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Random walks on jammed networks: Spectral properties
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Using random walk analyses we explore diffusive transport on networks obtained from contacts between
isotropically compressed, monodisperse, frictionless sphere packings generated over a range of pressures in
the vicinity of the jamming transition p — 0. For conductive particles in an insulating medium, conduction is
determined by the particle contact network with nodes representing particle centers and edges contacts between
particles. The transition rate is not homogeneous, but is distributed inhomogeneously due to the randomness of
packing and concomitant disorder of the contact network, e.g., the distribution of the coordination number.
A narrow escape time scale is used to write a Markov process for random walks on the particle contact
network. This stochastic process is analyzed in terms of spectral density of the random, sparse, Euclidean
and real, symmetric, positive, semidefinite transition rate matrix. Results show network structures derived from
jammed particles have properties similar to ordered, euclidean lattices but also some unique properties that
distinguish them from other structures that are in some sense more homogeneous. In particular, the distribution
of eigenvalues of the transition rate matrix follow a power law with spectral dimension 3. However, quantitative
details of the statistics of the eigenvectors show subtle differences with homogeneous lattices and allow us to

distinguish between topological and geometric sources of disorder in the network.
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I. INTRODUCTION

What is the relationship between the structure of materials
and their bulk properties? The question has a long and distin-
guished history with relevance to various applied problems.
For applications such as energy storage (e.g., batteries) and
pyrotechnic igniters in pyrotechnically actuated devices (e.g.,
air bags), among others, particulate materials (powders and
granular materials) are critical to the functionality of man-
ufactured devices. For these devices, the question becomes
broader: what role does structural disorder—topological and
geometrical—resulting from the discreteness of the material
and lack of microscopic control in the manufacturing process
play in the variability of material properties and how does this
property variability relate to the variability of device perfor-
mance? The practical challenge is to predict and control the
behavior of particulate materials so that they can be processed
into robust devices with reliable performance. Alternatively,
the challenge is to define the feedstock material characteristics
and processing routes that lead to better performance, however
that is defined. For powders and granular materials, which are
far from equilibrium, this amounts to understanding the in-
terplay between the path-dependent metastable structures that
can be obtained from various material types and processing
routes and transport (thermal, electrical, mechanical) in those
structures.
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For granular materials, much focus has been given to the
question of mechanical properties of random packings (of
typically monodisperse, frictionless, spherical particles) as
they approach the limit of mechanical stability—the so-called
jamming transition. However, the analogous (scalar) problem
of conductive (thermal or electrical) transport in particulate
materials is also of critical importance for the aforementioned
batteries and pyrotechnics. In such applications, one may be
concerned with the sensitivity of the bulk material to, e.g.,
chemical reactions (as in thermal runaway) which impact
device performance or failure. Moreover, for disordered mate-
rials, device performance or failure is sensitive to local hetero-
geneities in material structure (e.g., stress concentration near
cracks, or thermal “hot spots” in reactive materials). Again,
understanding the relationship between material structure and
thermomechanical properties related to a given device’s per-
formance behavior along with their prediction and control
during the manufacturing process is required.

Similarly, the properties of complex networks are of broad
interest as they form the fundamental basis for social, biolog-
ical, and communications relationships. In addition, there are
deep connections between these applications and the behav-
ior of complex, disordered materials. Indeed, many studies
illustrate the close relationship between so-called reduced-
order models of transport in disordered systems and ran-
dom walks on networks [1-3]. Here we make use of an
accurate, semi-analytical approach to develop such a model
and deploy it to acquire insight into the fundamental proper-
ties of networks formed by the contact topology of random
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close-packed particulate (granular) systems. In the following
section we describe the problem and method in detail and re-
late the approach here to similar ones in solid state and ordered
(i.e., homogeneous or regular) lattice systems. Subsequently,
we use spectral analysis to analyze average macroscale con-
ductive transport in disordered, jammed networks of grains.
Finally, we analyze the statistics of eigenvectors for these
disordered systems to glean some insights into the role of local
inhomogeneity and offer some concluding remarks.

II. PROBLEM DESCRIPTION AND APPROACH

We consider conduction through isotropically compressed,
monodisperse, frictionless jammed spheres created via dis-
crete element method (DEM) simulations [4,5] with an es-
tablished (de)compression protocol [6]. Multiple disordered
packings of jammed mono-sized spheres were generated for
a range of packing fractions ¢ above the jamming transi-
tion [7]. The contact networks from packings of N = 103,
10%, and 103 particles form the objects of our study. The
uniquely numbered particle centers determine the vertex /node
set while contacts between particles give the edge set of the
graph representing the network. Isotropic compression, then,
establishes the network edge set; providing a particular ran-
dom embedding of the contact graph in a three-dimensional
(3-D), Euclidean space. Two features of the resulting networks
should be noted: (i) they are connected since we remove
particles that are isolated and are not in contact with others
(typically less than 5% of all particles) from consideration as
they do not contribute to the contact network; (ii) it is not
bipartite. We consider both nonweighted and weighted rep-
resentations of this network. The former is quantified through
the adjacency matrix of the network, and the latter through
weighting the elements of that matrix appropriately based on
details of local geometric features of the packed spherical
particles. All the subsequent analysis in this work is based
on modeling conductive transport in particulate materials as
a continuous-time random walk processes on these contact
networks. Specifically, we are interested in the spectral prop-
erties of the conduction matrix, the operator central to this
approach. Hence, isotropic compression can be seen as the
“manufacturing” or nonequilibrium process which governs
the (random) structure which controls the properties of the
bulk, particulate material.

We emphasize that we are concerned here with conduction
through particles seen as grains and not conduction due to
lattice vibrations of the particles as in solid-state atomic
systems. In this sense the particles are viewed as macroscopic
objects composed on internal degrees of freedom which ac-
count for the conductive processes. An off-lattice random
walker approach [8] can then be used to model the internal
degrees of freedom and simulate conduction within and be-
tween contacting particles as was done in previous work [7].
Here, however, we take a different approach by effectively
coarse-graining the off-lattice random walk within particles to
a continuous-time Markov process on the contact network of
the particle pack leading to a random walk-type model that is
nonetheless analogous to solid-state lattice approaches [9]. To
accomplish this, two simplifying assumptions made in [7] are
noted: (i) walkers are constrained to remain within the parti-
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FIG. 1. Top: Disordered, jammed packs of monodisperse, fric-
tionless spheres color coded by total volume-averaged mean first
passage time, f; = (Ej'= ! /1:I-J~)7l at two different pressures (left:
p = 0.04; right: p = 0.004). Bottom: Histograms of diameter of
contact circle between particles (left) and mean first passage time T;;
for random walker to escape initial sphere i to neighboring sphere
j through contact circle for p = 0.00004 and N = 10*. Lines are
Weibull (left) and Frechet (right) distributions for comparison.

cles, meaning, e.g., no heat flux from particle surfaces due to
radiation; and (ii) particle contacts are ideal and provide no
barrier for walkers to pass through, e.g., no contact resistance.
Given this physical description of the system, an analytical
expression for the time it takes an off-lattice random walker to
leave a particle and enter a contacting neighbor particle can be
found in [10]. In general, the time it takes for a random walker
to leave a particle and enter a contacting neighbor particle
is dependent upon the starting location within the initial
particle. Integrating over all starting locations of a walker in
the initial sphere, or volume-averaging, removes the spatial
dependence. Hence, the pair-wise volume-averaged mean first
passage time (MFPT), 7;;, is the narrow-escape time that it
takes for a random walker to pass out of an initial sphere, i,
into sphere one of its z; neighbors, j. z; is the coordination
number (vertex degree) of particle i. Note the distribution
of z; is one of the topological features that distinguish the
networks considered here from classical homogeneous lattice
or regular graph random walks where z; is constant. Previ-
ous work [7], for packs near the jamming point, found that
the bulk, effective conductivity, equivalent to the long-time
diffusivity of random walkers constrained to walk within the
particles, scales as the inverse of a characteristic time Dy, ~
1/t*. Accordingly, r* was identified with the median value,
tn ~ t*, of the distribution over all particles of their total
volume-averaged MFPT, 7; = (Z;le 1/3}_)71, see Fig. 1. In
the following, we use 7;; to formulate a master equation for
transport on the “jammed” (particle contact) networks. Thus,
volume-averaging effectively coarse-grains the off-lattice,
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intraparticle random walker approach of [7] to a random
walk on the contact network of particles with transition rate
between nodes/particles on the network W;; ~ 1/7;;; allow-
ing us to investigate the conductive properties of disorder
particulate materials from the interparticle to macroscale in
analogy to both solid state approaches [9] and continuum
mathematical analysis [11].

In particular, we use the leading order term of the asymp-
totic analytic formula found in [10,12] for the pair-wise
volume-averaged mean first passage time between contacting
particles, 7;;. For particle i in contact with j, this MFPT of a
walker starting in i hoping to j is 7;; ~ V/R;;, where V = %d3
is the volume of the particle with diameter d and R;; is the ra-
dius of the contact circle formed between the particles. Specif-
ically, the transition rate W;; = 1/1;; = H%O(Rij /d), where
70 = d? /24D is the intraparticle conductive timescale, i.e.,
the time it takes a random walker to explore a spherical
region of size d composed of homogeneous, isotropic material
with conductivity Dy. This approach should be contrasted
with previous proposals [13] in which the ergodic hypothesis
is made in order to approximate the transition rate. There
it is assumed that the phase space available for leaving a
region is the area of the “port” (particle contact area here);
however, the MFPT or escape rate is determined by the fractal
repeller for the dynamics in the irregular domain [14]. For
intersecting spherical domains, this is apparently dependent
upon the radius of the port not its area.

Now, given the local geometry of the contacting, monodis-
perse spheres and the global topology (connectivity) of the
jammed (contact) network, we can write a continuous-time
Markov process representing conduction of a quantity P (suit-
ably normalized to represent the probability of a walker being
on node i), on the network

B
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where we used R;; ~ ,/;;d/2 assuming Hertzian contact
for homogeneous elastic materials; §;; = d — ||r; — r;|| is the
particle overlap from the DEM simulations. The matrix W is a
weighted Graph Laplacian [15] with form W = D — A, where
D and A are the weighted degree [bottom line of Eq. (2)] and
adjacency matrices [top line of Eq. (2)], respectively.

The statistics of the elements in the conduction matrix
differ from other well-known random matrices (e.g., Gaussian
random matrices), in that the matrix is very sparse with a
maximum nodal degree 12, due to physical excluded vol-
ume constraints from particle interactions, and mean degree
z— 6 as p — 0. In addition, a Weibull distribution [16]
fits the histogram of nonzero contact radii (R;;), i.e., the
nonzero elements of the conduction matrix, well (see Fig. 1).
A Weibull distribution of contact radii (or transition rates)
is also consistent with the Frechet distribution [17] of the
per-particle volume-averaged mean first passage times 7 as
the two random variates are inversely proportional to each
other. Note, the Weibull-like distribution of the transition
rates is also consistent with an exponential distribution of

the force magnitudes [18] (above the average value) since,
if W is distributed according to a Weibull with scale and
shape parameters 8 and k, respectively, then X = (W/B)F is
exponentially distributed [19]. All of these facts, of course,
are related to the distribution of the overlaps §;; in the DEM
packing simulations. Hence, the fundamental quantities to be
accessed experimentally are the distribution of contact radii
R, (or, more generally, the distribution of sizes of contact
ellipses in order to assess the local curvature for Hertz contact
theory) and the particle volume V), for the mean first passage
time ~V,,/R.. One final observation regarding the conduction
matrix is that, due to conservation laws (e.g., Kirchoff’s Laws
and energy conservation), the matrix is symmetric positive
semidefinite and conserves the total probability such that
it satisfies the conditions of the recently named diagonally
dominant ensemble [20].

Although Eq. (2) is written for the more physical weighted
Laplacian or conduction matrix, an analogous unweighted
Laplacian will also be considered below. In this case, the
weights on the edges of the graph related to the local geometry
of the contacting particles are ignored. Instead, only the topo-
logical or connectivity information of the network is retained.
The unweighted graph Laplacian is simply L = D — A, where
D is the degree matrix (a diagonal matrix whose entries are
the vertex degrees of the nodes, i.e., particle coordination
number), and A is the adjacency matrix with entries a;; = 1
if particles i and j are in contact and zero otherwise. In the
following sections we will analyze both the weighted and
unweighted graph Laplacian matrices in terms of their spectra
(distribution of eigenvalues) and the statistics of eigenvector
components. This will allow us to distinguish between effects
due to two types of potential disorder in these systems:
geometric and topological. In particular, the following section
will show that the long-time scaling of the average decay of a
unit impulse is not dependent upon the weighting of the edges
of the graph. Physically, this means that the local geometry of
the contacts does not determine the bulk, long-time relaxation
processes. The scaling is instead set by the network topology
as described by the degree and adjacency matrices.

III. SPECTRAL ANALYSIS

The elements of the weighted Laplacian matrix and its
eigenvalues are connected to the bulk conduction coeffi-
cient of the network (particle pack) via Dy, ~ leTr[W] =

,%, Zﬁv Ai = A, where A; are the eigenvalues of the weighted

graph Laplacian or conduction matrix. It can be seen that A =
L3 1/t ~ 1/t*. In Fig. 2, we confirm that Dog ~ A ~
p'/? as expected from [7], where p is the isotropic pressure
under which the packs were created. For the unweighted
Laplacian + Tr[L] — A. = X — z. ~ p'/? as seen in Fig. 2(b),
where z. = 6 is the critical coordination number at jamming
for frictionless, Hookean spheres [4] which is set by the
constraint of global mechanical stability of the packing.

We can further elaborate on the spectral properties of these
networks. Figure 3 shows histograms of the eigenvalues of
the network Laplacian matrices taken from two particle packs
at different pressures. The histograms shown in the top row
Fig. 3 contain eigenvalues of the weighted Laplacian matrix
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FIG. 2. Variation of mean eigenvalue of weighted (left) and
unweighted transition matrix (right) vs. pressure for each N = 10*
configuration at a given pressure. Points represent different pres-
sures; each data point is A for a specific configuration (spread of A
values is small for weighted case). Dashed lines are ~p'/2.

at pressures p = 0.004 and p = 0.00004, respectively. The
histograms shown in the bottom row of Fig. 3 are for eigenval-
ues of the unweighted Laplacian. Asymmetry can be seen in
all the distributions; however, the shift from larger to smaller
eigenvalues for lower pressures can be seen most clearly in
the unweighted Laplacian particularly when compared to the
semicircle distribution (red dashed lines). This is consistent
with the fact that A.x < Zmax since the network is nonbipartite
[15], where zm.x = 12 is the maximum degree of a node, and
Z > 6 to satisfy constraints on degrees of freedom for global
mechanical stability. The distribution of the eigenvalues in
the limit A — 0 is of interest as it relates to the macroscopic
scaling of relaxation/transport processes on the network. For
classical, Euclidean networks/lattices p(A) ~ A”, with v =
1/2 [21]. Since it is difficult to assess the small A scaling from
the histogram, we instead consider a related quantity—the
return probability.

The return probability is a fundamental physical quantity
easily determined from the eigenvalue spectrum. It represents
the average rate of decay of an initial impulse given to a par-
ticle [22]. The particle (ensemble) averaged return probability
is [21]

1 N
(Po()) = (8P(0) - OP(1)) = — > exp(uit),  (3)
i=1
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FIG. 3. Top: Histogram of eigenvalues from weighted transition
matrix for p = 0.004 (left) and p = 0.00004 (right). Bottom: His-
tograms of eigenvalues from unweighted (Graph Laplacian) transi-
tion matrix for p = 0.004 (left) and p = 0.00004) (right); lines are
semicircle distribution for comparison. In all cases N = 10%.
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FIG. 4. Return probabilities collapsed by A onto Prony series-
like master curve (see text). Left: Data for weighted Laplacian for
p =0.00004; N =10° and 10*. Note solid line is a power law
guide to the eye ~¢~2; dashed line is Eq. (4) with 8 =2/3 and
1/t = X. Inset shows scaling of A, with index k (see text) forall N =
10* configurations at p = 0.00004. Right: Data from unweighted
Laplacian for p = 0.00004; N = 10%, 10*, and 10°; solid and dashed
lines are ~t~2 and t~%/2, respectively.

where 6P(¢) = P(t) — Py = vazz exp(Ait)v;, Peq = vy, and
v; is the orthonormal eigenvector associated with A;. For the
case of classical diffusion in a homogeneous, 3-D, continuous
material the return probability is expected to decay as t /2
as t — oo which is easily seen by considering the solution of
the heat equation to a unit impulse applied at the origin of an
infinite domain instantaneously at time ¢ = 0, and following
the decay of temperature at the origin with time [22]. Return
probabilities for several networks taken from packings of
differing numbers of particles are shown in Fig. 4. Three
distinct regions can be seen in these data. The plateau at early
times is indicative of the microscopic particle scale where
walkers are localized in the initial particle. At longer times
the return probability decays in a power-law manner. While it
is difficult to extract precisely the scaling in the weighted case
due to noise in small eigenvalues, two clear scaling regions
appear for larger system sizes in the unweighted case—t >
for intermediate times and ¢ ~*/? for long times (red and black
dashed line, respectively, in Fig. 4)—which are consistent
with the weighted case. Indeed, the data for the unweighted
case shown in Fig. 4 are very smooth; collapsing on each other
for the various independent configurations and system sizes.
Hence, three clear consistent scales appear—microscopic,
meso, and macro/homogeneous—across all system sizes and
pressures with no clear growing anomalous mesoscale region
with decreasing pressure. As can be seen for the different
system size data, the crossover from meso to homogeneous
scales is of constant size L ~ 10 or N =~ 1000 for a cubic
domain and sets the lower bound for a representative volume
element for homogeneous, effective conduction in these sys-
tems. Moreover, the similar long-time scaling for the weighted
and unweighted cases indicates that the local geometrical
disorder (i.e., distribution of contact radii or weights) has little
effect on the long-time scaling so long as the system size is
large enough N >~ 103. Interestingly, the  ~%/? scaling gives
a “fracton” or “spectral” dimension d; = 3 [21] and indicates
the limit of a macroscopic, homogeneous behavior consistent
with classical continuum behavior. This is the macroscopic
limit where the effective, bulk conductivity D, is a meaning-
ful average or homogenized material property.

To confirm the scaling seen in the return probability, we
note that (Py(z)) in Eq. (3) is well described by a Prony
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FIG. 5. Collapse of eigenvalues from weighted (left) and un-
weighted (right) transition matrices for select configurations of N =
10%, 10%, and 10° particles at p = 0.004, p = 0.00004, and p =
4 x 1077, Solid and dashed lines are guides to the eye ~k*/* and
~k'/2, respectively.

series [11]
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with B =2/3 and A = 1/t (see dashed line in Fig. 4 left).
Thus, when eigenvalues are sorted from least A;—; to greatest
Ak=n, it is seen that they are distributed according to A, ~

(’%)3, where k =1,2,...,N, as in the inset of Fig. 4. If
we rescale A; by Ay, all the eigenvalues for all networks
from various configurations and pressures collapse onto a
single curve as shown in Fig. 5. Again we find A; ~ k*/3
in the limit £ — O indicating a homogenized macroscale
consistent with classical diffusion; although the eigenvalues
are more discretely distributed in this limit—they group about
discrete levels due to finite system size—no multiplicity of
values exists. This fact convolved with the distribution of
small contact areas produce the observed noise in the return
probability at long times for the weighted case. Ay ~ k*/3
is consistent with the classical Weyl result for the Dirichlet
eigenvalues of the Laplace operator in 3-D Euclidean space;
however, that result applies asymptotically in the other limit
k — oo [23], the so-called continuum limit, where we find a
crossover to an anomalous scaling A; ~ k!/2. In the current
case, the continuum limit applies within a given particle at
the microscopic scale, whereas at the intermediate mesoscale
the discreteness of the material as a collection of densely
packed particles is fundamental and not just a numerical
approximation for solving a continuous transport equation.
We attribute the exact location of this crossover to the disorder
in the network (when compared to, e.g., a simple cubic lattice)
and the form of the scaling in this limit to the discrete nature
of the network. The collapse of all data for all pressures is sur-
prising and suggests the scaling of the crossover location from
anomalous to classical with pressure (or volume fraction) is
entirely due to the scaling of A = Z, while changes in detailed
local geometry or coordination number have apparently little
effect on the qualitative distribution of eigenvalues. Moreover,
changes in system size only serve to extend the domain of the
classical distribution of eigenvalues for small eigenvalues in
the homogeneous macroscale limit.

IV. EIGENVECTOR STATISTICS

Turning now to the eigenvector statistics, we find simi-
larities to the eigenvector statistics of matrices taken from
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FIG. 6. Top: CDFs of eigenvector components of various eigen-
vectors associated with decreasing eigenvalue; black dashed lines
are CDF for Porter-Thomas distribution. Left: Weighted case for
p = 0.00004 and N = 10000. Inset: Particles colored coded [—1, 1]
by contribution to eigenvector for vectors associated with large (left)
and small (right) eigenvalues for N = 1000 pack. Right: Unweighted
case. Bottom: Histograms of eigenvector components compared to
Gaussian (solid lines) for various eigenvectors of increasing eigen-
value (shifted for clarity); same p and N as above. Left: Unweighted
case. Right: Weighted case.
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the Gaussian orthogonal ensemble (GOE) of random matrix
theory, but with subtle differences for eigenvectors of the
weighted versus the unweighted conductivity matrix. In both
cases, eigenvectors associated with large eigenvalues (early
times) show significant localization due to network disorder
while the distribution of eigenvalue components approaches
a common late-time form (in central limit-like fashion)
with decreasing eigenvalue consistent with a homogenized
macroscale. For the unweighted conductivity matrix, cumula-
tive distribution functions for eigenvector component statistics
converge for decreasing eigenvalue to the Porter-Thomas [24]
distribution function, P(x;k) ~ x*/2~1e=¥/2, expected from
random matrix theory for a GOE matrix (dashed curve in top
panels of Fig. 6, see also lower panels where histograms of the
eigenvector components for decreasing A—left to right—are
compared to a Gaussian distribution).

The Porter-Thomas distribution is known to statisticians
as the chi-squared distribution which is the distribution of a
random variable that is itself a sum of the squares of k inde-
pendent Gaussian distributed random variables. Hence, in the
unweighted case, the distribution of eigenvector components
within a given eigenvector, at least for eigenvectors associated
with smaller eigenvalues but above the homogeneous limit
(A = 0), appear to follow near-Gaussian i.i.d. statistics and are
fully delocalized. However, for the statistics of eigenvectors
of the weighted conductivity matrix, the quantitative details
(see Fig. 6) show that the Porter-Thomas distribution for
a single, as this is a scalar problem, independent Gaussian
distributed random variable does not quite fit the statistics of
the eigenvectors; indicating that the statistics of each particle’s
contribution to the eigenvector are either not Gaussian, or
not independent, or both. We interpret this difference to be
a result of the convolution of the random weights (dependent
on the distribution of forces in the jammed pack resulting for
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the isotropic compression protocol) shown in Fig. 1 with the
disordered topology of the network given by the unweighted
graph Laplacian shown in Fig. 6. We attribute the early-time
localization to the discreteness and inhomogeneity of the
network—the distribution of vertex degree or particle coordi-
nation number (i.e., topological disorder); while at late times
the heavy tails of the eigenvector component distributions
lead to an anomalous, increased (as compared to classical
Gaussian behavior) influence of a given node/particle to the
response of the network/pack and is related to the disorder
in the weights (i.e., local geometry of particle contacts) or
mean first passage times between pairs of particles. Physically
this may imply that while the temporal response of the pack
as seen via the distribution of eigenvalues may support a
macroscale limit described by an effective, bulk conductivity
in an standard fashion, the spatial response indicated by the
eigenvector statistics may lead to something other than the
classical Gaussian propagator for conduction in these discrete
materials. Additional analysis is called for on this point.

V. CONCLUSION

In summary, two structure-property features characterize
these ‘“jammed” networks. First, there is a well-described
scaling of the mean coordination number or eigenvalue with
pressure (volume fraction) = Ae ~ pY 2 for the unweighted
and A ~ p'/? for the weighted case because the overlaps go to
zero with decreasing pressure while the coordination number
approaches a constant), which controls the bulk conductive
properties of the particle pack. Second, there is inhomogeneity
due to (topological) disorder in the coordination number
yielding variability in the contribution of a given particle to
the bulk transport, i.e., its centrality [25], which also manifests
in localized eigenvectors associated with large eigenvalues
(early times) for both the weighted and unweighted cases.

Also, disorder in the weights on the network due to local
geometry variations leads to anomalous eigenvector statistics
for the weighted case. Additionally, early time is when the
transport is “subdiffusive” (anomalous ¢ =2 scaling of return
time) due to the discreteness of the network. Inhomogene-
ity and its concomitant localization as well as heavy-tailed
statistics of nodal contributions to eigenvectors, then, could
both contribute to a sensitivity of these networks to potential
nonlinearities (e.g., breaking contacts or initiating chemistry).
This latter point relates to the performance of devices com-
prised of particulate materials.

As noted in the Introduction, questions about the relation-
ship between the random structure of particulate materials,
the forming, or manufacturing processes that determine this
structure and the bulk properties related to the performance of
these materials are intimately related. As demonstrated here,
statistical physics models have an important role to play in
advancing the state of the art in this area. This is all the more
important as issues of optimal performance and prediction and
control of manufacturing processes to ensure efficient energy
use and improved yield of robust, reliable devices are critical
to resolving intersecting safety and environmental challenges.
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