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A paper spring is a simple paper craft popular with children. It can be constructed by interfolding and gluing
two long strips of paper of equal sizes, with the simplest possible crease patterns. In addition to its curious
springy response, this origami-based composite exhibits a twist deformation during its extension. Although its
interlocking structure is expected to underly the strong stretch-twist coupling, a detailed understanding of it re-
mains elusive. Here we quantify the kinematics and mechanics of a paper spring during its extensional actuation
by combining experimental, numerical, and analytical approaches. We directly link the nonlinear mechanics of a
paper spring with its structural design and the sheet elasticity. We show that the unique interlocking provides an
enhanced structural rigidity because the thin sheets suffer from geometric frustrations and must locally bend and
stretch during extension. This structural design allows for a reversible transformation between the rotatory and
linear motions solely by controlling forces and moments applied at the ends of the structure. Such deployment
kinematics could provide a unique avenue of the mode conversion for potential applications and will broaden
the possibilities of future designs of origami-based springs with tunable functionalities.
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I. INTRODUCTION

Foldable thin structures are ubiquitous in engineering, arts,
architecture, and biology. Among others, origami art defines
the formation of complex three-dimensional (3D) geometry
from a simple flat sheet via folding with prescribed crease
patterns [1–3]. The beauty of origami geometry can be found
in a number of biological systems such as plants [4,5] and
insect wings [6,7] and is currently exploited in a wide range of
applications, including solar sails [8], airbags [9], stent grafts
[10], soft robotics, and mechanical metamaterials [11].

Over the last decade, the mechanics of origami has become
an active research field in physics. This is in contrast to the
classic rigid origami study that concerns the geometry of an
idealized rigid-face, zero-thickness origami. The mathematics
of rigid origami has established a powerful knowledge base
on the design space of possible folding patterns [12]. It fails,
however, to provide insight into the stiffness or elasticity of
real physical origami made of thin sheets of finite thickness
and material properties.

The study of origami mechanics focuses on this aspect.
Recent studies have successfully explained emergent resorting
forces and moments during folding and unfolding processes
in terms of energetic costs in elastic hinges [13]. However,
it has also been recognized that the hinge elasticity alone is
not sufficient to understand the multistability and snapping
dynamics in a class of origami-like foldable structures found
in manmade and natural systems [14–17]. For those problems,
the bending and twisting of plates is known to be essential,
much like in the study of elastic shells [18].
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A complete understanding of the geometric mechanics
of elastic origami is challenging, especially when a crease
pattern allows for bistable or multistable morphing pathways.
To highlight the role of plate elasticity in the mechanics of
foldable structures, here we propose to investigate a specific
system—an origami-inspired spring that is known as a paper
spring; see Fig. 1. This simple paper craft is made by folding
and gluing a pair of long strips of paper of equal sizes [20].
The basic crease pattern of each strip is very simple, an
accordion-like parallel fold [21], yet an intriguing mechanical
behavior emerges from the coupling of its unique interlocking
structure and the sheet elasticity. For instance, the spring over-
all exhibits an enhanced structural rigidity upon stretching,
because the thin sheets suffer from geometric frustrations and
must locally bend and stretch, similarly to zipper-coupled

FIG. 1. How to make a paper spring. (1) Begin with two long
strips of paper of equal sizes, glue them together such that they form a
right angle. (2) Fold the lower strip over the top one, then (3) fold the
strip that just came to the lower layer over the one on top. Continue
this process (the lower strip always folds over the top one), until the
last fold at which the entire lengths of the strips are folded up into a
small square. The process is completed by gluing the last flap. See
Supplemental Movie 1 for a demonstration [19].
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origami tubes [22]. This also leads to an unusually large
stretch-twist coupling that may find a potential application in
the mechanisms of mode conversions.

We first fabricate a physical model of a paper spring with
very compliant hinges, using thin plastic sheets. By measuring
the tensile force and twisting, we experimentally quantify its
kinematics and mechanics during the actuation, which are
corroborated with our finite-element numerical simulations.
We then develop a simple analytical theory to understand the
massive geometric coupling between rotation and translation,
as well as the spring’s linear response (Hooke’s law) to explain
our experimental and numerical data. We further provide an
empirical scaling relationship for the force versus extension
behavior that may be applicable to high-force regimes where
the response is nonlinear. Finally, we measure 3D shape
changes of selected plates to gain information on the surface
curvature distributions. Visualization of the Gaussian curva-
tures suggests that a highly stretched region emerges and is
localized close to vertices, which may be responsible for the
stress-stiffening behavior.

II. STRUCTURE

Before the mechanical test, we characterize the geometry
of our paper spring in this section. A unit cell consists of
two identical modules, each of which comprises two identical
square plates of length a and thickness t (� a) that are
connected with freely rotating (floppy) straight crease lines.
Repeating the unit cell defines the periodic structure of our
paper spring. (See Supplemental Movie 2 for a 360◦ view
of a spring model [19].) Hereafter, we denote its period as
N , for which each strip consists of 2N plates [Fig. 2(a)].
Overall, the spring has a discrete helical structure, like many
other common springs. See the dashed line in Fig. 2(b). An
individual plate has four sides: two are the crease lines (a
valley and a mountain crease) and the other two are free.
However, in the interfolded configuration, one of the two free
sides is always occupied by the crease line of the pairing strip.
Thus, in the assembled geometry, only one side of any plate
is really force- and moment-free. We denote the other three
as the hinge sides. These hinges are all one-dimensionally
connected, and each constitutes a single helical frame with
a period equal to that of the unit cell; see the white links in
Fig. 3 that schematically show our structure. In contrast, the
free sides also form a helical structure, but it makes one full
helical turn every four unit cells with the handedness opposite
to that of the hinge helix (see the yellow links in Fig. 3). Thus,
by definition, there are three such identical helices of the free
sides, each of which is separated by the distance of the unit
cell along the long axis of the spring. (Note that only one of
the three is displayed in Fig. 3.) Therefore, the skeleton of
our paper spring may appear as the quadruple-stranded helix:
one strand is a short pitch helix of the hinge lines with one
handedness, and the other three are long-pitch helices with
the opposite handedness.

Note, however, that the exact fourfold rotational symme-
try with a regular spiral progression along the long axis
is geometrically impossible; the design satisfies the discrete
fourfold rotational symmetry only approximately. Our spring
actually cannot be represented as a mechanism of rigid

scotch tape polystyrene plates

sheets(a)

(b)

Unit cell

FIG. 2. (a) Schematics of a realization with thin plastic plates of
a paper strip folded into a concertina. A floppy crease line is realized
with a thin Scotch tape. The two such corrugated strips are assembled
into a linear interlocking structure according to the “paper-spring”
procedure. (b) Architecture of our paper spring. A pair of accordion-
like corrugated strips (blue and red) are interfolded. The highlighted
section in the leftmost figure defines a unit cell.

straight lines of constant length linked by the hinges. At
any extension, the crease lines must bend, and corresponding
plates must also bend and stretch. This is distinctly different
from the majority of recent work in which geometrically
compatible origami patterns such as Miura-ori were
considered [23].

III. EXPERIMENTAL METHOD

To quantify the geometric mechanics of a paper spring,
we manually fabricate its experimental model that may be
suitable for repeatable measurements. We used commercial
polystyrene sheets instead of paper to minimize the effects of
anelastic deformations and humidity. An accordion-like strip
comprises identical square plates of length a that were cut out
from a B4 size plastic sheet with a cutting machine (Silhouette
Cameo, Graphtec). Models of various combinations of the
geometric parameters (the plate size a = 20 and 40 mm,
thickness t = 0.2 and 0.4 mm, and the periodicity N = 2.5
and 6) were fabricated. We have independently determined
the Young’s modulus of a plastic sheet by measuring a sheet
deflection by its own weight and fitting the shape with the
theory of Euler elastica under gravity, which yielded E =
2.5–4.3 GPa.
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FIG. 3. A schematic physical model representation of the helical
structure of the linkages. The white links represent the hinge sides of
thin plates, whereas the yellow links represent the free sides. They
define the helical skeletons with opposite handedness to each other.

We joined two flat plates with a sufficiently thin Scotch
tape that adds a negligible bending stiffness to the resulting
crease line [Fig. 2(a)]. This acts as a very compliant hinge
that requires almost no force to open the connecting panels.
To prevent the taped-together regions from being damaged,
the maximum fractional extension of a spring was less than
65% in our experiments.

To construct an entire spring, we start by gluing the termi-
nal plates of the two strips, making them a right angle (Fig. 1).
Depending on the order of folding, we can generate a right-
or left-handed spring. We complete the construction by again
gluing the final surfaces. Note that the energy-minimizing
configuration of our spring is the maximally folded one, which
differs from usual origami-type springs with finite hinge open-
ing angle and elasticity. Note also that no extension is allowed
if the structure comprises perfectly rigid surfaces. Deflections
of the plates are thus essential for global deformations of our
spring. While stretching, we did not observe any appreciable
sliding of the pairing strips, probably due to sufficiently strong
static friction forces enhanced by their interlocking structures.

Similarly to a usual elastic spring, our spring twists as it
extends. To realize a torque-free measurement, we assembled
a left- and right-handed spring that are structurally identical
except for the handedness. Stretching of this tandem array
allows us to quantify the twist in each spring by measuring the
rotation angle � at the middle as a function of the end-to-end
distance, under the zero net torque condition (Fig. 4). In the
stretching test, the whole object is horizontally mounted with
one end being fixed in position. In this configuration, the
spring was observed to sag weakly under its own weight.
The other end is displaced slowly with a stepping motor at a
constant speed, and the resulting tensile force is measured by
a load cell. We tried several different speeds to confirm that
the experiments are performed in quasi-equilibrium condition
for which the dependence of the stretching speed is absent.
The corresponding deformations are recorded with a digital
camera. In selected cases, we also capture the 3D profile of in-
dividual panels during stretching in a home-built triangulation

FIG. 4. Definition of the xyz coordinate system, the extension z,
and the twist angle � in our experiments. The side views [views (1)
and (2)] of a real spring model are also shown.

system. The data are then used to calculate the local curvatures
to characterize its stretching and bending in the panel.

In all the force versus extension curves shown in the
following, the zero displacement point is determined from the
dynamic force response. We start by compressing our spring
slightly beyond its naturally folded configuration, for which
F = −∞. As soon as the compression is relaxed, the force
rapidly approaches zero, then increases more slowly as it is
further extended. The point where dF/dz changes steeply is
identified as the zero displacement point of the spring.

To complement our experimental results, we also con-
ducted finite-element numerical simulations using the com-
mercial package Abaqus (Dassault Systems). A spring is con-
structed by connecting identical thin elastic plates of thickness
t/a = 0.005–0.02 with freely rotating straight line hinges. In
the simulations, stretching of an entire structure is investigated
in the force-controlled condition. To be more precise, one end
of the spring is fixed, say, within the x-y plane, while the
other end is pulled by the external force along the z direction
that is applied uniformly on the final plate. The equilibrium
configuration was obtained by minimizing the elastic energy
of a linear isotropic solid by using four-node, quadrilateral
shell elements with geometric nonlinearity, Young’s modulus
E = 1 GPa, and Poisson’s ratio ν = 0.3 (valid for typical
plastic plates that usually have Poisson’s ratio ν = 0.3–0.4).
We tested systematically different sets of the mesh sizes and
types and confirmed that the results shown in the following
are essentially insensitive to those parameters.

IV. RESULTS

In Fig. 5 the measured twisting angle � at the middle of
the structure is plotted as a function of the rescaled exten-
sion z/(aN ) for springs of various geometries. Note that the
spring length at its full extension is 2aN , but we rescale z
by aN throughout this paper because the extension of our
springs never exceed 65% (see Sec. II). Selected experimental
snapshots of the tandem springs for period 2N = 12, size
a = 40 mm, and thickness t = 0.4 mm are shown in the inset
of Fig. 5, which compare well with those obtained from our
numerical simulations shown in Fig. 6. The scaling plot in
Fig. 5 shows that all the experimental and numerical data
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FIG. 5. Twist angle per unit cell, �/N , measured as a function of
the rescaled extension z/(aN ), for springs with different geometries
(the sheet size a, the sheet thickness t , and the number of unit cells
N). The experimental and numerical data are shown together. The
dashed line shows our prediction based on the kinematic theory,
while the solid line shows the analytical curve from Eq. (3) with
the adjustable parameter κ = 0.73. Experimental snapshots of the
physical spring model for a = 40 mm, t = 0.4 mm, and N = 6 for
increasing extension are given in the inset.

collapse onto a single curve, suggesting that the stretch-twist
coupling is insensitive to the plate thickness t .

Although an actual deformation involves complex bending
and stretching of the plates, the observed twisting behavior
of the spring may be predominantly geometric; it can be
understood with a purely kinematic consideration. We focus
on the helical linkage illustrated in Fig. 3 and assign a set of
vectors of constant length a to those association lines. The

FIG. 6. Configurations of the simulated paper spring of t/a =
0.02 and N = 6 at different extensions indicated in panels (a)–(c).
The color map represents the magnitude of principle (von Mises)
stresses.

unit cell, i.e., a full helical turn, is thus composed of a series
of four vectors q1–q4 (see Fig. 3). To proceed, we make the
following simplifying assumptions. First, upon deformation,
each association line remains a straight line of fixed length
a, making a constant angle π/2 − θ with respect to the
stretching axis (z axis):

qi · ẑ = sin θ. (1)

Second, any pair of consecutive vectors make a right angle,
that is, the plates keep their square vertices upon deforma-
tions, which requires

qi · qi+1 = 0. (2)

As discussed in the previous section, these two simpli-
fying assumptions are actually not geometrically compat-
ible but are still useful to derive an effective kinemati-
cal theory as long as the sheet deflections remain small
enough. We then parametrize the hinge vector as qi =
a(cos φi cos θ, sin φi cos θ, sin θ ) and plug them into Eqs. (1)
and (2) to obtain φi+1 − φi = cos−1(− tan2 θ ). The rotational
angle of qi in the xy plane per single helical turn is φi+4 − φi,
which equals 2π for a twistless spring. The net twisting
angle per period is thus φi+4 − φi − 2π = 4(φi+1 − φi ) − 2π ,
which, for a N-pitch spring, amounts to the total twisting
angle � = 4N sin−1(tan2 θ ). On the other hand, the extension
per spring is z = 4aN sin θ . Eliminating θ from these two
equations leads to the twist-stretch kinematic relation given
by �(z) = 4N sin−1{z2/[(4aN )2 − z2]}. In Fig. 5 we compare
this prediction with our experimental and numerical data; The
theoretical model (the dashed line) does capture the qualitative
trend of the data, but there is also some expected quantitative
disagreement due to the neglect of elasticity, as noted above.
For the configurations of the linkages assumed above, the
sheets would have to be considerably stretched, which is
kinematically possible, but is actually restrained owing to the
sheet elasticity. Thus, the spring undergoes more complex
deformations to minimize stretch in the sheets, for which
different unit cells may deform differently. As a consequence,
the unit cell, on average, may have to twist more than required
in the above kinematic theory. This may suggest the need for
replacing the plate size a with an effective (smaller) size κa
in Eq. (3), where 0 < κ < 1 is an adjustable parameter, for
obtaining an improved quantitative agreement in Fig. 5. We
thus propose

�(z) = 4N sin−1

[
z2

(4aN )2κ2 − z2

]
. (3)

In Fig. 5 we compare Eq. (3) with our experimental and
numerical data, and find good agreement between them, for
κ = 0.73. In the regime studied here, we see z/4aN � 1,
for which we obtain from Eq. (3) � ≈ z2/(4Nκ2a2). This
simple result provides a fairly good approximation over the
entire region of the extension z investigated here and should
be useful to characterize the twist-stretching coupling of the
spring.

In Fig. 7 we show the elastic responses of our spring.
The smooth monotonic increase of the stretching force F in
Fig. 7(c) confirms the absence of multistability in our spring;
it deploys continuously as it is stretched, unlike the other
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FIG. 7. Measured force F versus extension z curves for springs
of various geometries indicated. (a) Linear F -z relation at small
extension regime. (b) Spring constant Ks as a function of the thick-
ness t , extracted from the data shown in panel (a). (c) Force vs
extension curves in the rescaled form suggested in Eq. (5). The
experimental and numerical data are shown together. In rescaling
the experimental data, we have used Young’s modulus E = 3.0 GPa
(from the measured range 2.5–4.3 GPa) in order to obtain the best
collapse of the data. For the sake of consistency, this value, E =
3.0 GPa, is assumed in panel (b).

origami-based structures that can display highly complicated
mechanical responses [24–26]. We also confirm that our
spring does not show any hysteric force responses during
extension and compression.

For small displacement regime, the restoring force of our
spring mainly arises from the bending elasticity of the plates.
Assuming a uniform deformation for all the plates, the spring
extension is z ∼ 2Nu, where u is the out-of-plane deflection
of each plate. The bending curvature of the plate is, thus,
κ ∼ u/a2, for which the bending energy may be given by
Ebend ∼ Bκ2a2 × 2N ∼ 2NBu2/a2, where B = Et3/[12(1 −
ν2)] is the bending stiffness. The tensile force F is, thus, found
from F = ∂Ebend/∂z, from which we obtain the linear load-
displacement relation F = Ksz, where the spring constant is
given by

Ks = (const) × Et3

(1 − ν2)a2N
. (4)

In Fig. 7(a) we show the load-displacement curves obtained
for a different set of parameters. We determine the experi-
mental spring constant Ks as the initial slope of those load-
displacement curves. The same procedure is applied to the
simulation data. The resulting Ks from both the experiments

and simulations are then plotted against t/a in Fig. 7(b),
which is in good agreement with the theoretical prediction
in Eq. (4), i.e., NKs/Ea ∼ (t/a)3/(1 − ν2). Note that some
experimental data in Fig. 7(a) do not appear to cross the origin,
probably because of imperfections that are unavoidable within
the manually prototyped structures, as well as deflections due
to gravity. Nevertheless, Fig. 7(a) unambiguously shows the
t3 dependence of the effective spring constant Ks, i.e., the
characteristics of the bending elasticity of thin plates. While
gravity may have some effect on the prefactor in Eq. (4),
we confirm that the linear response of the spring comes
predominantly from the pure bending of the faces.

At larger extension, the curve significantly departs from
the linear relation owing to geometry-induced stiffening
[Fig. 7(c)]. At this finite extension regime, the deformations of
the plates involve not only bending but also stretching (twist-
ing), and F ∼ Et3 scaling is no longer valid. Considering that
a force to stretch a thin sheet scales as ∼t , the t dependence
of the measured force should range between t and t3 and may
be close to t3 because the bending is still the dominant mode.
We propose the following empirical scaling relationship:

F = Et3−γ

a1−γ
f
( z

aN

)
, (5)

where f (x) is an as-yet unspecified scaling function charac-
terizing the force curve in Fig. 7(c). We choose the exponent
γ in Eq. (5) so that we obtain the best collapse of different sets
of data [Fig. 7(c)]. The fitting implies γ = 3/4, which leads
to the scaling relation F ∼ Et9/4/a1/4, which is reasonably
consistent with the mechanics of thin sheets. While the precise
functional form of f (x) is unknown, it steeply increases as
the extension x increases, indicating the stiffening behavior
is due to its interlocking structure. It is an open and intriguing
question whether the exponent γ = 3/4, as well as the scaling
function f (x), are universal for paper springs with different
folding geometries. In the next section, we further quantify the
degree of in-plane stretch in the sheet. For this, we capture 3D
deformations of a selected plate at finite spring extension and
compare the experimental shape with that from our numerical
simulations.

V. 3D SHAPES AND CURVATURES

In Fig. 8(b) we compare an experimentally measured shape
of a selected plate at z/(aN ) = 0.625 with that obtained from
the finite-element simulation. For a detail of the experimental
method, see the Appendix A. We find excellent agreement,
confirming that both methods correctly capture the 3D sheet
configurations. Apparently, the plate deflection is dominated
by a planar out-of-plane bending [see also Fig. 6(c)]. To
examine this in more detail, we derive surface curvatures from
the simulated configuration by making use of the discrete
differential geometry that yields the mean curvature H and
the Gaussian curvature K from the coordinate points of the
triangulated midsurfaces [27]. In Figs. 8(c) and 8(d), we
show H and K for the spring of extension at z/(aN ) =
0.833, respectively. Notably, a locally inverted region appears
diagonally around the vertices, where H changes its sign
from positive to negative, with a strongly negative Gaussian
curvature K there, suggesting some vertices are stretched
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FIG. 8. Thin sheet shape and its surface curvatures. (a) Simulated
configuration of a spring for N = 6 at extension z/(aN ) = 0.833.
(b) Comparison between the experimental (filled symbols) and nu-
merical (solid lines) shapes of one of the plates in the deforming
spring at z/(aN ) = 0.625 (a = 40 mm, t = 0.4 mm, and z = 150
mm in the experiment). (c) Gaussian curvatures K and (d) mean
curvatures H in the plate obtained from the simulation data shown
in panel (a). The plate analyzed in panels (c) and (d) is enclosed by
the dotted line in panel (a).

substantially. In the rest of the regions where the surface
appears cylindrical, K is found to be almost zero, as expected.
Thus, we confirm that the deployment of the entire structure
does involve the sheet stretching, in agreement with our
expectation from Fig. 7(c). A further extension of the whole
structure may lead to damage, predominantly, at the taped-
together regions. To investigate even higher-force regimes, the
current device fabrication may have to be reexamined.

VI. DISCUSSION

In our paper spring geometry, the pairing strips are inter-
locked; they mutually constrain deformations of the other.
This design substantially enhances the structural rigidities
because the thin sheets suffer from geometric frustrations and
must locally bend and stretch, yet keeping its overall struc-
tural flexibility. For a sufficiently small extension regime, our
spring is very soft and can bend just like a toy Slinky. Beyond
this angle of the small extension, this overconstraining design
restricts the system to one dominant mode of deformation to
deploy itself—a simple extension and compression along its
major axis. As it extends, while the structure can still deflect
globally and may behave flexibly, the global bending becomes
increasingly stiffer.

A remarkable feature during the actuation is the strong
coupling of the global twisting to the stretching mode (see
Fig. 5). For the deployment, one end of the structure must

FIG. 9. Demonstration of the direct conversion of the end rota-
tion to the linear translational motion with a tandem assembly of a
left- and right-handed spring. This kinematic coupling is reciprocal:
force applied at the middle of the structure can induce the rotation
of one end of the structure with respect to the other. See also the
Supplemental Movie 3 [19].

rotate with respect to the other. Using this tight torque-force
reciprocal relation, we envision a direct mechanical transduc-
tion of a torque applied at the ends to a linear displacement in
a programmable way. For example, in a tandem arrangement
of a left- and right-handed spring, torques applied at the ends
allow for a linear translation and a precise positioning of
the middle part because one spring is extended (compressed)
while the other is compressed (extended). (See Supplemental
Movie 3 for a demonstration [19].) Furthermore, the range
of the distance of the translation can be tuned accurately
with the applied load at the ends. This metamaterial-like
property is robust in our paper spring architecture and will
be favorable for potential applications in the design of a range
of mechanical devices including soft robotics.

Note that the geometric twist-stretch coupling is a gen-
eral feature for chiral slender structures, from nano- to
macroscales [28,29]. For example, a twisted origami bellows
also shows untwisting (twisting) behavior during extension
(compression). By connecting left- and right-handed such
bellows (Fig. 10), we observe a similar behavior to our paper
spring as shown in Fig. 9. (See Supplemental Movie 4 for
a demonstration [19].) However, because of its multistable
nature, the extension and compression behavior of the tandem
origami bellows is not really smooth. The faces are bistable
and can often snap locally when the bellows is stretched
sufficiently. This induces a locally stable natural curvature,
making the whole structure helical as shown in Fig. 10.
In contrast, our spring paper model is robustly monostable,
smoothly expanding and shrinking as it twists and untwists.
Its kinematics is precisely described by Eq. (3), which is
fully predictable, reproducible, and controllable. In addition,
the coupling here is distinctly prominent compared with
many other slender chiral structures. Regarding the fabrication
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FIG. 10. (a) Demonstration of the direct conversion of the end
rotation to the linear translational motion with a tandem assembly of
a left- and right-handed twisted origami bellows. (b) Origami bellows
with a defect (a locally inverted face) after the deployment.

aspects, the crease pattern of our paper spring is much simpler
than those of typical origami bellows and might be suitable
for envisioning automatic productions in the future. These
advantages may make our paper spring a unique system as
a reversible torque-force conversion device.

VII. CONCLUSION

In this paper, by combining fabrication, experiments, nu-
merical simulations, and analytical theory, we have inves-
tigated the geometrical and mechanical properties of a pa-
per spring: an origami-based structure made by folding and
gluing together two thin strips of paper. To the best of the
authors’ knowledge, this is the first attempt to characterize
the nonlinear mechanics of this popular origami-like motif.
In fact, a paper spring is very easy to make, much easier
than more typical origami patterns. (Try it yourself.) From
this simplest possible crease pattern, a rich mechanical and
structural behavior is shown to emerge. Through systematic
experiments, we have revealed the strong geometric coupling
between stretch and twist, as well as the increasing stiffness

against a global bending during unfolding. This deployment
kinematics could provide a unique avenue of the mode conver-
sion for potential applications in mechanical designs. We have
also addressed the origin of its springy response, quantifying
the bending and stretching in the sheet panel by capturing its
shape and surface curvatures. Our present study will serve as
the important first step for the physical understanding of this
unique deployable structure. At this stage, a number of aspects
are still open to further detailed experimental and numerical
investigations.
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APPENDIX: 3D SHAPE MEASUREMENTS

For the stereoscopic reconstruction, we first placed 100
black mill-metric dots on one of the faces of a spring, regularly
placed on a square grid with a grid size of about 4 mm. The
spring was stretched to a given extension and was positioned
about 1.5 m from a digital camera. Images were taken at two
different viewpoints from 300 mm away, with their optical
axes set in parallel. The coordinates of the dots in the picture
plane were obtained by processing the photographs using
ImageJ software. We then reconstructed the corresponding
3D coordinates in real space by applying a scheme similar to
a standard triangulation method. We tested our method with
centimeter-sized objects of known shapes, such as a cube and
a sphere, and confirmed its accuracy within 2.3% error.
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