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Numerical computation of the Rayleigh-Taylor instability for a viscous fluid
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In this article, the computation of the linear growth rates and eigenfunctions of the viscous version of
the Rayleigh-Taylor instability by numerically solving the corresponding eigenvalue problem in the case of
one-dimensional (1D) and two-dimensional (2D) geometries is studied. The 1D version is first validated in the
particular inviscid case to be compared to the previous literature. The most unstable mode, also known as the
first mode, which has the maximal linear growth rate has been extensively studied in previous literature. Higher
modes have smaller eigenvalues, but the corresponding eigenfunctions present a more complex structure that
contains multipeak shapes. In the extension to the 2D geometry, the length of the domain limits the wave number
of the eigenvectors computed. In the extension to the 2D geometry the length of the domain limits the wave
number of the eigenvectors computed. The importance of extending the results to the two-dimensional case is
twofold. First, it opens up the possibility of generalizing the computation to more complex geometries that could
contain fixed or floating objects and, second, allows the computation of flow instabilities in nonzero basic flows
that could come from the steady Navier-Stokes solutions.
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I. INTRODUCTION

The Rayleigh-Taylor instability (RTI), which occurs due
to the gravitational instability of a heavy fluid overlying a
lighter fluid [1], is important to a wide variety of applications:
ferrofluids [2], tectonics [3], exploding foils [4], aerobreakup
[5], and astrophysics [6,7].

Mikaelian [8] analyzed the Rayleigh-Taylor instability
in two finite-thickness fluids including viscosity effects.
A numerical dispersion relation was obtained for different
thicknesses and Atwood numbers. He performed a one-
dimensional (1D) analysis based on two fluids separated with
a sharp interface using homogeneous Dirichlet and Neumann
conditions for the velocity at the top and bottom boundaries
and compatibility conditions at the interface. The 2D ex-
tension presented in this work allows the analysis of more
complex flows and includes the possibility of studying diffuse
interfaces, with the sharp interface just a particular case.

Obied Allah [9] investigated the finite-thickness effect of
a slab of incompressible fluid with exponentially increasing
density supported by a fluid of constant density in the presence
of surface tension. He found that the finite thickness has a
stabilizing effect on the RTI.

Morgan et al. [10] studied the behavior of the most unstable
VRTI mode initiated with a diffuse interface. The results
exhibit good agreement with the dynamic diffusion model of
Duff et al. [11] for small wave numbers but produces larger
growth rates for large wave-number perturbations.

Yu et al. [12] investigated the inviscid RTI for a fluid
of tangent hyperbolic density. They obtained the multiple
eigenvalues for the growth rates of the RTI and the cor-
responding eigenfunctions which may have potential appli-
cations in comprehending the mixing behavior existing in

many areas. Moreover, they obtained a fitting expression for
those eigenmodes in the dimensionless form, which agrees
well with the numerical results for limited Atwood numbers
Aρ � 0.8. Dong et al. [13] revisited the physical problem that
was studied in Ref. [12] by developing a short-wavelength
asymptotic solution. Based on Wentzel-Kramers-Brillouin ap-
proximation, the growth rates of the RTI modes were obtained
for Atwood numbers close to unity.

However, to the best of our knowledge no numerical study
on the eigenvalue problem associated to the VRTI with a
diffuse interface has been performed. Therefore, in this paper
we carry out this research study in the case of 1D and 2D
geometries based on a hyperbolic tangent distribution density
profile that allows us to skip the compatibility conditions
when sharp interfaces are simulated. Two-dimensional com-
putation allows the possibility of studying more complex
geometries and baseflows than the ones normally studied in
the RTI; consequently, the interface instability of a wade
variety of hydrodynamic problems can be studied.

II. PROBLEM SETUP

The strategies to perform the linear stability analysis are
presented in this section. To study the viscous version of
the Rayleigh-Taylor instability, we assume a zero velocity
baseflow and two fluids separated by a common interface.
We analyze the evolution of the perturbations on the baseflow
assumed. In particular, we are interested in the development
of two-dimensional flow structures and the growth rates of
the different unstable modes. The calculations have been per-
formed either in 1D or 2D computational domains, validating
in both cases the inviscid hypothesis. For the 1D geometry,
the equations have been formulated as a system of three,
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two, and one equations depending on the number of fluid
variables eliminated by algebraic manipulations. Depending
on the number of equations used, the order of the system of
differential equations could change; consequently, the bound-
ary conditions must be reformulated accordingly.

Let ρ1, μ1, ν1 and ρ2, μ2, ν2 denote the densities and kine-
matic and dynamic viscosities of the top (heavy) and bottom
(light) fluids, respectively. The two phase flow is governed
by the incompressible Newtonian Navier-Stokes equations in
a domain �. The domain will be a rectangle of height 2H
and width 2L contained on the XY plane, mathematically ex-
pressed as � = [−L, L]x[−H, H]. The nondimensional ver-
sion of this set of equations reads:

ρ
∂u
∂t

+ ρu · ∇u = −∇p + ρug + ∇[μ(∇u + ∇uT )], (1a)

∇ · u = 0, (1b)

∂ρ

∂t
+ u · ∇ρ = 0, (1c)

where ρ, u, p, t , ∇, μ, and ug are the nondimensional density,
velocity, pressure, time, nabla operator, viscosity, and unity
vector representing gravity.

Similarly to Ref. [14], the characteristic time, length, ve-
locity, pressure, density, and viscosity scales are defined as:

ρo = ρ1 + ρ2

2
, μo = μ1 + μ2

2
, νo = ν1 + ν2

2
, (2)

to = (ν0/g2)1/3, lo = (
ν2

0/g
)1/3

, uo = (gν0)1/3, (3)

ko = (
ν2

0/g
)−1/3

, po = ρ0g
(
ν2

0/g
)1/3

. (4)

A steady nonparallel basic flow (ui, ρ, p) is perturbed
by small-amplitude velocity ũi, density ρ̃, and pressure p̃
perturbations as follows:

ui(x, y, z, t ) = ui(x, y) + εũi(x, y, z, t ) + c.c., (5)

p(x, y, z, t ) = p(x, y) + ε p̃(x, y, z, t ) + c.c., (6)

ρ(x, y, z, t ) = ρ(x, y) + ερ̃(x, y, z, t ) + c.c., (7)

where ε � 1 and c.c. denotes the conjugate of the complex
quantities ũi, ρ̃, and p̃. As baseflow, we consider two super-
posed fluids and static fluids ui = 0 separated by a diffuse
interface centered about y = 0 and subjected to a constant
gravitational acceleration in the vertical direction y.

Therefore, in order to describe the Rayleigh-Taylor (RT)
instability of sharp interface, it seems more consistent to
attempt to solve the problem for a transition layer of finite
thickness and then take the limit when the thickness tends to
zero. In order to examine the sharp jump limit, we adopt the
density and viscosity profiles

ρ = 1 + Aρ tanh(y/Ls) μ = 1 + Aμ tanh(y/Ls), (8)

where Ls is the gradient scale length of the density and
viscosity layers and Aρ, Aμ the Atwood numbers given by

Aρ = ρ1 − ρ2

ρ1 + ρ2
Aμ = μ1 − μ2

μ1 + μ2
. (9)

Taking account of Eqs. (8), typical air-water hydrody-
namic instabilities in the presence of a sharp interface can be

recovered by setting Ls → 0. When Eqs. (5), (6), and (7)
are substituted into the Navier-Stokes equations (1a), (1b),
and (1c), assuming zero basic flow ui = 0 and neglecting
second-order terms, the linearized Navier-Stokes equations
for the perturbation quantities are obtained:

ρ
∂ ũi

∂t
= − ∂ p̃

∂xi
+ μ�ûi +

(
∂ ũ j

∂xi
+ ∂ ũi

∂x j

)
∂μ

∂x j
+ ρ̃ugi, (10)

∂ρ̃

∂t
+ ũ j

∂ρ

∂x j
= 0, (11)

∂ ũi

∂xi
= 0. (12)

Since the coefficients of ũi, ρ̃, and p̃ do not depend on z and
t the perturbations quantities can be written as normal modes,

ũi(x, y, z, t ) = ûi(x, y)ekzzeγ t + c.c., (13a)

p̃(x, y, z, t ) = p̂(x, y)ekzzeγ t + c.c., (13b)

ρ̃(x, y, z, t ) = ρ̂(x, y)ekzzeγ t + c.c., (13c)

where the complex conjugate is required to render the per-
turbations real. Additionally, γ = σ + iω ∈ C is the complex
growth or decay rate σ and oscillation frequency ω.

In the following, two different numerical methods will be
used depending on the hypothesis used to solve the linearized
Navier-Stokes equations around a baseflow. The first formu-
lation uses a Chebyshev collocation method [15] when the
geometry is simplified to 1D, and the second performs a 2D
variational formulation of the equations using a second-order
finite element discretization based on the Galerkin method
[16].

III. MATHEMATICAL MODELS

A. Linear stability: Two-dimensional eigenvalue-problem
formulation and solution methodology

We are interested in the temporal stability analysis on a
2D computational domain (kz = 0) with homogeneous Dirich-
let boundary conditions on the top and bottom boundaries
and periodic boundary conditions between the right and left
boundaries. Consequently, this framework does not contain
any explicit z coordinate. A 3D generalization of this frame-
work, where the perturbations assume a spanwise periodic
length (i.e., homogeneous direction) and Lz is defined through
the real wave number kz = 2π

Lz
∈ R, can be obtained in [16].

The resulting system is solved in a 2D (x, y) ∈
[−L, L]x[−H, H] computational domain. In this case, a peri-
odic boundary condition is imposed between the boundaries
placed at x = ±L, see Fig. 1. This is a relevant difference
when compared to the classic 1D instability analysis of the
RTI which assumes periodic solution in both the horizontal x
and spanwise z directions [12]. Here the BiGlobal EVP [17]
[Eqs. (10)–(12)] has been solved without the need to resort
to the periodic assumption in the horizontal x direction and
infinite spanwise length. The perturbation flow must satisfy
the no-slip boundary conditions ũ = 0 on y = ±H .
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FIG. 1. Scheme of the geometry used for the 2D viscous simu-
lation. A dashed line indicates the y = 0 coordinate. The boundary
conditions are also written at each boundary.

For the present case, where the baseflow velocity is zero,
we have a real eigenvalue problem where the third equation
(14c), which contain the velocity perturbation component ŵ,
can be decoupled from the rest. Substitution of the ansatz (13)
into the perturbation equations (10) and (11) yields

Lû + ∂ p̂

∂x
− dμ

dy

(
∂ v̂

∂x
+ ∂ û

∂y

)
= −γ ρû, (14a)

Lv̂ + ∂ p̂

∂y
− 2

dμ

dy

∂ v̂

∂y
+ ρ̂ = −γ ρv̂, (14b)

Lŵ − dμ

dy

(
∂ŵ

∂y

)
= −γ ρŵ, (14c)

∂ û

∂x
+ ∂ v̂

∂y
= 0, (14d)

v̂
dρ

dy
= −γ ρ̂, (14e)

where L is the linear advection-diffusion operator:

L = −μ

(
∂2

∂x2
+ ∂2

∂y2

)
. (15)

This converts system (14) into a real generalized eigen-
value problem:

A · X = −γ B · X , (16)

where X = (û, v̂, ŵ, ρ̂, p̂)T with real linear operators A and B.
The boundary conditions for this problem are

û(−L, y) = û(L, y), (17)

v̂(−L, y) = v̂(L, y), (18)

û(x,±H ) = 0, (19)

v̂(x,±H ) = 0. (20)

The eigenvalues γ of such a real eigenvalue problem are ei-
ther real or they arise as pairs of complex conjugate eigenval-
ues. Adopting the existing nomenclature from the literature,
see, e.g.. Theofilis et al. [18], the corresponding eigenvectors
describe either stationary modes (γ = 0) or traveling waves
(γ = ±iω �= 0).

To discretize the equations, we use a triangular-element-
based unstructured mesh. The eigenvalue problem is solved
using a Krylov-subspace iteration, originally proposed in
Ref. [19] and discussed in detail in Ref. [17]. In order to
check the accuracy of the results during the stability analysis,

the number of mesh nodes is increased until three significant
digits of the most unstable eigenvalue were converged.

B. Linear stability: One-dimensional eigenvalue-problem
formulation and solution methodology

System (10)–(12) is now simplified using the assumptions

ũi(x, y, z) = ûi(y) exp(ikxx) exp(ikzz), (21)

ρ̃(x, y, z) = ρ̂(y) exp(ikxx) exp(ikzz), (22)

p̃(x, y, z) = p̂(y) exp(ikxx) exp(ikzz), (23)

where N discrete points were used in the 1D computational
domain y ∈ [−H, H].

Consequently, using the ansatz given by (21)–(23),
Eqs. (14a)–(14e) can be written as

ikx p̂ − μ(D2 − k2)û − Dμ(ikxv̂ + Dû) = −γ ρû, (24)

Dp̂ − μ(D2 − k2)v̂ − 2DμDv̂ + ρ̂ = −γ ρv̂, (25)

−kz p̂ − μ(D2 − k2)ŵ − Dμ(−kzv̂ + Dŵ) = −γ ρŵ, (26)

Dρv̂ = −γ ρ̂, (27)

ikxû + kzŵ = −Dv̂, (28)

where k2 = k2
x + k2

z and D = d/dy. In this velocity-pressure-
density formulation only homogeneous Dirichlet boundary
conditions for all components of the velocity perturbation at
y = ±H are imposed. Now the complex generalized eigen-
value problem for the determination of γ may thus be written
as

A

⎛⎜⎜⎜⎝
û
v̂

ŵ

ρ̂

p̂

⎞⎟⎟⎟⎠ = −γ B

⎛⎜⎜⎜⎝
û
v̂

ŵ

ρ̂

p̂

⎞⎟⎟⎟⎠, (29)

where the matrix A can be expressed as

A =

⎛⎜⎜⎜⎝
L −Dμikx 0 0 ikx

0 L − DμD 0 1 D
0 kzDμ L 0 −kz

0 Dρ̂ 0 0 0
ikx D kz 0 0

⎞⎟⎟⎟⎠ (30)

with the operator L,

L = −μ(D2 − k2) − DμD, (31)

where the matrix B

B =

⎛⎜⎜⎜⎝
ρ 0 0 0 0
0 ρ 0 0 0
0 0 ρ 0 0
0 0 0 1 0
0 0 0 0 0

⎞⎟⎟⎟⎠. (32)

Now, multiplying Eq. (24) by ikx and Eq. (26) by kz, and
making use of Eq. (28), we eliminate components û and ŵ of
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the perturbation velocity and obtain

k2 p̂ = [−γ ρ + μ(D2 − k2)]Dv̂ + (Dμ)(D2 + k2)v̂. (33)

Using Eqs. (25), (27), and (33), we obtain a reduced third-
order generalized eigenvalue problem system where the eigen-
vectors are formed by the vertical velocity, density, and pres-
sure perturbations,

A

⎛⎝v̂

p̂
ρ̂

⎞⎠ = γ B

⎛⎝v̂

p̂
ρ̂

⎞⎠. (34)

In this vertical velocity-density-pressure formulation, ho-
mogeneous Dirichlet boundary conditions are applied for the
vertical velocity and the normal derivative of the vertical
velocity perturbations.

v̂(y = ±H ) = 0, Dv̂(y = ±H ) = 0, (35)

with the A and B operators

A =

⎡⎢⎣ μ(D2 − k2) + 2DμD −D −I

μ(D3 − k2D) + Dμ
(
D2 + k2

) −k2 0

−Dρ 0 0

⎤⎥⎦ (36)

and

B =
⎛⎝ ρ 0 0

ρD 0 0
0 0 I

⎞⎠, (37)

where I is the identity matrix. This system can be reduced
to only one dimensionless stability equation for the vertical
velocity perturbation v̂:

Aγ 2 + Bγ + C = 0, (38)

where A, B, and C are, respectively,

A = k2ρv̂ − DρDv̂ − ρD2v̂, (39)

B = μ(D4 + k4 − 2k2D2)v̂ + 2(Dμ)(D3 − k2D)v̂, (40)

+ (D2μ)(D2 + k2)v̂

C = −k2Dρv̂. (41)

Equation (38) in conjunction with the boundary conditions

v̂(y = ±H ) = 0 Dv̂(y = ±H ) = 0 (42)

constitutes the quadratic eigenvalue problem for γ . This is the
same fourth-order ODE presented in Ref. [14] for two sepa-
rated constant density and viscosity fluids, solved in Ref. [8],
when boundary conditions are imposed at the interface that
link both regions.

IV. RESULTS

For a given wave number k, the viscous eigenvalue prob-
lems given by expressions (38)–(42) (in 1D) and (16) and (17)
(in 2D) are numerically solved using the respective boundary
conditions, which gives the eigenvalues and the correspond-
ing eigenfunctions. A spectral Chebyshev collocation and a
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A =0.2 numerical

A =0.4 analytical

A =0.4 numerical

A =0.6 analytical

A =0.6 numerical

A =0.8 analytical

A =0.8 numerical

FIG. 2. Growth rate σ of the most unstable eigenvalue in the
inviscid case versus the wave number k for different values of the
Atwood number Aρ = 0.2, 0.4, 0.6, 0.8 for H = 1 and Ls = 0.01.
The expression (43) is added in black lines for comparison.

finite element scheme are used for the 1D and 2D domains,
respectively.

A. Validation: Inviscid 1D problem

As a previous validation the inviscid limit μ = Dμ = 0 is
studied. The analytical result that corresponds to the dimen-
sionless classical RTI growth rate, see Ref. [9], is given by the
following expression:

γC = σ = √
Aρk tanh(kH ). (43)

A full spectrum is obtained when the inviscid version
of eigenvalue problem 38 is numerically solved. Except the
maximum eigenvalue which is widely investigated and ap-
proximates the classical value γC , we also find many other
eigenmodes with smaller eigenvalues. The smaller eigenval-
ues in the study of RTI have so far not been paid enough
attention by researchers.
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m=2  Yu et. al.
m=3 numerical
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m=4  Yu et. al.

FIG. 3. Growth rate σ of the most unstable and three less stable
internal modes versus the wave number k for Aρ = 0.2, Ls = 0.203,
and H = 1. The results from the analytic expression (44) when H =
1 have been added for comparison.
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FIG. 4. Eigenvectors of the vertical velocity component ṽ cor-
responding to the four most unstable modes m = 1 (a), m = 2 (b),
m = 3 (c), and m = 4 (d) for the wave numbers k = 4 and k = 6 for
Aρ = 0.2. Other parameters are Ls = 0.01 and H = 1.

Figure 2 shows the linear growth rates of the leading mode
as a function of the normalized wave number for different
Atwood numbers. The numerical results are obtained for a low
value of the density gradient scale length Ls = 0.01, which
corresponds to a steep transition between both fluids. The
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FIG. 5. Eigenvectors of the vertical velocity component ṽ cor-
responding to the four most unstable modes m = 1 (a), m = 2 (b),
m = 3 (c), and m = 4 (d) for the wave numbers k = 1 and k = 4 for
Aρ = 0.8. Other parameters are Ls = 0.203 and H = 6.

numerical eigenvalues are compared to the analytic results
from [8] for N = 256 Gauss-Lobatto points, obtaining an
accurate matching.

For smoothly varying density interfaces, Fig. 3 shows the
linear growth rates of the four less unstable modes as a
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FIG. 6. Dependence of the growth rate σ on k for Aρ = Aμ = 0.1
(a), Aρ = Aμ = 0.5 (b), and Aρ = Aμ = 0.9 (c). The upper and the
lower curves correspond to H = 4 and H = 2, respectively. Previous
numerical calculations [8] and spectral method (Ls = 0.01 and N =
256) are plotted.

function of the normalized wave number k for the Atwood
number Aρ = 0.2 and Ls = 0.203. For comparison, an ex-
tended version for finite H values of the expression (5) or Ref.
[35] in Ref. [12] for Aρ < 0.6 and H → ∞ is obtained as:

γm =
√

A2
ρk2 tanh(kH )

(1 + Aρk)[2(m − 1) + Aρk]
m = 1, 2, 3, . . . ,

(44)
Results are compared in Fig. 3 and all modes agree very

well with the values γm, obtained from corrected expression
(44) for finite domains of length 2H . As expected for all these
modes, the linear growth rates increase with the wave number
and approach unity as the wave number tends to infinity. The
first mode (m = 1) has the maximal growth rate and agrees
well with the classical value of γC , which is represented in
Fig. 3 by a continuous blue line.
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FIG. 7. Two most unstable vertical velocity, density and pressure
eigenvectors m = 1 (a) and m = 2 (b) for the 1D domain in the
viscous case, where k = π Aρ = Aμ = 0.9, Ls = 0.5, and H = 1.

Figures 4 and 5 show the vertical velocity eigenfunctions
ṽ corresponding to the four least stable modes for the wave
numbers k = 4 and k = 6 when the Atwood number is Aρ =
0.2 and Ls = 0.01 and k = 1 and k = 4 for an Atwood number
of Aρ = 0.8 and Ls = 0.203. The first case represents two
similar density fluids with a sharp interface and the second
two fluids with a significant density difference and a smooth
transition between them. As can be observed, higher modes
present more complex structures, especially on the interface
area. As with what happens in similar studies, see Ref. [12],
the number of local maxima and minima are related to the
order of the eigenmode. This means that the first eigenmode
contains one local maximum, the second contains one max-
imum and one minimum, the third two minimums and one
maximum, etc.

B. Viscous problem

1. Viscous 1D problem

Figure 6 shows the numerical results obtained when vis-
cous problem (38) is solved using a sharp interface with
density and viscosity gradient scale length Ls = 0.01. The
results are compared to the results in Ref. [8] using two differ-
ent phases and boundary conditions in the interface between
them. The calculations have been performed for Aρ = Aμ =
0.1, 0.5, 0.9 using two different computational domains of
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FIG. 8. Dependence of the viscous growth rate σ on k for Aρ =
Aμ = 0.9, Ls = 0.5, and H = 1 for the four least unstable modes
m = 1, 2, 3, 4.

height H = 2 and H = 4. The comparisons present very good
agreement. As expected, and differing from the inviscid case,
in the viscous case the curves do not present a monotonic
growing tendency, and a maximum is always found.

Figure 7 shows the two most unstable modes correspond-
ing to the fluid variables, vertical velocity, density, and pres-
sure, when the problem is solved for k = 1 in 1D with
Aρ = Aμ = 0.9, density and viscosity gradient scale length
Ls = 0.5, and computational size H = 1. In this work, apart
from the vertical velocity eigenmodes normally presented
in the literature, the density and pressure structures of the
eigenvectors are also shown. The density follows the tendency
of the velocity, verifying that the number of maxima and
minima correspond to the order of the eigenmode, but the
pressure does not follow that rule.

Figure 8 shows the growth rate of the four most unstable
values when Aρ = Aμ = 0.9, Ls = 0.5, and H = 1, when the
computation is performed in 1D. The shape of the distribution
follows for all modes the typical shape also found for the most
unstable one in Fig. 6, where in all cases a local maximum is
always found.

2. Viscous 2D problem

Now the computation turns to 2D, where the computational
domain is defined by a rectangle of 2L by 2H and the
discretization is performed by finite elements, using Taylor-
Hood triangular elements [16]. The density perturbation was
approximated by second-order polynomials. All the compu-
tations are performed in a computational domain H = 1 and

FIG. 9. Mesh used for the 2D viscous simulation.
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FIG. 10. Dependence of the viscous growth rate σ on k for
Aρ = Aμ = 0.8, 0.6, 0.4, 0.2 and H = 1. Referenced numerical cal-
culations [8] and FEM in 2D (Ls = 0.01) are plotted.

L = 4. The number of quadratic mesh nodes and triangular
elements is 23 145 and 11 458, respectively, where the mesh
has been refined around the horizontal line y = 0, see Fig. 9.

It should be noted that the numerical accuracy of this
second-order method in this case is lower than the one ob-
tained by the 1D spectral Chebyshev, but it allows more
complex computations in the future that cannot be per-
formed in 1D, such as complex baseflows involved in the
instability onset. In Fig. 10, the growth rate dependance on

(a)

(b)

(c)

xλ

(d)

FIG. 11. Most unstable perturbation for the case kx = π , H = 1,
L = 4, and Aμ = Aρ = 0.9. (a) Density, (b) pressure, (c) horizontal
velocity, and (d) vertical velocity. The computation was performed
with the interface parameter Ls = 0.5.
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FIG. 12. Second-most unstable perturbation for the case kx = π ,
H = 1, and Aμ = Aρ = 0.9. (a) Density, (b) pressure, (c) horizontal
velocity, and (d) vertical velocity. The computation was performed
with the interface parameter Ls = 0.5.

the wave number for the most unstable mode is computed
for several equal viscosity and density ratios Aρ = Aμ =
0.8, 0.6, 0.4, 0.2 when the density and viscosity gradient scale
length is Ls = 0.01. Again, all ratios present a local maximum
that increases with the Atwood number. It can be observed
that the higher the Atwood number, the larger the difference
between the computed value in 2D and the reference value
obtained by spectral methods in the 1D case. However, the 2D
computation allows the possibility of studying more complex
geometries than the ones normally studied in the RTI.

In Fig. 11, the most unstable perturbation for all the fluid
variables is represented for a large density gradient scale
length Ls = 0.5 and kx = π .The periodic structure is clearly
appreciated and the wave length is λx = 2π/kx = 2 which can
be also confirmed in the figure.

In Fig. 12, the second most unstable perturbation is also
represented for Ls = 0.5 and kx = π . As expected, the struc-
ture of the second mode (m = 2) is more complex, and the
number of maxima or minima in the components of the
vertical velocity perturbation and density increase with m.

V. CONCLUSIONS

In this work, a complete numerical description of the RTI
in both the viscous and the inviscid case has been addressed
using a single domain where the fluid properties vary accord-
ing to a hyperbolic tangent function. This viscous formulation
has been used in 1D and 2D, and it is able to describe the
RTI without implementing any boundary condition for the
interface. As result, the RTI is able to produce a spectrum
of multiple eigenvalues and the corresponding eigenvectors.
The spectrum is formed by a leading eigenvalue, well stud-
ied in previous literature, but the rest of the spectrum has
not been so extensively studied, especially in the viscous
case.

The fitting expression proposed in the literature [12] for the
inviscid case was generalized for a finite domain and used as a
reference for validation. Our numerical 1D formulation with a
single fluid of variable density and viscosity was compared for
viscous cases with the results provided in Ref. [8] obtaining a
very good agreement for a wide range of density and viscosity
ratios. The results are computed both in a 1D computational
domain using a spectral discretization and then also general-
ized to a 2D domain where a typical FEM discretization is
used.

The possibilities contained within the 2D formulation al-
low us to include more complex geometries and baseflows
than the ones used for the classical RTI. The formulation
presented here allows the presence of submerged objects or
previously computed biphasic solutions of the Navier-Stokes
equations.

The present work also generalizes the potential applica-
tions of fluid mixing that appear in many areas to those cases
where viscosity has a relevant role. The paper quantifies how
viscosity affects higher modes which have have relatively
smaller linear growth rates. Future applications will be per-
formed in the near future, where the RTI is studied inside
nonrectangular shapes.
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