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Complex dynamical interplay between solid particles and flow in driven granular suspensions
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Granular materials immersed in a fluid are ubiquitous in daily life, industry, and nature. They include food
processing, pastes, cosmetics, paints, concretes, cements, muds, wet sands, snows, landslides, and lava flow.
They are known to exhibit a rich variety of complex rheological behavior, but the role of a fluid component
in such behavior has remained poorly understood due to the nonlocal and many-body nature of hydrodynamic
interactions between solid particles mediated by the fluid. We address this fundamental problem by comparing
the microrheological response of athermal granular suspensions with and without hydrodynamic interactions to
an externally driven probe particle by numerical simulations. We find that the presence of the fluid drastically
increases the drag coefficient of the probe particle by more than one order of magnitude near the jamming
transition. We reveal that this is a consequence of the nontrivial long-range nature of hydrodynamic interactions,
which originates from unlimited cumulative transmission of near-field hydrodynamic interactions due to the
incompressibility of both fluid and solid particles. Force chain formation of solid particles is dynamically coupled
with hydrodynamic flow, leading to strong spatiotemporal fluctuations of flow pattern and nonlinear rheological
response. Our study reveals essential roles of hydrodynamic interactions in complex rheological behavior of
dense granular suspensions under an external drive.
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I. INTRODUCTION

Dense athermal suspensions behave as elastic solids above
the so-called jamming point, whereas they behave as vis-
cous fluids under strong-enough loading: Such behavior can
be commonly seen in immersed granular materials, pastes,
emulsions, and foams [1–21]. The solid-to-liquid transition
induced by external loading, known as yielding, is important
not only in processing of materials and foods but also in ge-
ological phenomena such as liquefaction and land sliding and
biological phenomena such as the active motion of micro crea-
tures in mud and wet sand. When approaching the jamming
transition, the viscosity of suspensions steeply diverges. The
jamming takes place as a consequence of self-organization
of force network with isostaticity. Even before the jamming
transition, temporal force chains start to play a crucial role in
the viscoelastic response of dense suspensions [1,22,23], in-
cluding yielding [24,25] and abrupt shear thickening [26–30].
The presence of force chains leads to complex rheological
behaviors essentially different from ordinary simple fluids.

In suspensions of frictionless particles, force chains are
formed by solid particles with direct mechanical interactions.
On the other hand, the other component of a suspension,
a liquid, should also play a crucial role in the rheological
response [9,15] since the dissipation should take place ex-
clusively in the fluid for a system of frictionless particles.
However, the role of hydrodynamic interactions mediated
by the fluid, has remained elusive, due to theoretical and
technical difficulties in modeling many-body hydrodynamic
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effects properly and/or to an expectation for screening of
long-range hydrodynamic interactions by dense solid particles
[31,32].

For example, the exponential screening is rather well estab-
lished for polymer solutions [33]. This may also be the case
if solid particles are fixed in space, since flow is randomized
by them. However, this expectation is highly questionable in
general, although the situation has been a bit controversial
[32,34,35]. It is natural to expect that nonlocal hydrodynamic
effects should play a crucial role in the rheological response
of dense suspensions through a strong kinetic constraint on
particle rearrangements. So far, however, this problem has
not attracted much attention and the rheological behavior
of athermal suspensions has often been discussed on the
basis of mechanical interactions between solid particles, or
force chains, neglecting the nonlocal hydrodynamic nature of
energy dissipation.

In this article, we address this fundamental problem by
using numerical simulations. We stress that there is a crucial
difference between polymers and colloids: For the former we
can assume the point-force assumption for each monomer
and represent the velocity field created by it by the Oseen
tensor [33], whereas for the latter this is not the case because
a colloid particle has a finite volume and is incompress-
ible. Below we will show that this leads to the following
nontrivial hydrodynamic effects in dense suspensions. The
incompressibility has hierarchical roles in dense suspension:
near-field hydrodynamic interactions via the incompressibility
of the solvent and their transmission through that of both the
solvent and solid host particles. First, the incompressibility of
a fluid induces squeezing effects when particles approach each
other, tending to prevent direct contacts [36–40]: near-field
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hydrodynamic interactions. More importantly, the incom-
pressibility means the absence of an endpoint of flow line.
This suggests that the particle configuration in a suspen-
sion is to be self-organized by flow, resulting in long-range
spatiotemporal correlations. We note that the nature of the
long-range correlations is essentially different from that of un-
screened bare hydrodynamic interactions. Bare hydrodynamic
interactions are indeed disturbed by the presence of particles,
but this is not the end of story. By a completely different
mechanism, near-field hydrodynamic interactions propagate
in a cumulative manner over an unlimited range through the
incompressbility of the solvent and solid particles, resulting in
the nontrivial long-range nature of the interactions.

II. MICRORHEOLOGICAL APPROACH

To elucidate the essential role of hydrodynamic interac-
tions, we take an active microrheological approach to dense
athermal suspensions. The microrheological approach is a
very powerful means to elucidate the rheological response of
both thermal and athermal systems. It has been established
that there is a one-to-one correspondence between microrhe-
ological and macroscopic approaches in the linear response
regime of thermal systems [41–43]. For an athermal system,
there is a causal relation between an external perturbation
and the response to it. It was also shown both theoreti-
cally [44–46] and experimentally [47,48] that nonlinear shear
thinning behavior can also be accessed by microrheology.
Thinning behavior is often accompanied by asymmetry in
the particle configuration around the driven probe particle,
but the exact origin still remains elusive. The importance of
lubricational effects under a strong drag was also pointed
out [45,46,49]. The importance of hydrodynamic interactions
in microrheological behavior has been well recognized, and
there are many interesting studies [10,18,21,44–46,50–54].
However, most of previous works were limited to semi-dilute
suspensions or highly approximated the many-body nature
of hydrodynamic interactions. Thus, it has remained unclear
how hydrodynamics spatiotemporally organize host particles
and how such dynamical organization behavior affects the
rheological properties.

On the other hand, microrheological approaches to dry
granular media [55–59] and the method of intruder impaction
onto granular beds [60–62], have been established to in-
vestigate the local response of granular media to the probe
motion via force chains. For dry systems, the probe particle
experiences direct collisions with the surrounding particles
on its motion. This results in repeated formation and collapse
of force chains, and their mechanical stability controls dom-
inantly the flow behaviors. In this study, we put a particular
focus on the role of the hydrodynamic degree of freedom to
answer the fundamental questions such as how hydrodynamic
interactions affect the stability of force chains and how fluid
flow and force chains dynamically interact.

We study the rheological response of a suspension to the
motion of a probe particle driven by a constant external force
[63] for systems with and without hydrodynamic interactions
by numerical simulations. To this end, we perform numerical
simulations in two dimensions to see structural organization
clearly. In our microrheological approach, there are two key

parameters: the volume fraction of solid particles, �, and the
drag force, F , that is always applied to the center of mass of
the probe particle along x direction. We employ two numerical
simulation methods: (1) the fluid particle dynamics (FPD)
method [36], which fully incorporates many-body hydrody-
namic interactions, and (2) the relaxation dynamics (RD)
method, in which hydrodynamic interactions are completely
neglected and only the dissipation due to the particle-solvent
relative motion is taken into account as a constant local
friction coefficient, whose magnitude is set to be equal to
the Stokes friction of a single particle immersed in the same
solvent. The details of our system and FPD and RD methods
are explained in the next section.

III. METHODS

A. Setup of the system

The setup of the model system studied is as follows. We use
a two-dimensional (2D) model suspension of non-Brownian
particles, which is a binary mixture of two types of circular
disks, A and B. To avoid crystal ordering, the ratio of radius
between the two species is set as aA/aB = 1.4, and the number
of particles is approximately the same: NA ≈ NB. In a system
containing N = NA + NB particles in total, one of the larger
particles A is selected as a probe particle and dragged by a
constant external force F along x axis. Hereafter, the index
of the probe particle is set as i = 1, and we refer to the other
N − 1 particles as host particles. The particles interact via a
soft-core repulsive potential defined as

U (Ri j ) = ε

(
σi j

Ri j

)36

, (1)

with σi j = ai + a j , Ri j = Ri − R j , and Ri j = |Ri j |, where ai

is the particle radius and Ri the center of mass of particle i. Our
focus is on athermal suspensions of frictionless particles, and
thus there are neither thermal fluctuations nor contact friction
between particles.

We perform simulations in two-dimensional square sys-
tems under periodic boundary conditions. To check the finite-
size effects, the linear dimension L is varied as L = 64, 128,
256, and 512 for FPD and as L = 64, 128, 256, 512, and 1024
for RD. The volume fraction is defined as � = π (NAa2

A +
NBa2

B)/L2. All of the numerical simulations are started from
random particle configurations, and the drag force is imposed
at the start of each simulation.

B. Fluid particle dynamics

In order to take the hydrodynamic degrees of freedom into
account, we use the FPD method [36–39], a hybrid numerical
method where the Navier-Stokes equation for fluid dynamics
and the equations of the motions of particles are numerically
solved on-lattice and off-lattice, respectively. In this method,
solid particles are approximated by undeformable highly vis-
cous fluid particles, whose viscosity ηp is much larger than
that of the solvent ηs. The viscosity field is defined as

η(r) = ηs +
N∑

i=1

(ηp − ηs)φi(r). (2)
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The viscosity change across the interface of particle i is
represented by a smooth hyperbolic tangent function:

φi(r) = 1

2

[
tanh

(
ai − |r − Ri|

ξi

)
+ 1

]
, (3)

where ξi is the thickness of the particle interface. The time
evolution of the velocity field v(r) obeys the momentum
conservation equation or the Navier-Stokes equation:

ρ

(
∂

∂t
+ v · ∇

)
v = ∇ · ←→

σ + f p + f d , (4)

where the mass density ρ is uniform over the system. The
stress tensor ←→

σ is defined, using the viscosity field (2), as

←→
σ = −p

←→
I + η[∇v + (∇v)t ], (5)

where
←→
I represents a unit tensor. The pressure p(r) is

calculated so as to satisfy the incompressibility condition
∇ · v(r) = 0. f p(r) is the force density field due to the particle
interaction and is given by

f p(r) =
N∑

i=1

F p
i φi(r)

�i
, (6)

where �i = ∫
drφi(r) is the area of particle i and F p

i =
−∑

j �=i ∂U (Ri j )/∂Ri j is the interparticle potential force act-
ing on particle i. f d (r) is an external constant drag force acting
on the probe particle (i = 1, which we denote by the suffix p),
which is given by

f d (r) = Fφp(r)

�p
êx, (7)

with êx the unit vector along the x axis. Furthermore, we
introduce f ′

d = −F/L2êx, which is a superficial force on each
lattice, to guarantee that the center of mass of the system is
fixed, i.e., the momentum of the system is conserved. We note
that this term is negligible for a very large system size. This
term modifies Eq. (10) to add a term −�i

L2 F êx and Eq. (13)

to add −�p

L2 Fδi1êx. As shown in Eqs. (6) and (7), the central
forces acting on particles are mapped onto the lattice points
inside the particles and thus can be treated as the field variable.

The velocity of the center of mass of particle i is given by
the average of the fluid velocity inside the particle as

V i(t ) = 1

�i

∫
drφi(r)v(r, t ). (8)

Then the particle is translated off the lattice by the following
equation:

dRi

dt
= V i(t ), (9)

and the viscosity field (2) is updated with the φi field obtained
by new particle positions Ri. We repeat this procedure succes-
sively to follow the dynamic evolution of the system.

In the FPD method, if the ratio ηp/ηs is sufficiently large
and ξi/ai small, then we can safely assume that the particles
behave as solid ones. Since we treat a particle as a liquid
particle, the FPD method effectively satisfies the solid-liquid
nonslip boundary condition, which is the key to simplify our
simulation with full many-body hydrodynamic interactions.

We also stress that our method can satisfy the incompressible
condition almost perfectly.

To physically justify our method, we derive an approximate
equation of motion for particle i below. By multiplying both
sides of Eq. (4) by φi(r) and spatially integrating over the
system, one derives

Mi
dV i

dt
=

∫
drφi∇ · ←→

σ + �′
i

�i
F p

i + �′
p

�p
Fδi1êx, (10)

with particle mass Mi = ρ�i and �′
i = ∫

drφ2
i (r). The first

term in the right-hand side is the force exerted by the fluid
including hydrodynamic interactions. The second term is the
interparticle force, whose magnitude is corrected to take the fi-
nite thickness of particle surfaces into account. The Kronecker
delta in the third term indicates that the external drag force is
acting only on the probe particle.

The units of time τ and length � are considered to satisfy a
relationship

τ = ρ�2

ηs
, (11)

which sets both the density and viscosity of the fluid part to
unity. This τ is a time required for the fluid momentum to
diffuse over distance �. The units of stress and force are σ =
ρ(l/τ )2 and f = ρ�/τ 2, respectively. In our simulations, the
parameters are fixed as follows: aA = 8.96, aB = 6.4, ρ = 1,
ηp = 50, ηs = 1, ξi = 1, and ε = 1. The lattice size is � =
� = 1, and the time increment is �t = 0.004 for L � 256 and
0.005 for L = 512.

Here we note that the size of a small B particle aB = 6.4,
which is composed of about 130 lattices, is large enough for
our purposes. Moreover, the characteristic time of particle
motion, τch = aB/Vpx, is much slower than the time required
for momentum diffusion in a particle B, τdiff = a2

B/(ηp/ρ).
The ratio Re = τdiff/τch = ρVpxaB/ηp � 0.01 even at a very
low � (=0.038), where the partcle moves very fast. Thus, we
may safely assume that the velocity fields inside the particles
are equilibrated in the timescale of their motions.

C. Relaxation dynamics

The RD method completely neglects interparticle hydro-
dynamic interactions. The contribution of a fluid on particle
motion is only through a constant friction coefficient ζi.
Instead of Eq. (10), the center of mass Ri and the velocity
V i of particle i obeys the following equations:

dRi

dt
= V i, (12)

Mi
dV i

dt
= −ζiV i + �′

i

�i
F p

i + �′
p

�p
Fδi1êx. (13)

Here we note that in this case we do not need to introduce the
superficial forces, which are considered in the FPD method.
Moreover, the rotational degree of freedom is neglected. There
is an exact match in the timescale of single-particle motion
between the FPD and RD methods in a dilute limit.

The units of time τ and length � are chosen to be the same
as in the FPD method. We also employ the same parameters
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TABLE I. The drag coefficient of a probe particle in the FPD
method for different system size L and radius of probe particle ap.
No host particles are suspended. The magnitude of the drag force is
F = 0.5.

L ap C (1)
D

64 8.96 18.38081
64 6.4 12.67436
128 8.96 9.340263
128 6.4 7.393265
256 8.96 6.509153
256 6.4 5.482283
512 8.96 5.288024
512 6.4 4.588942

aA, aB, ξi, and ε as those used in the FPD method. The time
increment in the RD simulations is set as �t = 0.001.

D. Drag coefficient of the driven probe particle

In two-dimensional systems, the Stokes drag law is known
to be broken, and the drag coefficient is a function of not
only the steady velocity but also the system size [64]. In
our simulations, the friction coefficient ζi in RD is set to be
equal to the drag coefficient that is calculated by FPD for a
single-particle system, i.e., a system with no host particles.
The values are summarized in Table I for various system sizes
L and for probe radii ap (see also Appendix B and Fig. 8).

We can see that the drag coefficients are larger when either
the system size L is smaller or the particle radius ap is larger,
which qualitatively agree with a 2D hydrodynamic theory
including finite-size effects [64].

In the present study, the rheological properties of a sus-
pension are characterized by the drag coefficient of the probe
particle. The average probe velocity is obtained by the time
average of the probe velocity along the direction of the drag
force in a steady state: Vpx = 〈Vpx(t )〉t , where 〈X 〉t represents
the time average of a quantity X . Then the effective drag force
acting on the probe particle is defined as Feff = �′

pF/�p.
Thus, the drag coefficient is obtained as

CD = Feff

Vpx
. (14)

This definition is common in both the FPD and RD method.

IV. IMPACT OF HYDRODYNAMICS ON THE PROBE
PARTICLE MOTION IN DENSE SUSPENSIONS:

TIME-AVERAGED BEHAVIOR

A. Time-averaged rheological behavior toward
the jamming transition

First we focus on the time-averaged probe particle motion
and flow behavior, where spatiotemporal fluctuations are av-
eraged out by time averaging.

First we focus on the time-averaged rheological proper-
ties of a system. We investigate how the drag coefficient
diverges when the volume fraction approaches the jamming
point �J under a fixed driving force of F = 0.5. We dis-
cuss the nonlinear behavior of athermal suspensions, i.e., the
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FIG. 1. Divergence of the time-averaged drag coefficient toward
jamming. (a) The drag coefficient of the probe particle at F = 0.5
as a function of � in FPD for L = 64 (black circles), L = 128 (red
squares), L = 256 (green up-triangles), L = 512 (blue diamonds).
The inset shows the results in dilute regions. The solid lines are
guides to the eyes. (b) The drag coefficients normalized by that in the
dilute limit for FPD (solid symbols) and RD (open symbols) at F =
0.5. Purple down-triangles are the results for RD with L = 1024. The
solid lines describe the fit by Eq. (16) (see text). [(c) and (d)] The
time-averaged flow fields scaled by the average probe velocity V̄p for
FPD at � = 0.30, 0.65, respectively. The probe particle is dragged in
the direction of the right hand. Boxes are 256×256. We note that the
time-averaged data are obtained by time averaging over a long time,
during which the probe particle moves over at least several times of
the system size.

yielding behavior and the driving-force dependence of the
time-averaged drag coefficient, in Sec. VI. Figure 1(a) shows
the � dependence of the drag coefficient of the FPD simu-
lations for different system sizes L. The drag coefficient CD

steeply increases with an increase in � and tends to diverge
toward �J . In the inset of Fig. 1(a), we can see a clear finite-
size effect: The drag coefficient is larger for a smaller system
size due to the stronger confinement of flow (see Appendix A).
In Figs. 1(c) and 1(d), we calculate the time-averaged flow,
〈v(r, t )/V̄p〉t , where V̄p is the average velocity of the probe
particle, and see that it has a dipolar vortex pattern [51], which
is apparently the same as the one created around a driven
isolated particle in the steady state. We can also see that its
spatial pattern is independent of � [compare Fig. 1(c) for
� = 0.30 and Fig. 1(d) for � = 0.65], and constrained by the
system size L. It is worth stressing that the relevant length
scales characterizing the macroscopic averaged flow field in
our system are only the particle size ap and the system size L.
Thus CD should be a function of their ratio L/ap alone.

For an isolated particle, it is known that the drag coefficient
is affected by the finite-size effect as [64]

C(1)
D (L) = 4πηs

log(L/ap) − λ + πa2
p/L2

, (15)
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where λ 	 1.3105 (see Appendicies A and B and Fig. 8). The
fact that the time-averaged flow pattern in dense suspensions
is essentially the same as that for an isolated particle indicates
that we may replace ηs by the effective viscosity ηeff (�) in
Eq. (15) even for a dense suspension of the volume fraction
� by renormalizing the effects of disturbance of flow by
host particles. As will be shown later, however, it is worth
stressing here that although the time-averaged flow pattern has
a symmetric dipolar vortex shape, the flow pattern in dense
suspensions is strongly fluctuating spatiotemporally, or there
is no steady state.

Based on the above argument, we can now remove the
finite-size effect even at a high volume fraction � by scaling
the drag coefficient of the probe particle CD(L) by the one
without the other particles, i.e., a single-particle drag coef-
ficient C(1)

D (L) for the system with the same size L. Indeed,
we can see in Fig. 1(b) that, after the scaling, all the scaled
time-averaged drag coefficients obtained in various system
sizes fall onto a single master curve in the entire � range
studied: CD(L)/C(1)

D (L) ≡ CD/C(1)
D (∞). This validity of the

scaling strongly suggests a key physical nature of hydrody-
namic interactions, i.e., the absence of screening effects and
the presence of long-range cumulative correlation. Here we
used the term “cumulative” to express the special hierarchical
nature of hydrodynamic interactions.

In Fig. 1(b), we also plot the drag coefficient obtained by
RD. The drag coefficients just below the jamming in the RD
case are much less than those in the FPD case approximately
by one order of magnitude. We will discuss the origin of this
drastic difference later. Here we note that the RD data below
�c

∼= 0.5 has no physical meaning since, under the periodic
boundary condition, the trace of the probe particle creates an
empty path, or a tunnel, in which the probe particle passes
through without any interaction with the other particles.

Figure 1(b) tells us that the scaled drag coefficient CD/C(1)
D

for both FPD and RD steeply diverges toward the jamming
point �J obeying the following power-law functions:

CD(�) = C(1)
D [(�J − �)/�J ]−αX , (16)

where �J and αX (X = FPD or RD) are positive fitting pa-
rameters. Note that lim

�→0
(CD(�)/C(1)

D ) = 1. Fitting to the data

yields �J = 0.73, αFPD = 1.9, and αRD = 0.76. This critical
volume fraction �J is significantly less than the random close
packing fraction of a 2D rigid sphere system, �rcp 	 0.84 [65]
due to the soft nature of the power-law potential, which we
employed [see Eq. (1)]. We note that we use the common
value for �J for RD and FPD for simplicity, but there might
be a small difference in the value reflecting the difference in
the the main source of momentum dissipation.

Here we note that the value of the exponent αFPD is close
to 2, which was reported by Boyer et al. [13] for macroscopic
shearing of a granular suspension immersed in a viscous fluid.
However, since the difference in the spatial dimensionality
(3D vs. 2D), the type of perturbation (macroscopic vs. local)
and the friction (with and without friction) between their and
our cases may lead to a large difference in the particle collision
behavior and macroscopic flow pattern between the two cases.
Thus, the comparison is not straightforward and we leave the
relation between the two exponents for future study.

10-6
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10-4
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10-4(a)

(d)

(b)

(e)

(c)

( f )

FIG. 2. Time-averaged density distribution around the probe par-
ticle at F = 0.5, 1.0, and 1.5 for the FPD [(a)–(c)] and RD [(c)–(e)]
cases for � = 0.65 and L = 256.

The difference in the divergence behavior of the drag
coefficient toward �J between FPD and RD can be qual-
itatively explained as follows (see below on more details):
The viscous resistance steeply increases with an increase in
� since fluid flow is more strongly confined between narrow
channels among host particles. We stress that the degree of the
enhancement of the drag coefficient CD(�, L) depends only
on � once it is scaled by C(1)

D (L), as shown in Fig. 1(b).

B. Density distribution around the probe particle in motion

Next we discuss the density distribution of host particles
around the driven probe particle. Previous studies pointed
out that thinning phenomena are accompanied by fore-aft
asymmetry in the density distribution around the probe par-
ticle [44,47,48]. Here we consider whether this statement is
really applied to dense granular suspensions. We compare the
time-averaged density distribution around the moving probe
particle in Fig. 2 for the FPD and RD cases with different val-
ues of F in a range of force thinning behavior [see Figs. 7(a)
and 7(b)]. Here “force thinning” means that the decrease of
the drag coefficient with an increase in the drag force [41,49],
in the meaning similar to shear thinning. For the FPD case,
there is little asymmetry in the density distribution around the
probe particle for any drag forces employed [see Figs. 2(a)–
2(c)]. For the RD case, on the other hand, there is significant
fore-aft asymmetry and its magnitude grows monotonically as
the drag force is increased [see Figs. 2(d)–2(f)]. This clearly
indicates that the thinning behavior in the FPD case is not
associated by the asymmetry in the density distribution. This
preservation of the fore-aft symmetry is a consequence of
the incompressibility of a fluid, which induces back flow
[see Figs. 1(c) and 1(d)].

C. Force transmission

Next we focus on the average information on the force
transmission and the motion of host particles. Since force
chains directly affect the motion of the dragged particle via
the momentum conservation, we characterize how the stress
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FIG. 3. Time-averaged pressure and host-particle motion around
the probe particle for � = 0.65, L = 256, and F = 0.5. Spatial
correlation of particle pressure between the probe and the host
particles for FPD (a) and RD (b). Spatial correlation of the particle
displacement between the probe and host particles for FPD [(c) and
(e)] and RD [(d) and (f)]. The average displacements of the probe
particle are �lp = 0.625ap [(c) and (d)] and �lp = 15.6ap [(e) and
(f)]. Boxes are all 256×256.

exerted by the probe particle transmits via force chains, by
looking at the spatial correlation of local pressure. As a
measure of the strength of interparticle force, we calculate the
particle contribution on the stress tensor defined as

σ i
αβ (t ) = 1

2

∑
j

F i j
α (t )Ri j

β (t ), (17)

where Ri j
α is the α component of the interparticle vector

between particle i and particle j and F i j
α is the repulsive

potential force between them. The trace of the stress tensor
is proportional to the potential between the two particles,
U (Ri j ), used in this study. The correlation between the pres-
sure on the probe and that on host particles can be expressed
by the following field:

Gp(r) =
〈 ∑

i �=1

σ
p
αα (t )σ i

αα (t )

|σ p
αα (t )|2 δ(r − Ri(t ) + Rp(t ))

〉
t

. (18)

Here σ
p
αα represents the αα stress component of the probe

particle. The repeating indices mean the summation.
We show the spatial correlation of local pressure in

Figs. 3(a) and 3(b) for FPD and RD, respectively. Host par-
ticles involved in instantaneous force chains directly acting
on the probe particle contribute to the strong correlation in
the front part of the probe particle. We can see that the
pressure transmission range is longer for FPD than for RD
[see Figs. 3(a) and 3(b)]. This should arise from the difference
in the stabilization mechanism of force chains between the
two. For RD, a force chain is stabilized only by a proper geo-
metrical arrangement of particles under a mechanical balance
condition. For FPD, on the other hand, there is an additional
stabilization mechanism: Force chains can be stabilized by
fluid flow confined in narrow channels between particles
because the incompressibility of the fluid tends to inhibit the
local rearrangement of the host particles forming the force

chains. This can be regarded as hydrodynamic organization
(or stabilization) of force chains. We also note that the cor-
relation behind the probe particle in FPD is much stronger
than that in RD [see Figs. 3(a) and 3(b)]. This is because in
FPD host particles are transported by the dipolar vortexlike
flow as a consequence of the incompressibility of the fluid [see
Fig. 1(d) at the same �], which leads to interparticle collisions
and the resulting force chain formation even behind the probe
particle [see also Figs. 4(f)–4(h)].

D. Average motion of host particles

The existence of a fluid also significantly affects the motion
of host particles around the probe particle. By using the dis-
placement vector defined as ui(t ; �t ) = Ri(t + �t ) − Ri(t ),
we calculate the spatial correlation between the displacement
vector of the probe particle and those of host particles:

Gu(r; �t ) =
〈∑

i �=1

up(t ; �t ) · ui(t ; �t )

|up(t ; �t )|2 δ(r − Ri(t ) + Rp(t ))

〉
t

.

(19)

Here up(t ; �t ) represents the displacement vector of the probe
particle.

Figures 3(c)–3(f) show such correlations for different it-
eration times �t , by which we characterize the average dis-
placement �lp of the probe particle during �t as �lp = V̄p�t .
In FPD, even when the average displacement is quite small
(�lp = 0.625ap), there is a region where the correlation is
negative (blue regions), indicating the presence of back flow
of host particles [Fig. 3(c)]. Thus, the distribution of host
particles is rather homogeneous: There is obvious asymmetry
around the probe particle in the development of force chains
and viscous dissipation rate but not in the spatial distribution
of host particles, unlike RD (see Fig. 2). The increase in the
average probe displacement does not alter the basic charac-
teristics of the correlation, although it slightly increases the
anisotropy [Fig. 3(e) with �lp = 15.6ap].

In RD, on the other hand, the correlation at small �lp

is very weak behind the probe particle [see Fig. 3(d) with
�lp = 0.625ap], reflecting that there is no mechanism for host
particles behind to interact with the probe particle. For an iter-
ation time during which the probe particle moves over a longer
average distance (�lp = 15.6ap), the highly correlated region
is confined in a narrow direction along the drag direction for
RD, as shown in Fig. 3(f). Since there is no backflow due
to the absence of fluid flow, a depleted region, or a void, is
formed behind the probe particle [see Fig. 2 and Figs. 4(i)–
4(k)]. This difference in the density profile of host parti-
cles around the probe particle between FPD and RD (nearly
isotropic vs. strongly anisotropic) is a direct consequence of
the incompressibility of the fluid: For RD, there exist only
short-range interactions through the interparticle potential,
which allows only local rearrangement of host particles. In
FPD, the global rearrangement of particle configuration, or
the motion of most of host particles, is induced by the motion
of the probe particle via nonlocal hydrodynamic interactions,
which is responsible for the drastic enhancement of the drag
coefficient [see Fig. 1(b)].
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FIG. 4. Dynamic fluctuations of the velocity of the probe particle. Temporal fluctuations of the probe velocity with (a) and without
hydrodynamic interactions (b) for � = 0.65, L = 256, and F = 0.5. Here we scale the time t by the characteristic time of the probe motion,
τp = ap/V̄p. We also show spatiotemporal fluctuations of the particle configurations and viscous dissipation in (c)–(e) and the fluid velocity
field and force chains in (f)–(h) for the system with hydrodynamic interactions at the timings indicated in (a). In (f)–(h), interparticle forces are
indicated by the line segments which are colored according to their strength (the more red, the stronger the force) and the velocity field of the
fluid is depicted by arrows (the longer the arrow, the faster the velocity). In (i)–(k), we show the particle configuration and force chains (the
meaning of the color is the same as in (f)–(h)) in the system without hydrodynamic interactions at the timings indicated in (b). Boxes are all
256×256.

V. IMPACT OF HYDRODYNAMICS ON THE PROBE
PARTICLE MOTION IN DENSE SUSPENSIONS:

SPATIOTEMPORAL FLUCTUATIONS

Now we focus on the spatiotemporal fluctuations of the
probe particle motion and flow behavior.

A. Intermittency of the motion of the probe particle

1. Intermittency and its relation to force chains and flow

So far we focused on the time-averaged behavior of the
probe particle motion, but actually the motion has strong
spatiotempeoral fluctuations for both RD and FPD, which we
can clearly see in Figs. 4 and 5. In Figs. 4(a) and 4(b), we
compare dynamical fluctuations of the velocity of the probe
particle along the drag direction between the two at � = 0.65.
We also show a series of snapshots of force chains in the
corresponding courses of the motion together with flow fields
in Figs. 4(c)–4(k).

In RD, the probe velocity is directly correlated to the struc-
ture of the force chains: when strong force chains are formed
just in front of the probe particle, the probe velocity decreases
as in Figs. 4(i) and 4(k); otherwise, the probe particle moves
rapidly as in Fig. 4(j). The shape of the temporal change of the
probe velocity is sawtoothlike, reflecting gradual development
of force chains and their sudden collapse. This suggests that
particles directly interacting with the probe particle in the
form of force chains mainly contribute to the drag coeffi-
cient or the dissipation via the local friction constant [22].

The number of involved particles monotonically increases
with an increase in the volume fraction and diverges when
the force network is percolated at the jamming point [55].
Furthermore, the probe velocity fluctuations steeply increases
with �, reflecting the temporal development of force chains
[see Fig. 6(a)].

In contrast to RD, there is no such direct correlation be-
tween the probe velocity and the structure of force chains for
FPD. The pattern of the temporal change of the probe velocity
becomes rather continuous due to nonlocal hydrodynamic
flow. Space-spanning dipolar vortices develop when the probe
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FIG. 5. Temporal fluctuation of the probe particle velocity.
[(a) and (b)] Temporal change of the scaled probe velocity at � =
0.65, 0.7 for the FPD and RD methods (L = 256 and F = 0.5),
respectively. The velocity and the time is scaled by the average probe
velocity V̄p and the characteristic time over which the probe particle
moves by its radius, τp = ap/V̄p, respectively.
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V̄ p]2〉t )1/2) scaled by V̄p for FPD. (b) Decomposition of the force
acting on the probe particle into the solid and fluid components for
FPD. The components are scaled by the effective drag force Feff .
We note that the time-averaged data are obtained by time averaging
over a long time, during which the probe particle moves over at least
several times of the system size.

velocity is increased as in Fig. 4(g) [compare it with Figs. 4(f)
and 4(h)], but its pattern is strongly distorted compared to the
time-averaged one at the same � [e.g., Fig. 1(d)]. Contrary to
an expectation that the fluid flow may be largely suppressed
in highly packed suspensions via screening effects, we find
that the velocity field is always highly nonlocal and correlated
over the system size, as shown in Figs. 4(f)–4(h). The fluid
motion rather than the motion of host particles involved in
the force chains is the main source of dissipation and thus the
key contributor to the drag coefficient for � < 0.5 [Fig. 6(b)].
However, for � � 0.5, direct interparticle interactions start
to become more dominant [Fig. 6(b)], and accordingly the
amplitude of the probe velocity fluctuations steeply increases
but its value scaled by the average probe velocity is less than
in RD due to the nonlocal transportation [Fig. 6(a)].

2. The nature of the temporal fluctuations of the probe velocity

The above result indicates that the incompressibility of
the interstitial fluid leads to the global rearrangement of host
particles over a long distance for FPD. This qualitatively
explains the stronger enhancement of the drag coefficient for
FPD than RD [Fig. 1(b)], and the weaker temporal fluctuations
of the probe particle motion [see Figs. 4(a) and 4(b)].

Here we consider the nature of the temporal fluctuation of
the probe velocity, focusing the difference between the RD
and FPD cases. In the RD case, the probe velocity is directly
controlled by force chains, as shown above. Reflecting the
formation and collapse of force chains in front of the probe
particle, the pattern of the temporal change of the probe
velocity is always sawtoothlike independent of �. In the FPD
case, on the other hand, the inconsistency between the particle
configuration of a stable force chain and the vortexlike fluid
flow and the delocalized nature of flow weakens the intermit-
tent nature of the probe motion seen in the RD case and makes
the velocity fluctuation weaker and more continuous.

Next we consider how the change in the volume fraction
� affects the characteristics of the probe velocity fluctuation.
The temporal change of the probe velocity is shown for
� = 0.65, 0.7 in Figs. 5(a) and 5(b) for the FPD and RD,
respectively. In the RD case, the probe velocity fluctuates

around its average with a similar sawtoothlike pattern for
both �’s, whereas in the FPD case the fluctuation pattern
dramatically changes from a rather continuous pattern to a
sawtoothlike one as � increases from 0.65 to 0.7. This is
consistent with the increase of the mechanical contribution
relative to the hydrodynamic one with an increase in �

[see Fig. 6(b)].

B. � Dependence of velocity fluctuations of the probe particle

We can see in Fig. 6(a) that the magnitude of the velocity
fluctuations of the probe particle steeply increases for both
FPD and RD particularly for � � 0.5 [see also Figs. 4(a)
and 4(b)]. The intermittency is basically a consequence of
the formation of force chains due to local densification by the
drag force and their destabilization induced by the motion of
the probe particle. A force chain can be stable only for a spe-
cial chainlike configuration and very fragile against random
perturbations particularly for frictionless particles. As will be
discussed below, hydrodynamic flow has a strong impact on
the stability of force chains.

For FPD, we can see that with an increase in � there is a
gradual crossover from “hydrodynamics-dominating regime,”
where particles mainly interact via long-range cumulative
hydrodynamic interactions without serious effects of direct
interparticle potential overlaps and the resulting force chains,
to “plastic regime,” where collisions of the probe and sur-
rounding particles and the resulting formation of force chains
particularly in front of the probe lead to avalanche-like inter-
mittent behaviors. This can be directly revealed by looking at
the components of the force acting on the probe particles from
host particles and the fluid. To do so, the viscous and potential
force acting on the probe particle are calculated by the first
and second terms in Eq. (10), respectively. In Fig. 6(b), we
plot their magnitudes in the direction parallel to the driving
force together with that of the total force. The nonmonotonic
dependence of the total force as a function of the volume
fraction φ might apparently look strange. This may originate
from the nonmonotonic angular fluctuations of the motion
of the probe particle: At low �, the direction of the probe
motion less fluctuates, whereas at intermediate � it highly
fluctuates by randomization of flow due to the presence of
host particles. At high �, the direction of the probe motion
is again constrained in a narrow angular range along the drag
direction due to the compaction by host particles (while the
velocity fluctuation is significantly large). We can also see
in Fig. 6(b) that the solid force overwhelms the fluid force
for � � 0.5. This increase in the solid contribution with
increasing � leads to the steep growth of the magnitude of
the velocity fluctuations, or the intermittency, of the probe
particle, particularly above � ∼ 0.5 [Fig. 6(a)].

The above comparison between FPD and RD immediately
tells us that the FPD drag coefficient, or the energy dissipation,
starts to increase at much lower � than the RD one. By defi-
nition, the dissipation should come only from a viscous fluid
for FPD, whereas from the local friction for RD. For the latter,
the total dissipation is simply given by �i(1/2)ζiV 2

i . Viscous
dissipation in FPD is much larger than that associated with
the local friction ζi in RD, which is estimated for an isolated
particle, because fluid flow is not only confined in narrow
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channels between particles but also strongly delocalized over
the entire system in FPD.

C. Physical factor controlling intermittent behavior

Now the remaining question is what controls the intermit-
tent behavior of the probe motion for FPD. In FPD, the instan-
taneous drag coefficient of the probe particle is determined
not only by the particle pressure exerted by host particles,
i.e., force chains, but also by the viscous dissipation in the
fluid through many-body hydrodynamic interactions. In order
to elucidate the dissipation rate, we define the field of local
and temporal velocity gradients in the fluid region as

�̇αβ (r, t ) = ∂

∂rβ

vα (r, t ) + ∂

∂rα

vβ (r, t ).

The subscripts α, β indicates either x or y. As can be seen
from Eq. (5), this quantity characterizes the velocity gradient
relevant for viscous dissipation in the solvent. Then we can
estimate the local viscous dissipation rate field in the fluid
region as

Ėdiss(r, t ) =
∑
α,β

1

2
ηs�̇

2
αβ (r, t ). (20)

In Figs. 4(c)–4(e), we show the spatial distribution of the
momentum dissipation rate, −106Ėdiss, for � = 0.65 and L =
256 together with instantaneous force chains. We can see a
drastic increase in dissipation by formation of regions of high
shear rate along the force chains when the speed of the probe
particle increases [see Fig. 4(d)]. This indicates nontrivial
dynamical coupling between localization of flow and force
chains: When force chains are formed in directions close to
that of the drag force, the probe velocity and the dissipation
decrease [see Figs. 4(f) and 4(h)], whereas on destabilization
of such force chains the particle velocity increases accompa-
nying the enhanced flow field and the stabilization of force
chains along the flow (not in the direction of the drag force).

For RD, the intermittent behavior is a direct consequence
of destabilization of force chains due to collision-induced
geometrical perturbations on them, which leads to spikelike
acceleration of the particle motion. For FPD, on the other
hand, the intermittent motion is also caused by the inconsis-
tency between particle chain configuration organized by the
vortexlike flow and the translational transportation of force
chains by the dragged particle. For example, the stable straight
configuration of force chains is not consistent with the vortex
flow pattern that is favored hydrodynamically [compare them
in Figs. 4(f)–4(h)]. Such an inconsistency is a destabilization
factor of force chains. This process takes place rather slowly
because of the nonlocal nature of hydrodynamic flow, leading
to a rather smooth change in the particle velocity unlike RD
[see Figs. 4(a) and 4(b)].

VI. NONLINEAR RHEOLOGICAL BEHAVIOR:
YIELDING AND FORCE THINNING

So far we have fixed a drag force F . Here we consider how
the response depends on F . We stress that, since our system
is athermal, its response to an external drive is intrinsically
nonlinear and there is no Newtonian regime at any �. To
study the nonlinearity of the response to an external drive, we

performed simulations with FPD and RD in the force range of
0.01 � F � 10 for � = 0.65 and L = 256.

The jamming point under the external drive depends on
the magnitude of the drive. For F = 0.01 and 0.05, the probe
particle does not move in both methods, indicating that the
system is kept jammed for these values of F . We note that
since particles interact via soft-core power-law potentials,
force chains are weakly percolated over the whole system
even at the volume fraction of � = 0.65. If the drag force is
weaker than the average strength of the interparticle forces,
then the probe particle cannot move. In other words, the stress
exerted by these drag forces are below the yield stress of the
system. The system yields for F � 0.1. The drag coefficient
decreases by more than one order of magnitude for both FPD
and RD when the drag force F is increased from 0.1 to 10
[Fig. 7(a)].

The mechanism for the thinning behavior of RD can be
explained as follows. Force chains formed to support the drag
force are destabilized by the motion of the probe particle
whenever they are tilted from the direction of the drag force,
since it inevitably leads to collisions with other particles.
Such disturbance becomes stronger with an increase in the
drag force. This leads to the decrease in both the drag co-
efficient and the magnitude of velocity fluctuations of the
probe particle, as shown in Figs. 7(a) and 7(b), respectively. In
addition to this physical mechanism, we should note that there
is also an artifact for RD. As the drag force is increased, the
particle rearrangement in the back of the probe particle cannot
catch up with a rapid motion of the probe particle, leading
to the formation of the void region [see Figs. 2(d)–2(f) and
Figs. 4(i)–4(k)]. The tail of the void region is more elongated
with an increase in the drag force, and eventually it exceeds
the simulation box, or appears in the front part of the probe
particle due to the periodic boundary condition. This artifact
due to the boundary condition leads to an unphysical reduction
of the drag coefficient for F > 1.

For FPD, the basic thinning mechanism is similar to that
for RD in the sense that the motion of the probe particle
destabilizes force chains, but the difference arises from the
impact of hydrodynamic interactions on this process. The
dipolar vortexlike flow is maintained even when the drag
force is increased [Figs. 7(c)–7(e)]: The basic spatial pat-
tern of the scaled time-averaged flow, v̄(r) = 〈v(r, t )/V̄p〉t , is
independent of the magnitude of the drag force. However,
the standard deviation from the time average of the flow
field, δv(r) = (〈[v(r, t )/V̄p − v̄(r)]2〉t )1/2, are quite sensitive
to the increase in the drag force: The flow field deviates more
significantly in the front region of the probe particle for a
weaker drag force, or its magnitude monotonically decreases
as the drag force is increased [Figs. 7(f)–7(h)]. This can also
be seen in the degree of the probe velocity fluctuations shown
in Fig. 7(b): The amplitude of the scaled fluctuations and the
frequency both decrease with an increase in the drag force.
As discussed above, force chains formed in the front of the
probe particle tend to interfere the vortexlike flow pattern
favored by hydrodynamics [Figs. 4(f)–4(h)]. On noting this,
we infer that the decrease of the magnitude of the deviation
with an increase in the drag force is a consequence of the
fact that force chains are more efficiently destroyed by the
stronger vortexlike flows as the drag force is increased. This
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should also lead to the decrease of the velocity fluctuations
or the intermittency of the probe particle motion, with an
increase of F [Fig. 7(b)]. On the other hand, the decrease in
the frequency of the fluctuations with an increase in the drag
force, which is confirmed by a comparison of time evolution
of the probe particle velocity for different drag forces and its
Fourier transform, may be a consequence of the decrease of
the stability of force chains. Less-stable force chains in the
strong flow result in rather slow stress change relatively to the
rapid probe particle motion. In this respect, this situation at
a higher driving force is effectively similar to that at a lower
volume fraction. Then the decrease of the drag coefficient, or
viscous dissipation, with an increase in the drag force can be
explained as follows: When the drag force is increased, the
probe particle, or the center of the vortex flow, moves more
rapidly. However, host particles forming force chains are left
behind and deformed by the vortexlike flow in a direction
perpendicular to the chains, leading to the collapse of the force
chains. This collapse rate increases with the flow strength,
leading to the decrease in the drag coefficient. We also note
that, unlike in RD, density modulations (or, void formation)
near the probe particle are minor due to long-ranged trans-
portation of host particles by nonlocal flow. In other words,
there is little apparent asymmetry induced by the directional
motion of the probe particle even in the nonlinear thinning
regime [see Figs. 2(a)–2(c)]. Thus, the large asymmetry in the
particle density is not observed for dense suspensions, unlike
the case of dry granular matter [66].

VII. CONCLUSION

In summary, we find that nontrivial spatiotemporal cou-
pling between particles and a fluid plays an essential role
in the rheological response of dense athermal suspensions to
an external drive. Its importance can be seen most obviously

from the fact that the way of the divergence of the drag
coefficient of a probe particle toward the jamming point is
largely different between with and without hydrodynamic
interactions and its value can differ by more than one order
of magnitude near the jamming point [see Fig. 1(b)]. Such
dynamical coupling is a consequence of momentum conser-
vation under the incompressible condition, which should be
always satisfied at a low Reynolds number. We also reveal
that reflecting the coexistence of solid and liquid components,
momentum conservation has two distinct impacts of solid and
fluid nature on the rheology. So far the rheology of dense
suspensions have been discussed mainly from the mechan-
ical aspect (i.e., force chains). However, our study strongly
suggests the general importance of hydrodynamic degrees of
freedom in nonlinear rheological behaviors of suspensions
such as shear thinning and thickening. Its ignorance might
lead to wrong conclusions even on a qualitative level. The
nature of the coupling may also depend on the type of flow,
shear or extensional flow.

In this paper, we study 2D systems to reduce the numerical
cost. It is obviously interesting to study the effect of spatial
dimensionality. We stress that both the hydrodynamic sta-
bilization of force chains and the emergence of the dipolar
voltex nature of the averaged flow are a direct consequence
of the incompressibility of the fluid. In general, constraint
on the fluid motion due to the incompressibility is weaker
in 3D than in 2D because of the presence of an extra escape
dimension for the former. This may make the difference in
the drag coefficient between FPD and RD weaker for 3D
than for 2D, but the enhancement of the drag coefficient
by hydrodynamic interactions should exist even in 3D. An-
other interesting question is the role of thermal noise. The
introduction of thermal noise should lead to the emergence
of a linear regime for a sufficiently weak drag force, which
is absent in the athermal system. This should also result in
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the well-known link between the viscosity in the Newtonian
region and the diffusion constant. We expect that the basic
behavior at high volume fractions is dominated mechanically
and thus the effect of thermal noise may be negligible. We
leave the effects of the spatial dimensionality and the thermal
noise for future investigation.

We hope our finding sheds new light on the complex
nonlinear rheological behaviors of dense suspensions, which
are crucial for many industrial applications and geological
phenomena.

ACKNOWLEDGMENTS

This work was partially supported by Grant-in-Aid for Spe-
cially Promoted Research (25000002) and Scientific Research
(A) (18H03675) from the Japan Society for the Promotion of
Science (JSPS), and S.Y. was supported by Grant-in-Aid for
JSPS Research Fellow (15J09476).

APPENDIX A: FINITE-SIZE EFFECT

The finite-size effect of the drag coefficient seen in the FPD
simulation [see Fig. 1(a)] is of hydrodynamic origin. As we
can see in Figs. 1(c) and 1(d), two vortices are formed sym-
metrically on both sides of the probe particle with opposite
sign of vortices as a consequence of the conservation of the
momentum. Because the size of the vortices is constrained
by the system size L due to the long-range cumulative nature
of hydrodynamic interactions, the curvature radius of the
vortices is proportional to the system size L. This leads to
the increase in the energy dissipation rate, resulting in the
increase in the drag coefficient with a decrease in the system
size L, as shown in Fig. 1(a). Furthermore, the structure of
the flow pattern is maintained even for a supension of high
particle density, as we can see in Figs. 1(c) and 1(d). Thus,
the drag coefficient CD(L) can be scaled by that for a single
dragged particle, C(1)

D (L), and the resulting scaled quantity
CD(L)/C(1)

D (L) is independent of the system sizes L for the
entire range of the volume fraction � investigated, as shown in
Fig. 1(b). This indicates that the incompressibility of the fluid
plays a crucial role even in the highly concentrated region,
where the system shows plastic behavior.

In the RD method, particles interact only due to the soft
repulsive potential. In the plastic region, the behavior of host
particles is controlled by force chains and direct interpar-
ticle collisions. The characteristic length of force chains is
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FIG. 8. Finite-size effect on a single-particle drag coefficient.
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D , are plotted as a function of the linear dimension L of
the system for the two different sizes of the probe particle ap = 8.96
and 6.4. Each point corresponds to the value shown in Table I. Solid
and dashed lines represent the analytic functions by Eq. (15) for
ap = 8.96 and 6.4, respectively.

independent of the system size because of the short-range
nature of the interactions as long as the percolation does not
take place. The drag coefficient is, thus, approximated by the
product of the friction coefficient and the number of host
particles involved in force chains directly interacting with the
probe particle. Therefore, the drag coefficient does not depend
on the system size L [see Fig. 1(b)].

APPENDIX B: SINGLE-PARTICLE DRAG COEFFICIENT

We calculated a drag coefficient of a single isolated particle
in a fluid (without host particles) by the FPD method, C(1)

D ,
which is used for the constant friction coefficient in the
RD simulations for each particle size and system size (see
Sec. III). In a two-dimensional system, the drag coefficient
differs from the Stokes friction, which is proportional to the
particle size and fluid viscosity, and should have a logarithmic
correction [67]. Furthermore, the drag coefficient suffer from
the finite-size effect and is given by Eq. (15) [64]. The
behavior of the drag coefficient calculated by the FPD method
are shown in Fig. 8 as a function of the different system size
and particle radius. The results agree well with the analytical
relationships of Eq. (15), proving the numerical validity of the
FPD method.
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