift and thrust forces, respectively. A similar wing motion
has been observed in the forward flight of leaf butterflies
(Kallima inachus) [13,14], and the vortex structures generated
by the butterfly-like flapping wing motion are similar to those
generated by actual butterflies, e.g., chestnut tiger butterflies
(Parantica site) [15], leaf butterflies [14], and tree nymph
butterflies (Idea leuconoe) [16]. In addition, the butterfly-like
flapping wing motion utilizes aerodynamic forces that are
parallel to the wing-tip path, i.e., drag-based forces [1,17]. It
has been reported that small insects such as fruit flies often
use drag-based forces in rapid maneuvers such as sudden
starts, stops, and turns [17]. It has been suggested in Ref. [18]
that this strategy has been observed in larger insects such as
butterflies [19]. Therefore, it is interesting to investigate the
chordwise wing flexibility for the butterfly-like flapping wing
motion.

A concept model with the butterfly-like flapping wing
motion was proposed in the previous study [12]. Hereafter, we
will call it the butterfly model. In the previous studies, Suzuki
and co-workers numerically investigated the effects of wing
kinematic parameters [20], wing planform [21], and wing
mass [22] on aerodynamic performance in the flapping flight
of the butterfly model by using the immersed boundary-lattice
Boltzmann method (IB-LBM) [23]. In the present study, in
order to advance these researches, we incorporate the chord-
wise wing flexibility into the butterfly model in the same way
as the flexible wing used in Ref. [10] and investigate the effect
of chordwise wing flexibility on aerodynamic performance in
the flapping flight of the butterfly model. While there are other
flight modes in the free flight of insects, e.g., take-off [24,25],

FIG. 1. Illustration of (a) a flexible wing and (b) a butterfly model
with two flexible wings and a rod-shaped body.

climbing flight [26], forward flight [13,14], gliding flight [27],
and others, we focus on starting from the resting state and the
transitional motion to forward flight. It is noted that we do not
focus on the ground effect in the present study (see Sec. IV).

The paper is organized as follows. In Sec. II we present the
butterfly model with chordwise wing flexibility. In Sec. III we
explain the governing equations and parameters of the system.
The numerical method and the computational parameters are
presented in Sec. IV, and results and discussion are shown in
Sec. V. We conclude in Sec. VI.

II. BUTTERFLY MODEL

A. Components

The butterfly model used in this paper is shown in Fig. 1.
The wings of the model are infinitely thin isosceles triangles
composed of the fore and hind parts connected by a torsion
spring parallel to the span direction as shown in Fig. 1(a). It is
noted that the wings effectively have a finite thickness due to
the finite resolution of the present simulations and due to the
finite support of the volume force in the immersed boundary
method (see Sec. IV). Although the fore and hind parts are
rigid, the chordwise wing flexibility can be changed by the
spring stiffness K of the torsion spring. The motion of the fore
part is prescribed as explained in Sec. II B, and the motion
of the hind part is determined by calculating the deflection
angle θw between the fore and hind parts as explained in
Sec. III B. The wing length is equal to L, and the total wing-tip
length is equal to 2L. The hind wing-tip length is given by
Lhind, and its range is 0 � Lhind � L. The wings are flexed
in their center lines when Lhind = L, whereas the wings are
completely rigid when Lhind = 0. The fore and hind parts have
the same uniform mass density, and the total mass of the two
wings is denoted by mw.

The model has a rod-shaped body of length Lb = L. The
wing root is connected to the midpoint of the body. Since the
range of the hind wing-tip length Lhind is less than or equal to
L, the fore part is always connected to the body. The mass of
the body is denoted by mb, and the moment of inertia of the
body is given by Ib = mbL2

b/12. The total mass of the model
is given by M = mb + mw.

B. Wing kinematics of the fore part

The butterfly model flaps the wings downward and back-
ward to generate lift and thrust forces, respectively. The
motions of the right and left fore parts are prescribed relative
to the body and symmetrical with respect to the longitudinal
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FIG. 2. The wing motion during one period for t/T � 1 when
the wings are rigid and (θm, αm, γ ) = (45◦, 90◦, π/2).

plane. The wing kinematics are a combination of a flapping
motion and an attacking motion, described by the flapping an-
gle θ and the geometric angle of attack (AOA) α, respectively.
The rotational axis for the geometric AOA is perpendicular to
the wing root, and that for the flapping angle is parallel to the
wing root. The flapping angle θ (t ) and the geometric AOA
α(t ) at time t are given as follows:

θ (t ) = θm cos

(
2π

T
t

)
, (1)

α(t ) =
⎧⎨
⎩

0,
(
0 � t < T

4

)
,

αm
2

[
1 + cos

(
2π
T t + γ

)]
,

(
t � T

4

)
,

(2)

where θm is the flapping amplitude corresponding to half the
stroke amplitude, αm is the maximum geometric angle of
attack, T is the period of flapping motion, and γ is the phase
shift.

In our previous study [20], we calculated aerodynamic
performance for various sets of the kinematic parameters
(θm, αm, γ ), and we found that the efficiency (the power-
loading coefficient) is nearly maximized when (θm, αm, γ ) =
(45◦, 90◦, π/2). In this study, we use this set of the parameters
supposing that the butterfly model flies with almost the highest
efficiency. Figure 2 shows the wing kinematics when the
wings are rigid (i.e., Lhind = 0) and the above set of the
parameters is used.

It should be noted that the geometric AOA α(t ) given by
Eq. (2) is different from that used in Ref. [12] only in the
first quarter period of the first wingbeat. If the time derivative
of α(t ) is not zero at the initial time t = 0, the wings have
momentum initially due to the wing mass. Therefore, this
modification is for avoiding the impulsive start. For more
details about the wing kinematics of the model and their
formulation in terms of the rotations of the coordinate system,
see Ref. [12].

When the deflection angle θw between the fore and hind
parts is given by calculating the equation of motion (see
Sec. III B), the motion of the hind part is described by the
rotation of the coordinate system fixed to the hind part relative
to the fore part. Let the coordinate system fixed to the right
fore part be �fore, and its origin be located at the wing root.
The axes of �fore are denoted by ξ , η, and ζ , where the ξ axis

is parallel to the chord direction and the η axis is parallel to
the span direction. Let the coordinate system fixed to the right
hind part be �hind, and its axes are denoted by ξhind, ηhind, and
ζhind. Since the torsion spring is parallel to the span direction,
�hind is obtained by rotating �fore around the η axis by the
angle θw. Let eξ , eη, and eζ be three unit vectors along the
ξ , η, and ζ axes, respectively, and eξhind, eηhind, and eζhind

be three unit vectors along the ξhind, ηhind, and ζhind axes,
respectively. The vector array [eξhind, eηhind, eζhind] is given
by an orthogonal transformation of [eξ , eη, eζ ] as

[eξhind, eηhind, eζhind] = [eξ , eη, eζ ]S2(θw), (3)

where S2 is the orthogonal matrix given by

S2(θw) =
⎡
⎣ cos θw 0 sin θw

0 1 0
− sin θw 0 cos θw

⎤
⎦. (4)

We assume that the motion of the left hind part is symmetrical
to the right hind part with respect to the longitudinal plane.
Under this assumption, we use a symmetry boundary condi-
tion and simulate only half the butterfly model (see Sec. IV).

III. GOVERNING EQUATIONS AND
NONDIMENSIONAL PARAMETERS

A. Fluid motion

The fluid motion around the butterfly model is governed by
the continuity equation and the Navier-Stokes equation for an
incompressible fluid:

∇ · u = 0, (5)

∂u
∂t

+ (u · ∇)u = − 1

ρf
∇p + ν∇2u, (6)

where u is the fluid velocity, p is the pressure, ρf is the
fluid density, and ν is the kinematic viscosity of the fluid.
We consider the fluid to be air at room temperature (20 ◦C),
and we set ρf = 1.205 kg/m3 and ν = 1.512 × 10−5 m2/s. It
should be noted that the gravitational term does not appear in
Eq. (6). This is because the pressure p includes the gravita-
tional potential [28]. The no-slip condition must be satisfied
on the surface of the model, i.e., the fluid velocity must be
equal to the velocity of the wings and the body. It should be
noted that the body has a negligible effect on the flow field
and the aerodynamic forces for the present model, although
the no-slip condition is enforced on the body.

In this study, we take the mean wing-tip speed defined by
Utip = 4θmL/T as the characteristic flow speed and the wing
length L as the characteristic length. The governing parameter
of the above equations is the Reynolds number Re given by

Re = UtipL

ν
. (7)

It should be noted that the definition of the Reynolds number
is the same as that used in Ref. [12].

B. Wing-body motion

The system of the present model is a six-body problem
composed of four rigid flat plates (fore and hind parts in
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left and right wings) and one rigid rod (body). In order to
connect the fore parts and the body and to enforce the flapping
angle θ (t ) and the geometric AOA α(t ) of the wings relative
to the body, we have to consider the appropriate force of
constraint and torque of constraint between the wings and the
body. In addition, we have to consider the appropriate force
of constraint and torque of constraint between the fore and
hind parts as well as the torque by the torsion spring. If the
Lagrangian formulation is used, however, there is no need to
formulate them explicitly.

We define the coordinate system of the flight space with
axes x, y, and z, where the positive directions of the x and
y axes are the forward and upward directions, respectively.
The gravitational acceleration is given by G = (0,−G, 0)T

(where the superscript T represents the transpose of a vector
or a matrix), and we set G = 9.807 m/s2. Here we assume
that the body moves only in the x and y directions and rotates
only in the x-y plane (pitching motion) for simplicity. Let
the position of the center of the body be X b = (xb, yb, 0)T,
and the pitching angle be θp. In addition, let the deflection
angle between the fore and hind parts be θw. The motion of
the wing-body system is described by the four independent
variables xb, yb, θp, and θw. Let the Lagrangians for the body,
the right fore part, and the right hind part be Lbody, Lfore, and
Lhind, respectively. The Lagrangian for the whole system is
given by

L = Lbody + 2Lfore + 2Lhind. (8)

It should be noted that the Lagrangians for the left fore and
hind parts are the same as those for the right fore and hind
parts, since it is assumed that the motions of the left parts are
symmetrical to the right parts with respect to the longitudinal
plane. The detailed forms of these Lagrangians are shown in
Appendix A.

The Lagrange equations for the wing-body motion can be
obtained as follows:

d

dt

(
∂L
∂ ẋb

)
− ∂L

∂xb
= F aero

x , (9)

d

dt

(
∂L
∂ ẏb

)
− ∂L

∂yb
= F aero

y , (10)

d

dt

(
∂L
∂θ̇p

)
− ∂L

∂θp
= T aero, (11)

d

dt

(
∂Lhind

∂θ̇w

)
− ∂Lhind

∂θw
= T aero

hind , (12)

where F aero
x and F aero

y are the x and y components of the
aerodynamic force Faero, respectively, T aero is the total aero-
dynamic pitching moment around the center of the body, T aero

hind
is the aerodynamic pitching moment acting on the right hind
part around the torsion spring, and the dot notation denotes
the time derivative.

By substituting Eq. (8) in Eqs. (9)–(12), these equations
can be expressed in matrix form for the vector (ẍb, ÿb, θ̈p, θ̈w)
as

M

⎡
⎢⎢⎣

ẍb

ÿb

θ̈p

θ̈w

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

F aero
x + F in

x
F aero

y + F in
y − MG

T aero + T in + T G

T aero
hind − Kθw + T in

hind + T G
hind

⎤
⎥⎥⎦, (13)

where M is the mass matrix of the system, F in
x and F in

y are the
x and y components of the inertial force F in, respectively, T in

is the inertial pitching moment, and T G is the pitching moment
due to gravity. The subscript “hind” is put in the variables for
the right hind part.

The governing parameters of Eq. (13) are the nondimen-
sional total mass NM, the Froude number Fr, the wing-mass
ratio WR, the nondimensional hind wing-tip length χ , and the
nondimensional spring stiffness NK defined as

NM = M

ρfL3
, (14)

Fr = Utip√
LG

, (15)

WR = mw

M
, (16)

χ = Lhind

L
, (17)

NK = K

ρf L3U 2
tip

. (18)

The total governing parameters of the whole system are Re,
NM, Fr, WR, χ , and NK. In order to calculate free flights of the
model in a fluid, we have to determine these six parameters.
However, these six parameters are not independent. Actually,
the relationship between Re and Fr is given by

Fr

Re
= ν√

L3G
. (19)

Given the values of ν in the Earth’s atmosphere and G, the
ratio of Fr to Re is determined by setting the wing length L.
Therefore, the wing length L is equivalent to the ratio of the
Froude number to the Reynolds number in this situation.

IV. NUMERICAL METHOD AND
COMPUTATIONAL PARAMETERS

The numerical method used in this study is the same as
that in Ref. [12]; we use the IB-LBM approach [23] to solve
Eqs. (5) and (6). The wings and the body of the model
are represented by an arrangement of boundary Lagrangian
points. In order to enforce the no-slip condition on the model,
the volume force is applied at lattice points around the
boundary Lagrangian points. Due to the finite support of the
volume force, the wings and body have a finite thickness.
In our previous study [29], the effective thickness of a flat
plate was 2.5�x (�x is a lattice spacing) in terms of the
accuracy of the velocity profile in the laminar boundary layer.
In addition, we checked the effect of the effective thickness
by the convergence studies for spatial resolution using the
present butterfly model [12,21,22]. As a result, we found
that the spatial resolution where L = 60�x for Re = 500 was
sufficiently large, since the aerodynamic force and torque as
well as the motion of the model for this resolution were not so
different from those for a finer resolution. This means that for
the present spatial resolution the effective thickness does not
have a significant effect.

The distance between the boundary Lagrangian points on
the wings is about �x. This distance is small enough to
prevent the fluid penetrating the wings. Also, the gap between
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the boundary Lagrangian points on the trailing edge of the fore
part and those on the leading edge of the hind part is about �x,
and the fluid does not penetrate the wings through this gap.
Therefore, a finite gap is set between the fore and hind parts
numerically, but it has no effect physically. In our preliminary
study, the gap did not cause any problems, e.g., source or sink
of fluid, peaks in pressure localized at the hinge, or unphysical
oscillations in the aerodynamic force.

The aerodynamic force Faero and torque T aero are calcu-
lated as

Faero(t ) = −
∑

x

g(x, t )(�x)3, (20)

T aero(t ) = −
∑

x

(x − X b) × g(x, t )(�x)3, (21)

where
∑

x describes the summation over all lattice points x,
and g(x, t ) is the volume force which is applied at a lattice
point x in order to enforce the no-slip condition on the model
in the immersed boundary method. It is noted that T aero in
Eq. (21) is assumed to have only the z component, i.e., the
pitching moment T aero. The aerodynamic pitching moment
T aero

hind acting on the right hind part around the torsion spring
is given by

T aero
hind (t ) = −

∑
X∈hind

n · g(X , t ) l (X ) �V, (22)

where
∑

X∈hind describes the summation over the boundary
Lagrangian points X in the right hind part, n is the unit
vector perpendicular to the right hind part, g(X , t ) is the
volume force at a boundary Lagrangian point X , l (X ) is
the distance between the torsion spring and the boundary
Lagrangian point X , and �V is the small volume element
where the volume force g(X , t ) is applied. In this calculation,
the internal mass effect [23] is neglected, since the model
has effective volume but converges to a thin object with no
volume in the limit �x → 0. The position and velocity of
the boundary Lagrangian points on the wings and the body
are updated by orthogonal transformation of the coordinate
systems fixed to the wings and the body relative to that fixed
to the flight space. For details of the numerical method, see
Ref. [23].

The validation of the numerical method and the conver-
gence studies for temporal and spatial resolutions have been
extensively checked in Refs. [12,21,22]. In addition, Engels
et al. [30] simulated the same problem as Ref. [12] to validate
their proposed method (a Fourier method with volume penal-
ization), and they reported that their result for the free flight of
the butterfly model had a good agreement with that obtained
in Ref. [12]. The validation for a flexible wing is shown in
Appendix B.

The computational domain is the same as that used in
Ref. [21]: we use a cuboid of 18L × 12L × 12L. The x, y, and
z axes are fixed to the domain, and we denote the directions
of the x and y axes as forward and upward, respectively.
The boundary condition on two sides perpendicular to the
x axis is the periodic boundary condition, and on the other
sides the no-slip condition is used. The center of the body is
initially located at the center of the domain. The size of the
computational domain is so large that the ground effect is not

TABLE I. Spatial and temporal resolutions for various values
of the Reynolds number Re. The wing length L and the flapping
period T are multiples of the lattice spacing �x and the time step
�t , respectively.

Re L T

300 50�x 6000�t
500 60�x 6000�t
700 86�x 8000�t
1000 120�x 12 000�t

significant, since in the previous study [12] the aerodynamic
forces obtained when the domain size was 12L × 6L × 6L
were almost the same as those obtained when the domain size
was 12L × 12L × 12L. The domain is initially filled with a
stationary fluid at uniform pressure. We use a multiblock grid
[31] in order to save computation time. The multiblock grid
is composed of a fine grid with a lattice spacing �x and a
coarse grid with 2�x. The size of the inner fine grid is set
to 4L × 4L × 4L, in order to confine the butterfly model to
the inner fine grid including a sufficient margin. In order to
reduce the computational cost, we calculate one-half of the
computational domain with the mirror boundary condition
on the longitudinal plane which passes through the center of
the domain and is perpendicular to z axis. This implies that
the flow field is assumed to be symmetrical with respect to the
longitudinal plane. We simulate the free flights of the butterfly
model for various Reynolds numbers in the range 300 � Re �
1000, which covers the typical Reynolds numbers of small
insects. The spatial and temporal resolutions for each Re are
shown in Table I.

In the present study, we investigate the effect of chordwise
wing flexibility on aerodynamic performance by changing the
nondimensional spring stiffness NK and the nondimensional
hind wing-tip length χ . The range of the Reynolds number
is shown in Table I. As for the other governing parameters
(i.e., the nondimensional total mass NM, the Froude number
Fr, and the wing-mass ratio WR), we consider two sets of the
parameters for a small butterfly (Janatella leucodesima) [32]
and a fruit fly [4] as shown in Table II. It should be noted
that the ratio of the Froude number to the Reynolds number is
determined by the wing length L as mentioned in Sec. III B. In
the present study, we consider the parameter set of a fruit fly
as well as that of a butterfly in order to investigate the effect of
the length scale L. In addition, in the development of MAVs,
the small length scale is likely to be attractive. Therefore, we
consider the parameter set of a fruit fly as a typical set for a
small length scale. It should be noted that the actual Reynolds

TABLE II. The wing length L, the nondimensional total mass
NM, the wing-mass ratio WR, and the ratio of the Froude number
Fr to the Reynolds number Re for a small butterfly (Janatella
leucodesima) and a fruit fly.

L (mm) NM WR Fr/Re

Set 1 (J. leucodesma) 18.1 3.36 0.1 1.98 × 10−3

Set 2 (fruit fly) 3.0 61 0.0048 0.029
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FIG. 3. Time variations of the deflection angle θw for various
values of the nondimensional spring stiffness NK when the body
of the model is fixed, χ = 1.0, Re = 500, and the other governing
parameters are given as Set 1 in Table II.

number for a Janatella leucodesma is Re = 1190 and that for a
fruit fly is Re = 620 in the present definition of the Reynolds
number using the wing length L as the characteristic length
(if the Reynolds number is defined by using the mean wing
chord length, Re � 100 for a fruit fly [4]). Table II does not
include the values of Re so that we separately treat Re and the
parameter set shown in this table.

V. RESULTS AND DISCUSSION

In this section, we investigate the effect of chordwise
wing flexibility on aerodynamic performance in flapping flight
of the butterfly model. First, we calculate aerodynamic per-
formance for various values of the nondimensional spring
stiffness NK and nondimensional hind wing-tip length χ when
the body of the model is fixed. In addition, we investigate how
the effect of chordwise wing flexibility is changed when the
Reynolds number Re and the other governing parameters are
changed. Then we investigate the effects of chordwise wing
flexibility on the translational motion and on the rotational
motion of the butterfly model through free-flight simulations
with and without pitching rotation.

A. Aerodynamic performance when the body
of the model is fixed

1. Effects of the nondimensional spring stiffness NK and the
nondimensional hind wing-tip length χ

First, we calculate the deflection angle θw for various
values of the nondimensional spring stiffness NK when the
body of the model is fixed, χ = 1.0, Re = 500, and the other
governing parameters are given as Set 1 in Table II. In this
simulation, we neglect Eqs. (9)–(11) and consider Eq. (12)
alone. Figure 3 shows the time variations of the deflection
angle θw for various values of NK for 9.0 � t/T � 10. It
should be noted that the simulations are conducted until
t/T = 20, but the results during each stroke are almost the
same after t/T = 9. Thus, we present the results of the 10th
period here. We can see from this figure that the amplitude
of θw significantly increases as NK decreases, and the wings

are so flexible that θw can reach 60◦ when NK = 0.1, whereas
the wings are nearly rigid when NK = 5.0. In addition, the
phase of the curves of θw delays as NK decreases. This result
suggests that aerodynamic performance will be significantly
affected by the deformation of the wings in the range 0.1 �
NK � 5.0.

Then we calculate aerodynamic performance for various
values of the nondimensional spring stiffness NK for the same
condition as above. We calculate the following aerodynamic
performance factors, i.e., the lift coefficient CL, the thrust
coefficient CT, the pitching moment coefficient CM, and the
power coefficient CP:

CL = F aero
y

0.5ρfU 2
tip(2S)

, (23)

CT = F aero
x

0.5ρfU 2
tip(2S)

, (24)

CM = T aero

0.5ρfU 2
tip(2S)L

, (25)

CP =
∫

wing (σ · n) · ulocal dS

0.5ρfU 3
tip(2S)

, (26)

where S is the area of one wing (i.e., equal to L2), σ is
the stress tensor on the wing surface, n is the unit normal
vector on the wing surface pointing to the fluid (i.e., σ · n
is the local stress acting on the fluid by a unit area of the
wing surface), and ulocal is the flow velocity at the point.
Also,

∫
wing dS means the integral over the wings. Therefore,

the power coefficient CP represents the nondimensional form
of the power expenditure to move the wings against the
aerodynamic force. It should be noted that in the calculation
of CP we do not calculate the stress tensor σ directly but use
the volume force g(X , t ), which is applied on the boundary
Lagrangian points X in order to enforce the no-slip condition
on these points (see Ref. [20]).

Figure 4 shows the time variations of CL, CT, CM, and
CP for various values of NK for 9.0 � t/T � 10. As seen
in Fig. 4(a), the positive lift is produced during downstroke
and the negative lift force is produced during upstroke even
when the wings are highly flexible. This is attributed to the
wing kinematics that the wings are flapped downward and
backward during downstroke and upstroke, respectively. A
similar phenomenon can be seen from other numerical results
using more realistic butterfly models whose wing kinematics
were derived directly from those of actual butterflies [13,15].
On the other hand, in Fig. 4(b), the positive thrust is produced
during upstroke and the negative thrust force is produced
during downstroke. This is because the roles of the down-
stroke and the upstroke in the lift coefficient are equivalent
to the upstroke and the downstroke in the thrust coefficient,
respectively.

We can see from Figs. 4(a) and 4(b) that the positive
peak of CL during the downstroke and that of CT during the
upstroke significantly decrease as NK decreases, i.e., wing
flexibility increases. This is because the effective area of the
wings decreases due to their deformation. This shows lift and
thrust deteriorations due to the chordwise wing flexibility. In
addition, we can see that the small peak of CL around t/T =
9.75 (i.e., when the fore part is almost horizontal) and that
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FIG. 4. Time variations of (a) lift coefficient CL, (b) thrust coefficient CT, (c) pitching moment coefficient CM, and (d) power coefficient CP

for various values of the nondimensional spring stiffness NK when the body of the model is fixed, χ = 1.0, Re = 500, and the other governing
parameters are given as Set 1 in Table II. Each figure has a small subfigure in the right-hand side. In these subfigures, the left, right, and central
bullets indicate the time-averaged values in the downstroke, upstroke, and full cycle, respectively. In the subfigure of panel (a), the dotted line
indicates the nondimensional weight force of a Janatella leucodesima equal to 0.605.

of CT around t/T = 9.25 (i.e., when the fore part is almost
vertical) increase as NK decreases in the range 0.5 � NK. This
shows lift and thrust enhancements due to the chordwise wing
flexibility. This is attributed to the fact that the flexible wings
can generate not only the lift (thrust) force but also the thrust
(lift) force due to their deformation even when the wings are
horizontal (vertical). We will discuss the mechanism of the
lift and thrust enhancements later by observing the vortex and
pressure fields. We can see from Fig. 4(c) that the phase of the
peaks of CM delays as NK decreases, although the values of the
peaks are not so dependent on NK. This is because the motions
of the hind parts delay relative to those of the fore parts
due to the deformation of the wings, although the distance
between the trailing edge of the hind part and the wing root
does not change for χ = 1.0. We can see from Fig. 4(d) that
the magnitude of CP significantly decreases as NK decreases,
which is consistent with the decrease in the aerodynamic
forces shown in Figs. 4(a) and 4(b).

In order to discuss the mechanism of the lift and thrust
enhancements due to the chordwise wing flexibility, we ob-
serve the vortex and pressure fields around the flexible wings.
Figure 5 shows the vortex structure visualized by the Q
criterion around the butterfly model, and the color map of
the pressure for various cross sections of the right wing at
t/T = 9.23, i.e., when the fore part is almost horizontal. The
Q criterion is the second invariant of the velocity gradient
tensor [33] given by

Q = − ∂ui

∂x j

∂u j

∂xi
, (27)

where i, j = x, y, z represent the Cartesian coordinates and
the summation convention is used. The Q criterion identifies
low-pressure vortex structures. We can see from Figs. 5(a-1)

and 5(a-2) that the wing-tip vortex (WTV) and the leading-
edge vortex (LEV) appear on the upper surface of the wings,
and they are connected at the corner of the wings. Like an
actual butterfly, the WTV and the LEV are considered to be
a major cause of the lift and thrust generation of the present
model.

We can see from Fig. 5(b) that the low-pressure regions
appear in the upper side of the wing, whereas the high-
pressure regions appear in the lower side. Due to this pressure
distribution, the lift force has a large positive value at this time.
This pressure distribution can be caused by the vortices (WTV
and LEV) on the upper surface of the wing and by the increase
in the pressure of the air in the lower side. From Figs. 5(b-1),
5(b-2), and 5(b-3), it can be seen that the low-pressure region
is attached near the leading edge on the upper surface of the
wing and gradually comes off as it gets closer to the wing
tip. It is likely to be induced by the LEV. From Figs. 5(b-4)
and 5(b-5), it can be seen that the low-pressure region appears
near the wing tip on the upper surface of the wing. It is
likely to be induced by the WTV. On the other hand, the
high-pressure region appears on the lower side of the wing for
all cross sections, because the downward speed of the wings
is maximum around this time, and it is likely to be larger than
the downward speed of the ambient air. Therefore, the air in
the lower side is pressed by the wings, and consequently the
pressure increases in this region.

From this pressure distribution, we can explain the
mechanism of the thrust enhancement due to the chord-
wise wing flexibility around t/T = 9.25. We can see from
Fig. 5(b) that the low- and high-pressure regions cover not
only the fore part but also the hind part. This pressure differ-
ence between the upper and lower surfaces of the hind part
must cause the aerodynamic force perpendicular to the hind
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FIG. 5. Vortex structures viewed from (a-1) the upper side and (a-2) the right side of the butterfly model, and (b) the color maps of the
pressure fields on the plane perpendicular to the z axis for various positions relative to the wing root at t/T = 9.23 when the body of the model
is fixed, NK = 1.0, χ = 1.0, Re = 500, and the other governing parameters are given as Set 1 in Table II. In (a-1) and (a-2), the model is shown
in red, and the isosurface of the Q criterion [Q = 50(Uref/Lref )2] is shown in blue. In (b-1)–(b-5), the wing chord is shown in black, and the
color map shows the nondimensional pressure, i.e., (p − p0 )/(ρfU 2

tip ), where p0 is the initial value of the pressure.

part. Since the hind part is inclined by about 20◦ from the
horizontal plane, the aerodynamic force has not only the verti-
cal component but also the horizontal component. The vertical
component contributes the lift force, whereas the horizon-
tal component contributes the thrust force. Therefore, the
flexible wings can generate not only the lift force but also
the thrust force due to their deformation even when the wings
are horizontal. Also, the lift enhancement due to the chord-
wise wing flexibility around t/T = 9.75 can be explained in
the same way.

The time-averaged values of CL, CT, and CP are impor-
tant indices of the aerodynamic performance. Let the time-
averaged values of CL, CT, and CP in one stroke be CL, CT,
and CP, respectively. We define the power-loading coefficient
as

CPL =
√

CL
2 + CT

2

CP
. (28)

It should be noted that in this study the power-loading co-
efficient is defined by using the magnitude of the vector
(CT,CL), while in general it is defined by the ratio of the lift
coefficient to the power coefficient. Since the present butterfly
model generates the thrust force as well as the lift force, the
above definition should be more appropriate as an index of
efficiency.

Figure 6 shows CL, CT, CP, and CPL relative to the values
for the rigid wings at Re = 500 (see Table III) as the functions
of NK. In addition, this figure contains the results for various
values of the nondimensional hind wing-tip length χ . It should
be noted that the time-averaged value of CM is not shown

in this table, since it is more than two orders of magnitude
smaller than the peak value, i.e., negligibly small. We can
see from Figs. 6(a) and 6(b) that in the result when χ = 1.0,
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FIG. 6. The ratios of (a) time-averaged lift coefficient CL,
(b) time-averaged thrust coefficient CT, (c) time-averaged power
coefficient CP, and (d) power-loading coefficient CPL to the values

for the rigid wings Crigid
L , Crigid

T , Crigid
P , and Crigid

PL , respectively, as
the functions of the nondimensional spring stiffness NK for various
values of the nondimensional hind wing-tip length χ when the body
of the model is fixed, Re = 500, and the other governing parameters
are given as Set 1 in Table II.
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TABLE III. The time-averaged lift coefficient Crigid
L , the time-

averaged thrust coefficient Crigid
T , the time-averaged power coefficient

Crigid
P , and the power-loading coefficient Crigid

PL obtained by the rigid
wings for various values of the Reynolds number Re.

Re Crigid
L Crigid

T Crigid
P Crigid

PL

300 0.718 0.688 2.91 0.341
500 0.744 0.744 2.74 0.401
700 0.773 0.767 2.60 0.419
1000 0.802 0.789 2.49 0.452

CL and CT have their maximum values around NK = 1.0,
and these values exceed the values for the rigid wings. This
means that when we use an appropriate spring stiffness, the
lift and thrust can be enhanced in terms of the time-averaged
values. The appropriate spring stiffness can be determined
by the balance between the lift and thrust enhancements and
deteriorations due to the chordwise wing flexibility explained
above. In addition, we can see that the curves of CL and CT

get closer to the result for the rigid wings as χ decreases, and
their maximum values decrease. This means that the effect of
chordwise wing flexibility decreases as χ decreases, because
a small value of χ makes the area of the hind parts small.

We can see from Fig. 6(c) that CP increases with NK for
all the values of χ , and tends to the result for the rigid wings.
The power expenditure for the flexible wings is determined
by the balance between the lift and thrust enhancements and
deteriorations due to the chordwise wing flexibility. However,
the effect of the lift and thrust enhancements on the power
expenditure seems to be smaller than their deteriorations, be-
cause the thrust enhancement occurs when the velocity of the
wings is almost vertical, i.e., perpendicular to the thrust force,
and consequently the thrust enhancement does not affect the
power expenditure. For the same reason, the lift enhancement
does not affect the power expenditure either. We can see from
Fig. 6(d) that the value of CPL for the flexible wings is larger
than that for the rigid wings except when NK is very small.
In addition, we can see that CPL has its maximum value at an
appropriate value of NK depending on the value of χ . This
suggests that the chordwise wing flexibility can improve the
aerodynamic efficiency as well as the lift and thrust forces
when the body is fixed.

2. Effect of the Reynolds number Re and the
other governing parameters

We investigate how the effect of chordwise wing flexibility
shown in Sec. V A 1 is changed when the Reynolds number
Re is changed in the range 300 � Re � 1000. We set χ = 1.0
and use Set 1 shown in Table II as the other governing param-
eters. Table III shows the aerodynamic performance factors
obtained by the rigid wings for various values of Re. By using
them as the reference values, we calculate the relative values
of CL, CT, CP, and CPL for the flexible wings as shown in
Fig. 7. We can see from this figure that all the aerodynamic
performance factors decrease relative to those values for the
rigid wings as Re increases. However, the tendencies of these
factors for NK are similar to each other. Therefore, the effect

FIG. 7. The ratios of (a) time-averaged lift coefficient CL,
(b) time-averaged thrust coefficient CT, (c) time-averaged power
coefficient CP, and (d) power-loading coefficient CPL to the values

for the rigid wings Crigid
L , Crigid

T , Crigid
P , and Crigid

PL , respectively, as
the functions of the nondimensional spring stiffness NK for various
values of the Reynolds number Re when the body of the model is
fixed, χ = 1.0, and the other governing parameters are given as Set
1 in Table II.

of chordwise wing flexibility on aerodynamic performance is
not so dependent on the Reynolds number Re when the body
of the model is fixed.

Then we investigate how the effect of chordwise wing
flexibility is changed when the other governing parameters are
changed. We set χ = 1.0 and Re = 500. Figure 8 shows CL,
CT, CP, and CPL relative to the values for the rigid wings at
Re = 500 (see Table III) as the functions of NK for Sets 1
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FIG. 8. The ratios of (a) time-averaged lift coefficient CL,
(b) time-averaged thrust coefficient CT, (c) time-averaged power
coefficient CP, and (d) power-loading coefficient CPL to the values

for the rigid wings Crigid
L , Crigid

T , Crigid
P , and Crigid

PL , respectively, as the
functions of the nondimensional spring stiffness NK for the two sets
of parameters shown in Table II when the body of the model is fixed,
χ = 1.0, and Re = 500.
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and 2 shown in Table II. We can see from this figure that the
tendencies of these aerodynamic performance factors for NK

are almost the same. Therefore, the effect of chordwise wing
flexibility on aerodynamic performance is almost independent
of the other governing parameters as well.

3. The ratio between the wingbeat and natural frequencies

The ratio between the wingbeat and natural frequencies
have been often used to characterize the flexibility (e.g.,
Ref. [34]). The wingbeat frequency of the present butterfly
model is given as

ωf = 2π

T
. (29)

The natural frequency of the hind part can be defined by using
the moment of inertia of the hind part around the torsion
spring Ihind

w = mhind
w Shind

ξξ /2 (see Appendix A) as

ωn =
√

K

Ihind
w

. (30)

The ratio between the above frequencies can be expressed by
using the flapping amplitude θm, the wing-mass ratio WR,
the nondimensional total mass NM, the nondimensional hind
wing-tip length χ , and the nondimensional spring coefficient
NK as

ωf

ωn
= π

4
√

6θm

√
WR NM

χ2

√
NK

. (31)

From Fig. 6(d), the power-loading coefficient CPL has its
maximum value at NK � 0.5 for χ = 1.0 and at NK � 0.2
for χ = 0.75. The corresponding values of ωf/ωn are 0.335
and 0.298 for χ = 1.0 and 0.75, respectively. These values are
comparable with 1/3, which is consistent with the results of
a two-dimensional hovering wing with chordwise flexibility
[34]. Therefore, the appropriate value of NK which gives the
maximum value of CPL is given when ωf/ωn � 1/3 even in
the present butterfly model.

From Fig. 7(d), the appropriate value of NK which gives the
maximum value of CPL is not so dependent on the Reynolds
number Re. This is consistent with the results of a two-
dimensional hovering wing with chordwise flexibility [34]. In
addition, this is also consistent with the fact that the wing
deformation is mostly determined not by the aerodynamic
force but by the wing inertial and elastic forces in a hawk moth
[35].

From Fig. 8, the aerodynamic performance factors as the
functions of NK are not so dependent on the other governing
parameters. This might be because ωf/ωn as the function of
NK for Set 1 is comparable with that for Set 2. Actually,
we can calculate ωf/ωn as 0.237 × χ2/

√
NK for Set 1 and

0.221 × χ2/
√

NK for Set 2 from Eq. (31). If the aerodynamic
performance factors are mostly determined by the value of
ωf/ωn, it is a natural consequence that the results for Set 1 are
almost the same as those for Set 2.

From the above discussion, we can see that the aerody-
namic performance when the body of the present model is
fixed is mostly determined by the ratio between the wingbeat
and natural frequencies ωf/ωn, and the appropriate value of

NK which gives the maximum value of CPL is given when
ωf/ωn � 1/3.

B. Free-flight simulations

In this section we simulate the free flight of the butterfly
model with chordwise wing flexibility.

1. Without rotation

First, we simulate the free flight without rotation, i.e.,
we neglect Eq. (11), and solve Eqs. (9), (10), and (12). We
set θp = const = 0◦. This means that the body of the model
does not rotate in the pitching direction as well as in the
yawing and rolling directions. From a physical viewpoint, this
means that the inertia moment of the body is assumed to be
infinitely large, while the mass of the model is finite. Oth-
erwise, attitude control is assumed to be perfectly achieved
and to have no effect on the translational motion of the body.
Indeed, both assumptions are unrealistic. However, the aim of
this simulation is to investigate the effect of chordwise wing
flexibility on the translational motion of the model separately
from the rotational motion. In this simulation, we consider the
following two cases: (i) when χ = 1.0, Re = 1000, and the
other governing parameters are given as Set 1, which is close
to the set of parameters for a small butterfly (J. leucodesma),
and (ii) when χ = 1.0, Re = 500, and the other governing
parameters are given as Set 2, which is close to the set of
parameters for a fruit fly.

Figure 9 shows the time variations of the deflection angle
θw and the trajectories of the center of the body for case (i).
It should be noted that Fig. 9(a) shows the results during the
fourth period, since the simulation for NK = 0.1 was stopped
just after t = 4T due to the collision between the inner fine
grid and the bottom wall. We can see from this figure that
the curves of θw are similar to the results shown in Fig. 3
which were obtained when the body of the model is fixed,
although their amplitudes have small deviation within ±10◦.
This small deviation is caused by the vertical oscillations of
the body motion during one period shown in Fig. 9(b). We
can see from Fig. 9(b) that the butterfly model can go forward
and upward against gravity except when NK = 0.1, and the
trajectory reaches the most upward position when NK = 1.0.
This suggests that the model can fly most effectively when
NK = 1.0 for case (i). Although the most effective NK is
slightly different from the value suggested in Fig. 7 (around
NK = 5.0 when Re = 1000) presumably due to the increase
in the forward speed, this result is consistent with the results
obtained when the body is fixed, i.e., the time-averaged lift
coefficient CL has its maximum value at an appropriate value
of NK, and CL decreases as NK decreases.

Figure 10 shows the time variations of θw and the tra-
jectories of the center of the body for case (ii). We can see
from Fig. 10(a) that the curves of θw are quite similar to the
results shown in Fig. 3 which was obtained when the body of
the model is fixed, and the deviations in their amplitude are
smaller than those in Fig. 9(a). This is because in case (ii) the
nondimensional total mass NM is large compared with case (i),
and consequently the acceleration of the body motion is small.
Actually, the vertical oscillations of the body motion during
one period is not observed in Fig. 10(b). We can see from
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FIG. 9. (a) Time variations of the deflection angle θw and (b) trajectories of the center of the body for various values of the nondimensional
spring stiffness NK in the free flights without rotation when χ = 1.0, Re = 1000, and the other governing parameters are given as Set 1 in
Table II.

Fig. 10(b) that the butterfly model can go forward and upward
against gravity for any value of NK, and the trajectory reaches
the most upward position when NK = 5.0. This suggests that
the model can fly most effectively when NK = 5.0 for case (ii).
Although the most effective NK is slightly different from the
value suggested in Fig. 7 (around NK = 1.0 when Re = 500)
presumably due to the increase in the forward speed, this
result is also consistent with the results obtained when the
body is fixed.

From the above results, we can see that the chordwise wing
flexibility can improve the lift and thrust forces even in the
free flight without rotation. However, the improvement due to
the chordwise wing flexibility is not so large compared with
the results for the rigid wings.

2. With pitching rotation

Next, we simulate free flights of the butterfly model with
rotation (pitching motion), i.e., we solve Eqs. (9)–(12) fully.
Therefore, the model can rotate in the pitching direction,
while it does not rotate in the yawing and rolling directions.
The aim of this simulation is to investigate the effect of
chordwise wing flexibility on the pitching motion of the model
in addition to the translational motion. In this simulation,

we consider the two cases (i) and (ii) shown in the previous
section. The nondimensional moment of inertia of the body
NI = Ib/(ρfL5) = WR × NM/12 is equal to 0.252 and 5.06
for cases (i) and (ii), respectively. Unfortunately, we could not
find available data of Ib for actual insects. Therefore, we also
check the effect of Ib.

Figure 11 shows the trajectories of the center of the body
and the time variations of the pitching angle θp for case (i).
We can see from this figure that neither the rigid wings nor
the flexible wings can go upward against gravity. It should
be noted that the butterfly model could go upward when the
pitching motion is neglected as shown in Fig. 9(b). Therefore,
the lift force decreases due to the pitching motion. Actually,
the amplitude of the pitching angle θp during each period
is about 60◦ as shown in Fig 11(b), and consequently the
effective angle of attack θp + α is likely to change. The
effective AOA determines the directions of downstroke and
upstroke and significantly affects the lift and thrust forces.
Therefore, the model cannot obtain enough lift force sup-
porting its weight when the pitching motion is considered
due to the change of the effective AOA. In addition, for
the flexible wings, θp increases averagely and eventually
exceeds 90◦. This means that the model with the flexible
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FIG. 10. (a) Time variations of the deflection angle θw and (b) trajectories of the center of the body for various values of the nondimensional
spring stiffness NK in the free flights without rotation when χ = 1.0, Re = 500, and the other governing parameters are given as Set 2 in
Table II.
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FIG. 11. (a) Trajectories of the center of the body and (b) time variations of the pitching angle θp for the flexible wings with the
nondimensional spring stiffness NK equal to 1.0 and the rigid wings in the free flights with pitching rotation when χ = 1.0, Re = 1000,
and the other governing parameters are given as Set 1 in Table II.

wings can get off balance. The similar behavior was observed
in the free flight of the present model with square rigid
wings [12]. Although the model with the flexible wings can
reduce the speed of falling as shown in Fig. 11(a), this is
not because the pitching motion is stabilized but because
the lift force is enhanced by the chordwise wing flexibil-
ity. Therefore, we cannot expect that the chordwise wing
flexibility contributes to the passive control of the pitching
motion.

Figure 12 shows the trajectories of the center of the body
and the time variations of θp for case (ii). We can see from
this figure that although the model can go forward and up-
ward against gravity for any value of NK as well as for the
rigid wings, θp gradually increases and eventually the model
gets off balance. This result is consistent with that for case
(i) in terms of the fact that the model cannot maintain its
attitude stably. The trajectories and the time variations of
θp significantly depend on the value of NK. However, we
cannot completely say that the chordwise wing flexibility can
stabilize the free flight of the present model. For example, the
model for NK = 1.0 can stay closer to the horizontal trajectory

without control as shown in Fig. 12(a). This is because the
model largely lowers its head at the early stage and then
raises its head gradually as shown in Fig. 12(b). However, the
increase of θp cannot be stopped and eventually θp exceeds
90◦. This suggests that there is no mechanism that can keep
the value of θp in a favorable range. Therefore, we conclude
again that it cannot be expected that the chordwise wing
flexibility contributes to the passive control of the pitching
motion.

The above conclusion is valid even when the value of
the moment of inertia of the body Ib is changed. We denote
the value of Ib used in Fig. 12 by Ib0. Figure 13 shows the
trajectories of the center of the body and the time variations
of θp when Ib = 0.1Ib0, 0.5Ib0, 1.0Ib0 (the same value used in
Fig. 12), 2.0Ib0, and ∞ (without rotation). We can see that
although the model can go forward and upward against gravity
for any value of Ib, θp gradually increases, and eventually
the model gets off balance except for Ib � 2.0Ib0. When Ib =
2.0Ib0, the model seems to keep its attitude during t/T � 16.
However, θp tends to increase at t/T = 16, and it is predicted
that the model gets off balance in the same way as the results
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FIG. 12. (a) Trajectories of the center of the body and (b) time variations of the pitching angle θp for various values of the nondimensional
spring stiffness NK in the free flights with pitching rotation when χ = 1.0, Re = 500, and the other governing parameters are given as Set 2 in
Table II.
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FIG. 13. (a) Trajectories of the center of the body and (b) time variations of the pitching angle θp for various values of the moment of
inertia of the body Ib in the free flights with pitching rotation when NK = 1.0, χ = 1.0, Re = 500, and the other governing parameters are
given as Set 2 in Table II.

for other values of Ib. Therefore, even when we use different
values of Ib, the chordwise wing flexibility cannot passively
stabilize the free flight of the present model.

For the hovering wing kinematics of a fruit fly, it was sug-
gested that insects may passively stabilize their hover flight
via chordwise wing flexibility [36]. This seems to contradict
to the present results. This is attributed to the differences in
the wing kinematics and in the flight mode. Bluman et al. [36]
focused on the wing kinematics inspired by a fruit fly and
considered its hovering flight, i.e., a fixed-point equilibrium
where the body is at rest due to the balance of gravitational
force and torque, aerodynamic force and torque, and inertial
force and torque. On the other hand, we focused on the wing
kinematics idealized from those of butterflies, and considered
starting from the resting state and the transitional motion to
forward flight, i.e., the acceleration of the body motion is
significant. The present conclusion that the passive control of
the pitching motion by the chordwise wing flexibility cannot
be expected suggests the difficulty in stably maintaining the
attitude of the present model without active control. This
might be related to the erratic flight behavior of butterflies.

VI. CONCLUSIONS

We have investigated the effect of chordwise wing flex-
ibility on the flapping flight of a simple butterfly model
with numerical simulations based on the immersed boundary-
lattice Boltzmann method. The model is composed of two
triangle wings and a rod-shaped rigid body, and each wing
is composed of two rigid plates connected by a torsion
spring. The fore parts of the wings are flapped downward
and backward in downstroke and upstroke, respectively, in
a prescribed manner, whereas the hind parts move passively
by the inertial, elastic, and aerodynamic forces. In the present
study, we investigated the effect of chordwise wing flexibility
on aerodynamic performance in terms of the nondimensional
spring stiffness NK and the nondimensional length of the hind
part χ .

First, we investigated the effects of NK and χ on aero-
dynamic performance when the body of the model is fixed.
We found that the time-averaged lift and thrust forces and the
required power increase with NK, and there is an appropriate
range of NK where the time-averaged lift and thrust forces

are larger than those for the rigid wings. The mechanism of
the lift and thrust enhancements was considered that in the
downstroke the flexible wings can generate not only the lift
force but also the thrust force due to the deformation of the
wings, and in the upstroke the thrust force can be generated
in the same way. In addition, we found that the effect of
chordwise wing flexibility decreases as χ decreases, since
a small value of χ makes the area of the hind parts small.
The tendency of the aerodynamic performance for NK was
not so dependent on the Reynolds number Re and the other
governing parameters.

Second, we simulated free flights when the body of the
model can only move translationally. We found that the model
with the flexible wings at an appropriate value of NK can fly
more effectively than the model with the rigid wings, which
is consistent with the results obtained when the body of the
model is fixed.

Finally, we simulated free flights with pitching rotation.
We found that the model gets off balance for any value of
NK. Therefore, we could not expect that the chordwise wing
flexibility contributes to the passive control of the pitching
motion.
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FIG. 14. The coordinate systems (ξ, η) and (ξhind, ηhind ) fixed to
the fore and hind parts, respectively, where L is the wing length and
χ is the nondimensional hind wing-tip length.
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APPENDIX A: DETAILED FORMS OF LAGRANGIANS

In this section we show the detailed forms of the La-
grangians shown in Sec. III B. The formulation is based on
the coordinate systems (ξ, η) and (ξhind, ηhind ) fixed to the fore
and hind parts, respectively, as shown in Fig. 14. The origin of

(ξhind, ηhind ) is located at the point (1 − χ )L (−1, 1) observed
in (ξ, η).

The Lagrangian Lbody of the body is given by

Lbody = 1
2 mb

(
ẋ2

b + ẏ2
b

) + 1
2 Ibθ̇

2
p − mbGyb, (A1)

where the dot notation denotes the time derivative.

The Lagrangian Lfore of the right fore part is given by

Lfore = 1
4 mfore

w (ẋ2
b + ẏ2

b ) + 1
2 mfore

w Sfore
ξη (θ̇p + α̇)θ̇ cos θ + 1

4 mfore
w Sfore

ξξ (θ̇p + α̇)2 + 1
4 mfore

w Sfore
ηη {(θ̇p + α̇)2 sin2 θ + θ̇2}

+ 1
2 mfore

w Rfore
ξ (θ̇p + α̇){−ẋb sin(θp + α) + ẏb cos(θp + α)} − 1

2 mfore
w Rfore

η (θ̇p + α̇) sin θ{ẋb cos(θp + α) + ẏb sin(θp + α)}
+ 1

2 mfore
w Rfore

η θ̇ cos θ{−ẋb sin(θp + α) + ẏb cos(θp + α)} − 1
2 mfore

w G
{
yb + Rfore

ξ sin(θp + α) + Rfore
η cos(θp + α) sin θ

}
,

(A2)

where mfore
w is the total mass of the left and right fore parts, the vector (Rfore

ξ , Rfore
η ) corresponds to the position of the center

of mass of the right fore part observed in the coordinate (ξ, η), and the matrix Sfore
i j (i, j = ξ, η) corresponds to the inertia

tensor of the right fore part divided by mfore
w /2. These parameters are given by the total mass mw of the left and right wings, the

nondimensional hind wing-tip length χ , and the wing length L as follows:

mfore
w =

(
1 − 1

2
χ2

)
mw, (A3)

Rfore
ξ = (3 − 2χ )χ2

3(2 − χ2)
L, (A4)

Rfore
η = (2 − χ )2(1 + χ )

3(2 − χ2)
L, (A5)

Sfore
ξξ = 2 − 6χ2 + 8χ3 − 3χ4

6(2 − χ2)
L2, (A6)

Sfore
ξη = (2 − χ )2χ2

4(2 − χ2)
L2, (A7)

Sfore
ηη = 6 − 6χ2 + 4χ3 − χ4

6(2 − χ2)
L2. (A8)

The Lagrangian Lhind of the right hind part is given by

Lhind = 1
4 mhind

w (ẋ2
b + ẏ2

b ) + 1
2 mhind

w (1 − χ )L{ẋb(φ̇ sin φ − φ̇ cos φ sin θ − θ̇ sin φ cos θ )

+ ẏb(−φ̇ cos φ − φ̇ sin φ sin θ + θ̇ cos φ cos θ )} + 1
4 mhind

w (1 − χ )2L2{φ̇2(1 + sin2 θ ) + θ̇2 − 2φ̇θ̇ cos θ}
+ 1

2 mhind
w Shind

ξη (φ̇2 sin θ cos θ sin θw + φ̇θ̇ cos θ cos θw + φ̇θ̇w sin θ sin θw + θ̇ θ̇w cos θw)

+ 1
4 mhind

w Shind
ξξ {φ̇2(cos2 θw + cos2 θ sin2 θw) + θ̇2 sin2 θw + θ̇2

w − 2φ̇θ̇ sin θ sin θw cos θw + 2φ̇θ̇w cos θ}
+ 1

4 mhind
w Shind

ηη (φ̇2 sin2 θ + θ̇2) + 1
2 mhind

w Rhind
ξ {ẋb(−φ̇ sin φ cos θw − φ̇ cos φ cos θ sin θw + θ̇ sin φ sin θ sin θw

− θ̇w cos φ cos θw − θ̇w sin φ cos θ cos θw) + ẏb(φ̇ cos φ cos θw − φ̇ sin φ cos θ sin θw − θ̇ cos φ sin θ sin θw

− θ̇w sin φ sin θw + θ̇w cos φ cos θ cos θw) + (1 − χ )L(−φ̇2 cos θw + φ̇2 sin θ cos θ sin θw + φ̇θ̇ sin θ sin θw

+ φ̇θ̇ cos θ cos θw − φ̇θ̇w cos θ cos θw + φ̇θ̇w sin θ sin θw + θ̇ θ̇w cos θw)}
+ 1

2 mhind
w Rhind

η {−ẋb(φ̇ cos φ sin θ + θ̇ sin φ cos θ ) + ẏb(−φ̇ sin φ sin θw + θ̇ cos φ cos θ )

+ (1 − χ )L(φ̇2 sin2 θ − φ̇θ̇ cos θ + θ̇2)}
− 1

2 mhind
w G

{
yb + (1 − χ )L(− sin φ + cos φ sin θ ) + Rhind

ξ (sin φ cos θw + cos φ cos θ sin θw) + Rhind
η cos φ sin θ

}
− 1

2 Kθ2
w, (A9)

where φ is the effective angle of attack given by θp + α,
mhind

w is the total mass of the left and right hind parts, the
vector (Rhind

ξ , Rhind
η ) corresponds to the position of the center

of mass of the right hind part observed in the coordinate
(ξhind, ηhind ), and the matrix Shind

i j (i, j = ξ, η) corresponds to
the inertia tensor of the right hind part divided by mhind

w /2.
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FIG. 15. Time variations of (a) the lift coefficient CL and (b) the deflection angle θw for the flexible wing with K∗ = 5 during the third
period when Re = 200, Φ = 150◦, Ψ = 0◦, and αm = 35◦.

These parameters are given by the total mass mw of the left
and right wings, the nondimensional hind wing-tip length χ ,
and the wing length L as follows:

mhind
w = 1

2χ2mw, (A10)

Rhind
ξ = − 1

3χL, (A11)

Rhind
η = 2

3χL, (A12)

Shind
ξξ = 1

6χ2L2, (A13)

Shind
ξη = − 1

4χ2L2, (A14)

Shind
ηη = 1

2χ2L2. (A15)

APPENDIX B: VALIDATION FOR A FLEXIBLE WING

In order to validate the present numerical method for the
flexible wing, we calculate a flow around a flapping wing
with chordwise flexibility, which was simulated by Cheng and
Lan [10] using the artificial compressibility method with the
body-conforming grid [37]. The wing used in this simulation
is a rectangular flat plate with chord length c and wing length
R = 3c. The wing is composed of the leading and aft portions
connected by a torsion spring. The chord length and wing
length of the leading portion are 0.5c and R, respectively, and
those of the aft portion are the same. The motion of the leading
portion is prescribed by the simplified wing kinematics of
fruit fly [38]. The mathematical formulation of this motion
is shown in Refs. [10,37]. This motion is governed by the
three kinematic parameters, i.e., stroke amplitude Φ, phase
difference Ψ , and angle of attack at midstroke αm. In this
simulation, we set Φ = 150◦, Ψ = 0◦, and αm = 35◦. The aft
portion responds passively due to its mass m2 and the spring

stiffness K of the torsion spring. The deflection angle of the
aft portion is denoted by θw. The equation of θw is shown in
Ref. [10].

The characteristic length is taken as the chord length c,
and the characteristic speed is taken as Uref = 2Φr2/T , where
r2 is the radius of the second moment of wing area and
is equal to 0.56R, and T is the period of wing beat cycle.
The governing parameters of the system are the Reynolds
number Re = cUref/ν, the nondimensional mass of the aft
portion m∗ = m2/(ρf c3), and the nondimensional spring stiff-
ness K∗ = K/(ρf c5/T 2). In this simulation, we set Re = 200,
m∗ = 0.96, and K∗ = 5.

In the simulation by the IB-LBM, we set the x-y plane
to be parallel to the stroke plane and the z axis to point
upward. We use a computational domain with [−2L, 2L] ×
[−2L, 2L] × [0, 8L], and the position of the wing root is
set at (0, 0.28L, 6.4L). As for the boundary condition of the
domain, a no-slip boundary condition is used on all sides
of the domain. We use a multiblock grid [31] composed
of a fine grid with �x in [−1.5L, 1.5L] × [−1.5L, 1.5L] ×
[5.6L, 7.2L] and a coarse grid with 2�x in the other do-
main. We represent the wing by an arrangement of boundary
Lagrangian points on an infinitely thin plate, i.e., the wing
has effective thickness but converges to a thin object with
no volume in the limit �x → 0, whereas in the simulation
by Cheng and Lan [10] the wing had a finite thickness
equal to 0.03c. In this simulation, we set c = 40�x and
T = 18000�t .

We calculate the lift coefficient CL = Fz/(0.5ρfU 2
tipLc)

(where Fz is the aerodynamic force in the z direction) and the
deflection angle θw. Figure 15 shows the time variations of CL

and θw in 2 � t/T � 3. The results obtained with the present
method agree well with the numerical results computed by
Cheng and Lan [10].
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