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Phase behavior of hard C2h-symmetric particle systems
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Using Monte Carlo numerical simulation, this work sketches the phase diagram of systems of certain hard
C2h-symmetric particles, formed by gluing two aligned and displaced hard spherocylinders with a cylindrical-
length-to-diameter ratio realistically, if viewed not only from the lyotropic colloidal liquid-crystal side but also
from the thermotropic low-molecular-mass liquid-crystal side, equal to 5, as a function of the displacement.
Several distinctive phases are observed, such as a nonperiodic smectic-B-like phase, a nonperiodic smectic-H -
like phase, a smectic-C phase, and a short-layer-spacing uniaxial smectic-A phase but no biaxial nematic phase.
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I. INTRODUCTION

Within the broad (soft) condensed matter [1], liquid crys-
tals (LCs) [2], with their combination of fluidity and (par-
tial) order, occupy a special place. Of the several liquid-
crystalline phases, the uniaxial nematic (Nu) phase is the
simplest. In the bulk of this D∞h-symmetric fluid phase, the
system constituent, sufficiently elongate (rodlike) or suffi-
ciently flat (disklike) particles, while positionally uniformly
distributed, preferentially orient their primary axis along a
common (fixed) direction, the major director n̂. More complex
is the (orthorhombic) biaxial nematic (Nbo) phase. In the
bulk of this D2h-symmetric fluid phase, besides the particle
positionally uniform distribution and the orientational order-
ing of the particle primary axis, the particle secondary axis
also preferentially orients along one more common (fixed)
direction, the minor director m̂, such that m̂ ⊥ n̂ and then
l̂ = m̂ × n̂. The commonness of the Nu phase (naturally a
quite mandatory condition, together with its special attributes,
for its widespread use in technology) contrasts with the rarity
of the Nbo phase, a continual focus of many theoretical and
experimental investigations [3–41].

Though, in a ideal(istic) system, the Nbo phase can be arti-
ficially injected into the phase diagram or its thermodynamic
stability artificially swollen [42], in a real(istic) system, even
leaving aside the issue of its existence right under those (strict)
ambient conditions of pressure and temperature that would
make it really usable in technology, the per se formation of
such a phase, truly fluid, spontaneous, and thermodynamically
stable, appears very difficult. In fact, it requires the freez-
ing of the additional orientational degree of freedom not be
accompanied by any onset of partial positional ordering, be
it layering (smectic phase formation) or stacking (columnar
phase formation), or solidification, be it crystallization or
vitrification.

*giorgio.cinacchi@uam.es

It may not come as a surprise that the very few experi-
mental systems in which the existence of this phase has been
reasonably confirmed belong to the classes of lyotropic [7,30]
and thermotropic polymeric [8,22] LCs. While their large
size naturally allows achieving a large shape nonsphericity,
thus favoring liquid crystallinity, their polydispersity further
disfavors partial positional ordering and crystallization (not
vitrification though: in fact, the observation of biaxial ne-
matic ordering in thermotropic polymeric LCs appears rather
linked to the occurrence of a glass transition [8,22]). In the
class of thermotropic low-molecular-mass LCs [43], limited,
compared to thermotropic polymeric LCs, by the small size,
and further limited, compared to lyotropic LCs, by the atomic
nature, the small number, and the chemistry of their building
blocks (the typical chemical elements of organic chemistry)
and, as molecular fluids, afflicted by miscibility problems, all
the claims, made over the years, of having experimentally
observed a biaxial nematic phase have thus far been unable
to rise to the status of undisputed fact [44].

In an attempt to contribute to this persistently debated
issue, this work investigates, via numerical simulation, the
phase behavior of pure systems composed of certain contin-
uously translating and rotating hard C2h-symmetric particles
to probe their propensity to exhibit a Nbo phase.

Next Sec. II describes these model particles and motives
their choice; Sec. III describes the method chosen to inves-
tigate systems of them as well as provides the definition of
most of the quantities that were calculated to characterize the
phases that such systems form; Sec. IV and the Supplemental
Material [45] present the obtained results while Sec. V draws
from these results a few conclusions.

II. MODEL

The model particles that this work considers are dimers of
hard congruent and parallel spherocylinders, i.e., cylinders of
length L capped at both ends with hemispheres of the same
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FIG. 1. Image of a hard spherocylinder dimer, with indicated: the
geometrical parameters defining its shape and size: L, the length of
the cylindrical part, D, the diameter, and s, the shift; the vectors defin-
ing its (configurational) mechanical state in the laboratory reference
frame: r◦, the position of the hard spherocylinder dimer centroid and
{û, v̂, ŵ}, the triad of unit vectors, with v̂ = û × ŵ, specifying the
hard spherocylinder dimer orientation.

diameter D [47], whose centroids are shifted by a distance s
along the direction of their C∞ axis û and by a distance D
along the direction of one of their C2 axes ŵ (Fig. 1). There
are several reasons for considering these model particles:

(1) The particles are C2h-symmetric because it was hy-
pothesized that this symmetry encompasses particle shapes
that might not promote the formation of a well-defined smec-
tic phase, thus possibly widening the stability range of the
nematic phase at higher density, then giving biaxial nematic
ordering more chance to turn up. The C2h symmetry choice
was not driven by a hope of observing a biaxial nematic phase
other than [29,31,48] the already evanescent Nbo phase.

(2) The particles have been assumed to interact via hard
interactions for two subreasons.

(a) In the spirit of Occam’s razor [49], short-range
steeply repulsive intermolecular interactions due to particle
shape and size are most objectively quantifiable. Despite
years of research work, both the accurate magnitude and
orientation dependence of long-range attractive (disper-
sion) intermolecular interactions cannot truly reliably be
predicted yet [50]. Therefore, model nonspherical particles
that incorporate them and specify their magnitude and ori-
entation dependence inevitably and uncomfortably suffer
from a certain degree of arbitrariness.

(b) It is well known that short-range repulsive interpar-
ticle interactions are those mainly responsible for the ther-
modynamic, structural, and dynamic properties of many
condensed matter systems [51,52]. This holds true not

only for lyotropic colloidal LCs, suitably synthesized col-
loidal particles being good experimental realization of hard
particles [53], but also for thermotropic molecular LCs,
irrespective of the marginal role that the temperature T
has in the behavior of a hard-particle system. Just recalling
the role played by the hard-sphere model in explaining
many aspects of the behavior of systems of monoatomic
molecules and the parallelism that exists between a pure
system of hard spheres and a pure system of particles
interacting via the Lennard-Jones potential energy model
[54,55] should dispel any critique of unreality that could
be thrown on a hard nonspherical particle model anytime
it is used to address problems relevant to thermotropic
molecular LCs.
(3) The particles are made as dimers of hard spherocylin-

ders because of the simplicity of the hard-spherocylinder
overlap criterion [56] and their capability, as monomers, to
form a smectic phase [57,58]. Hard prolate ellipsoids were de-
liberately avoided not just because of their more complicated
overlap criterion [59,60] but especially because of the willing-
ness not to bias a system of such hard dimers in its capability
to form a positionally ordered phase by constructing them
with hard prolate ellipsoid (or similarly shaped) monomers,
known not to form any smectic phase [61–63].

(4) The dimers are identical to investigate a pure system
and assess whether it alone is able to exhibit a biaxial nematic
phase. While lyotropic and polymeric LCs are polydisperse
and this feature is usually welcome in the effort to stabilizing
a biaxial nematic phase by destabilizing the positionally or-
dered phases, thermotropic low-molecular-mass LCs cannot
have that continuous variation of shapes and sizes while being
potentially afflicted by miscibility problems [64].

(5) The dimers are made of hard spherocylinder
monomers with a moderate aspect ratio L/D = 5 not just
because systems of these specific hard spherocylinder
monomers have been among those most investigated [58]
but especially because such an aspect ratio is reasonably
consistent with those typical of thermotropic low-molecular-
mass nematogens and smectogens. Considering hard biaxial
particles with large values of both the height-to-breadth
ratio and breadth-to-width ratio clearly and unsurprisingly
promotes, at sufficiently high density, the formation of a
biaxial nematic phase inasmuch considering hard elongate
uniaxial particles with a large length-to-width ratio promotes,
at sufficiently high density, the formation of a uniaxial
nematic phase: that irrespective of their actual shape [41,68].
Unfortunately, such large values of height-to-breadth ratio
and breath-to-width ratio cannot be displayed by thermotropic
low-molecular-mass LCs. The difficulty is rather to find one,
if any, hard biaxial particle model of such a “chiseled” shape
so as to promote the formation of a thermodynamically stable
biaxial nematic phase while keeping its size moderate [69]
as well as being susceptible of being rendered by chemical
molecular synthesis [70].

(6) The dimers are continuously translating and rotating.
On one hand, while certainly of utility in addressing aspects of
the phase transitions involving a biaxial nematic phase, usual
lattice models [14] do not clearly allow for the existence of
positionally ordered phases. On the other hand, constraining
the particle orientations to be discrete and few, e.g., perfectly
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parallel [20] or at most aligning along the three axes of the
laboratory reference frame [33] (Zwanzig model [71]), while
certainly a very friendly approximation for any theoretical
calculation, it is clearly unrealistic and not an innocuous
approximation, in general [72] and in particular in the very
delicate case of a biaxial nematic phase. It does not include
or substantially alter the stability of the isotropic (I) phase,
a very serious contender for any liquid-crystalline phase.
When applied to mixtures, it can substantially underestimate
the demixing gap [73]. In general, to assume that a dense
system of particles well aligned yet freely rotating can be
assimilated to a dense system of particles perfectly aligned
is misguided. (In addition, any theory based on the Zwanzig
model is not very prone to be readily falsifiable or verifiable
by corresponding numerical experiments).

III. NUMERICAL SIMULATION METHOD
AND CALCULATED QUANTITIES

Being short of a theory really capable of reliably tracing
the complete phase diagram, i.e., a theory not only able to
deal with fluid, isotropic and liquid-crystalline, phases but
especially also allowing for the formation of a crystal phase
(with a single exception [13], theoretical calculations had not
attempted its inclusion) or a glassy state, of systems of such
model particles, one has to resort to numerical simulation.

Systems of N ∈ [576, 2400] hard spherocylinder dimers
(Fig. 1) were considered for several values of s∗ = s/D ∈
[0, 6] and investigated with the Monte Carlo (MC) numerical
simulation method [75,76] in the isobaric(-isothermal) (NPT)
ensemble [77] using shape-and-size variable orthorhombic or
triclinic computational boxes [78] and periodic boundary con-
ditions. For each value of s∗ considered, the MC-NPT runs
were conducted at many values of pressure P, usually varied
in a step of 0.1 PD3

kBT , with kB the Boltzmann constant. These
MC-NPT runs were organized in cycles, each of these cycles
being on average constituted by N attempts to displace the
centroid of a randomly selected particle; N attempts to rigidly
and sequentially rotate a randomly selected particle around
two randomly selected but noncoincident axes of the labo-
ratory reference frame; one attempt to overturn a randomly
selected particle; and one attempt to vary the computational
box shape and size by varying a randomly selected element
of the diagonal (if the computational box is constrained to
be orthorhombic) or (upper) triangular (if the computational
box is allowed to be triclinic) matrix H that relates real
coordinates, r◦, to suitably reduced coordinates, q◦, of the par-
ticle centroids: r◦ = Hq◦. For each of the attempted moves,
the maximal size was fixed by requiring that the respec-
tive acceptance percentage was 20%–30% and never altered
during a MC-NPT run, the overlap criterion between two
hard spherocylinders dimers simply following from that, very
simple [56], between two hard spherocylinder monomers. For
each value of s∗ and P considered, a first MC-NPT run started
from either a simple orthorhombic crystalline configuration
or a configuration obtained in a numerical simulation carried
out at a nearby value of P and could last up to 10 × 106 MC
cycles. From the last configuration generated in this MC-NPT
run, a second MC-NPT run started and usually lasted at least

106 MC cycles, during which configurations were regularly
saved and stored for the subsequent analysis.

This analysis consisted in the calculation of (1) the mean
number density �, hence the volume fraction φ = �v, with
v = (17/6)πD3 the particle volume, so as to determine the
system equation of state; (2) several order parameters and
(3) several real-space correlation functions as well as (4) the
reciprocal-space structure factor, so as to identify the phases
that a system forms and characterize their (micro)structure;
and (5) the mean square displacement, so as to still have an
indication of whether a phase can be qualified as fluid or
solid while remaining well aware that the MC method should
be distrusted anytime it is improperly employed to address
dynamic properties.

The set of order parameters includes the following:
(1) The uniaxial nematic order parameter S2. It was calcu-

lated following the usual procedure [79] that consists in (a) for
each configuration, calculating the matrix Qûû whose element
Quu

α,β is defined as

Quu
α,β = 1

N

N∑
i=1

3

2
uiαuiβ − 1

2
δα,β (1)

with α, β = X,Y, Z , the three axes of the laboratory reference
frame, uiα the α component of the unit vector û of particle i,
and δα,β the Krönecker symbol; diagonalizing Qûû to obtain
the three eigenvalues and the respective eigenvectors; and
taking the largest eigenvalue as the configuration uniaxial
nematic order parameter and the associated eigenvector as the
configuration n̂; (b) taking the arithmetic mean of the config-
uration uniaxial nematic order parameter over the configura-
tions, which finally constitutes the system uniaxial nematic
order parameter S2.

(2) The biaxial nematic order parameters, Sw⊥ and PC2h . To
detect whether a biaxial nematic ordering is present, quantify
its extent, and further distinguish its nature, two order param-
eters were calculated.
The first, denoted Sw⊥ , served to detect and quantify the extent
of the ordinary, D2h-symmetric, biaxial nematic ordering. It
is obtained by (a) for each configuration, calculating the
(effectively 2 × 2) matrix Qŵ⊥ŵ⊥ whose element Qw⊥w⊥

α,β is
defined as

Qw⊥w⊥
α,β = 1

N

N∑
i=1

2w⊥iαw⊥iβ − δα,β (2)

with w⊥iα the α component of the unit vector ŵ⊥ of the
particle i, being ŵ⊥ = (ŵ × n̂)/|ŵ × n̂|; diagonalizing Qŵ⊥ŵ⊥

to obtain the two eigenvalues and the respective eigenvectors;
and taking the largest eigenvalue as the configuration biaxial
nematic order parameter and the associated eigenvector as
the configuration m̂; (b) taking the arithmetic mean of the
configuration biaxial nematic order parameter over the config-
urations, which finally constitutes the system biaxial nematic
order parameter Sw⊥ .
The second, denoted PC2h , further distinguishes whether the
biaxial nematic ordering detected and quantified via Sw⊥ could
actually be of C2h symmetry, a check admittedly demanded
just by the symmetry of the present hard particles rather
than by a hope of indeed observing a C2h-symmetric biaxial
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nematic phase. This biaxial nematic order parameter is defined
as

PC2h =
〈

1

N

∣∣∣∣∣
N∑

i=1

(ûi · n̂)(ŵ⊥i · m̂)

∣∣∣∣∣
〉

(3)

with 〈〉 indicating an arithmetic mean over configurations. It
is equal to 0 even in the presence of a perfect D2h-symmetric
biaxial nematic ordering but equal to 1 in the presence of a
perfect C2h-symmetric biaxial nematic ordering.

(3) The smectic-A order parameter τA. It was calculated
following the usual procedure that consists in (a) for each
configuration, calculating the quantity

max
	

1

N

∣∣∣∣∣∣
N∑

j=1

eir◦ j · 2π
	

n̂

∣∣∣∣∣∣, (4)

which is taken as the configuration smectic-A order parameter
while the value of 	 at which this maximum occurs is taken as
the configuration smectic-A spacing; (b) taking the arithmetic
mean of the configuration smectic-A order parameter over the
configurations, which finally constitutes the system smectic-A
order parameter τA.

(4) The smectic-C order parameter τC . The usual proce-
dure to calculate τA exploits the fact that one of the defining
attributes of a smectic-A phase is its having the layer normal
coincident with n̂. One can realize that scanning the values of
	 in search of the maximum of Eq. (4) is essentially nothing
more than searching for the maximum of the structure factor
S (k) (vide infra) among the reciprocal-lattice vectors of the
form k = 2π

	
n̂. For a smectic-C phase, the direction of the

layer normal is not a priori known. For each configuration,
one can retrieve it by determining, among the reciprocal-
lattice vectors compatible with the computational box, the
one, kmax, at which S (k) shows the (most) prominent (Bragg)
peak. This kmax identifies the direction of the layer normal;
θtilt = arccos [(kmax · n̂)/|kmax|] is the tilt angle. The smectic-
C order parameter can then be obtained by (a) for each
configuration, calculating the quantity

1

N

∣∣∣∣∣∣
N∑

j=1

eir◦ j ·kmax

∣∣∣∣∣∣ (5)

and (b) taking its arithmetic mean over the configurations.
Since a smectic-A phase is a special smectic-C phase with
a vanishing θtilt , the procedure can equally be applied to a
smectic-A phase, thus consistently retrieving the smectic-A
order parameter previously obtained via the usual procedure.

(5) The monomer hexatic order parameter ψ6mono. One
can naturally view any configuration (packing) of hard sphe-
rocylinder dimers such as the one in Fig. 1 as a realization of
a configuration (packing) of hard spherocylinder monomers.
By adopting this view, the monomer hexatic order parameter
adopts the definition of the usual hexatic order parameter [80]:

ψ6mono =
〈

1

N

N∑
i=1

∣∣∣∣∣∣
1

nvici

nvic i∑
j=1

ei6ϑi j

∣∣∣∣∣∣
〉
, (6)

which requires, for each configuration, to determine, for each
hard spherocylinder monomer i, the number of its nearest
neighbors nvici, i.e., any hard spherocylinder j whose cen-

troid lie at a distance r⊥i j = |r⊥i j | = |(r◦ j − r◦i ) × n̂| � rgmin
from the centroid of i, rgmin being the value of distance at
which the g(r) (vide infra) has its first minimum, and at a
distance r‖i j = |(r◦ j − r◦i ) · n̂| � L, and calculate the angle
ϑi j that r̂⊥i j , the direction of the fictitious “bond” between i
and j, forms with an arbitrary axis ĥ such that ĥ ⊥ n̂. One
natural by-product of these calculations is the distribution of
nvic, p(nvic).

The set of real-space pair correlation functions includes the
following:

(1) g(r). This is the most basic positional pair correlation
function, proportional to the conditional probability density
of finding the centroid of a particle j at a distance r from the
centroid of a particle i. It can be defined as

g(r) = 1

N

〈
1

�

N∑
i=1

N∑
i 
= j

δ(r − ri j )

〉
(7)

with ri j = |ri j | = |r◦ j − r◦i| and δ() the δ function.
(2) g‖(r‖). This is the positional pair correlation function

providing information on the correlation between two particle
centroids along n̂. It can be defined as

g‖(r‖) = 1

N

〈
1

�

N∑
i=1

N∑
i 
= j

δ(r‖ − ri j · n̂)

〉
. (8)

(3) g⊥(r⊥). This is the positional pair correlation function
providing information on the correlation between two-particle
centroids transverse to n̂. It can be defined as

g⊥(r⊥) = 1

N

〈
1

�

N∑
i=1

N∑
i 
= j

δ(r⊥ − |ri j × n̂|)
〉
. (9)

(4) G ûû
2 (r). This is a second-order orientational pair corre-

lation function defined as

G ûû
2 (r) =

〈∑N
i=1

∑N
i 
= j P2(ûi · û j )δ(r − ri j )∑N

i=1

∑N
i 
= j δ(r − ri j )

〉
(10)

with P2() the second-order Legendre polynomial. This func-
tion measures the degree of correlation in the orientations of
the axes û of two particles whose centroids are separated by a
distance r.

(5) G ûr̂
2 (r). This is a second-order bond-orientational pair

correlation function defined as

G ûr̂
2 (r) =

〈∑N
i=1

∑N
i 
= j P2(ûi · r̂i j )δ(r − ri j )∑N

i=1

∑N
i 
= j δ(r − ri j )

〉
(11)

with r̂i j = ri j/ri j . This function measures the degree of ori-
entational ordering of the fictitious “bond” ri j , established
between the centroids of two particles i and j, separated by
a distance r, with respect to ûi.

(6) Gŵ⊥ŵ⊥
2 (r). This is a second-order orientational pair

correlation function measuring the degree of correlation in the
orientations of the axes ŵ⊥ of two particles whose centroids
are separated by a distance r. It is defined as

Gŵ⊥ŵ⊥ (r) =
〈∑N

i=1

∑N
i 
= j[2(ŵ⊥i · ŵ⊥ j )2 − 1]δ(r − ri j )∑N

i=1

∑N
i 
= j δ(r − ri j )

〉
.

(12)
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(7) G ûŵ⊥ (r). This is a special orientational pair correlation
function providing information on the presence of a C2h-
symmetric biaxial nematic ordering in the system. It is defined
as

G ûŵ⊥ (r) =
〈∑N

i=1

∑N
i 
= j (ûi · û j )(ŵ⊥i · ŵ⊥ j )δ(r − ri j )∑N

i=1

∑N
i 
= j δ(r − ri j )

〉
.

(13)

In addition to the real-space pair correlation functions, the
reciprocal-space structure factor S (k) was also calculated.
More precisely, it is its orientational average S (k) that was
calculated as

S (k) =
˝

1

N

∣∣∣∣∣∣
N∑

j=1

eik·r◦ j

∣∣∣∣∣∣
2˛

k̂

(14)

with k a reciprocal-lattice vector compatible with the compu-
tational box, k = |k| and 〈〉k̂ signifying a suitable orientational
average over the reciprocal lattice vectors sharing the same
modulus in addition to an arithmetic mean over configura-
tions.

IV. RESULTS

For each value of s∗ ∈ [0, 6] considered, the sequence
of phases that a system of corresponding hard spherocylin-
der dimers form was determined following the protocol of
Sec. III. These individual phase diagrams are separately
depicted and fully described in the Supplemental Material
[45]. By critically collecting all the relevant data acquired on
the several systems of hard spherocylinder dimers that were
investigated, a complete phase diagram can then be sketched
in the plane s∗ versus φ (Fig. 2).

The liquid-crystalline phases are naturally bracketed by the
omnipresent isotropic fluid, at low φ, and solid, at high φ,
phases.

In the present context, the solid phase is generally char-
acterized by a monomeric hexagonal order. Depending on
the value of s∗, the hexatic (Hex) solid phase can further
take up the form of a: quasismectic B (qSB) at s∗ → 0 or
s∗ → 6; quasismectic H (qSH ) at values of s∗ slightly larger
than 0 or slightly smaller than 6; quasicolumnar (qC) at
intermediate values of s∗; the prefix “quasi” having been
added to just indicate that those forms are rather more re-
ferrable to the constituent hard spherocylinder monomers than
to the actual hard spherocylinder dimers. Dense packings
of hard spherocylinder dimers, the detailed and specific in-
vestigation of those, among them, that reach the maximal
(optimal) value of φ being not part of the present study,
can generally be constructed with a value of φ at least as
high as 17

√
3π/108 = 0.856 . . . and occasionally as high as

(17π/6)/(
√

2 + 5
√

3) = 0.883 . . . but the upmost limit value
of φ = 1 cannot be reached because hard spherocylinders are
not space fillers. The former value of 0.856 . . . corresponds to
the value of φ reached by packings of hard spherocylinders
with L/D = 5 disposed in a hexagonal (the hexagonal lattice
being the densest packing of two-dimensional hard disks
[83]) columnar fashion, while the latter value of 0.883 . . .

corresponds to the value of φ reached by densest Bravais

FIG. 2. Sketch of the phase diagram of systems of the hard
C2h-symmetric particles of Fig. 1 in the plane shift s∗ = s/D versus
volume fraction φ. The several phases are indicated by the corre-
sponding label or name. The dashed lines separate smectic-A phase
or quasismectic B phase from smectic-C phase or quasismectic H
phase. The points correspond to phase coexistence data obtained as
discussed in the Supplemental Material [45]. The gray zones, whose
delimiting curves smoothly fit the respective points, correspond to
phase coexistence. The hatched zone is for values of φ that are,
essentially, unachieveable, being the ordinate value of the lower
horizontal line equal to 0.856 . . ., the lower bound for the volume
fraction of the densest-known packings common to any abscissa
value.

lattice packing of hard spherocylinders with L/D = 5, one of
the infinitely many densest-known (very much probably, sic et
simpliciter, densest [81,82]) stacking-variant packings of hard
spherocylinders with such a value of L/D. While the former
lower value of φ is common to any value of s∗, the latter
higher value of φ is specific to s = 0 because only packings
of these actual hard spherocylinder dimers reach the same
value of φ that the Bravais lattice packing of the constituent
hard spherocylinder monomers does. Then, one can take the
value of φ = 0.856 . . . as a lower bound for the maximal
(optimal) value of φ for any s∗. This is expected and nothing
more than what is already known for hard spherocylinders, a
packing of such hard spherocylinder dimers a fortiori being
a packing of hard spherocylinder monomers. Besides affect-
ing the maximal (optimal) value of φ as a function of s∗,
the dimeric nature of the present hard particles especially
emerges from its being responsible for the introduction of a
special type of bond-orientational ordering in terms of the unit
vectors ŵ. If viewed from a direction parallel to n̂, such very
dense packings of hard spherocylinders dimers, irrespective of
whether their structure being further classified as quasismectic
B, quasismectic H, or quasicolumnar, resemble a system of
hard two-dimensional disk dimers. For a system of hard
two-dimensional disk dimers, it has been shown that the
high-density stable phase is a nonperiodic solid [84]. This
conclusion carries over to systems of hard spherocylinders
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dimers, as Fig. 4 of the Supplemental Material [45]
illustrates.

Smectic phase regions exist at the two extremes of the
s∗ interval, while a peculiar smectic-A phase “pocket” also
shows up around s∗ = 3. Within the two extremal smectic
phase regions, the (uniaxial) A (SAu) phase that forms at s∗ = 0
and s∗ = 6 gives gradually way to the (inherently biaxial)
C (SC) phase as s∗ respectively increases or decreases from
the corresponding extremal value of 0 or 6. The smectic-A
phase at s∗ = 3 as well as the smectic-A phase at s∗ → 6 are
characterized by a layer spacing coincident with the overall
shift and therefore shorter than the overall length of a hard
spherocylinder dimer. Thus, while at s∗ → 6 the layer-spacing
length ordinarily approximately coincides with that of the
hard spherocylinder monomer, at s∗ = 3 it is approximately
equal to 3D, that is, in this case, the length of the layer spac-
ing is peculiarly short: such a short-layer-spacing smectic-A
phase is unrealizable in a system of hard spherocylinders
with L/D = 2 as such a system transits from the isotropic
phase directly to a crystal phase [58]. The three smectic phase
regions of existence are disjoint, and each extremal region is
separated from the middle “pocket” by a region where the
uniaxial nematic phase extends up to relatively large values
of φ where the hexatic solid phase becomes stable.

The complete phase diagram of Fig. 2 is rather symmetric
with respect to s∗ = 3. Its symmetry is imperfect for chiefly
two reasons. First, in the neighborhood of s∗ = 0, no nematic
phase forms but the isotropic fluid transits directly to the
smectic-A fluid. By gluing together two hard spherocylinders
that, as monomers, do form the uniaxial version of such a
liquid-crystalline phase [58], thus constructing hard biaxial
particles that much resemble those hard boardlike particles
long hypothesized to give rise to the biaxial version of such
a liquid-crystalline phase, no nematic phase of any sort rather
ironically forms. In the neighborhood of s∗ = 6, the uniaxial
nematic phase is instead stable in an ample interval of φ.
Second, the values of φ at the isotropic-nematic phase coexis-
tence, incipient at s∗  1, gently decline with increasing s∗: an
expected effect of the increasing overall “length” -to- “width”
ratio of these hard particles.

Out of curiosity, one may imagine how the phase diagram
of Fig. 2 would get modified were hard spherocylinder dimers
as in Fig. 1 with L/D 
= 5 to be considered. For values of L/D
smaller than 5 not more than a couple of units, the relevance
that the present hard spherocylinder dimer model has to ther-
motropic low-molecular-mass LCs would be preserved, but
those hard spherocylinder dimers would have a progressively
diminishing tendency to form any nematic phase. Naturally,
the latter tendency would progressively increase as L/D gets
larger than 5. For s∗ → 0 too, a nematic phase would finally
turn up, while, for larger value of s∗, the isotropic-nematic
coexistence would shift to lower φ. The combined action of

these two changes, together with the probable nearly con-
stancy of the values of φ at which the hexatic solid phase
becomes stable, would broaden and deepen the region of
existence of the nematic phase. However, larger values of L/D
would increasingly be detrimental to the relevance that the
present hard spherocylinder model has to thermotropic low-
molecular-mass LCs, without ensuring an increased hope of
observing, at the highest density within the nematic phase, the
surge of a biaxial orientational ordering. In this respect, more
auspicable should be keeping the same value of L/D = 5,
fixing s∗ at 2 or 4 and considering hard spherocylinder
trimers as obtained by gluing to either hard spherocylinder
dimer one more aligned hard spherocylinder monomer with
the same value of shift.

V. CONCLUSIONS

Two, rather intertwined, are the principal results of the
present study. One result is the absence of a biaxial nematic
phase: when letting the system form (partially) positionally
ordered phases, these manifest and prevail. The other result
is the observation that, for values of s  2D and s  4D, no
liquid-crystalline phase is stable other than the nematic phase.

Even though no sign of biaxial orientational ordering has
been detected within this nematic phase, to have observed
how smectic phases could be destabilized in a model but, if
viewed not only from the lyotropic colloidal LC side but also
from the thermotropic low-molecular-mass LC side, realistic
pure system constitutes a stone on which subsequent, both
theoretical and experimental, research activities may make
their first step.

Theoretically, one could investigate the phase behavior of
hard spherocylinder trimers with those “optimal” values of
shift s  2D or s  4D and probe whether they are more
inclined to form a biaxial nematic phase; in general, it should
be interesting to consider, in lieu of hard cuboidal parti-
cles, hard (sphero)parallelogrammic prismlike particles, in
particular with a shape similar to the present “optimal” hard
spherocylinder dimers or to those hard spherocylinder trimers.

Experimentally, the synthesis and characterization, includ-
ing the phase behavior, of low-molecular-mass molecules
with a shape resembling that of the present “optimal” hard
spherocylinder dimers or that of those hard spherocylinder
trimers may be an effort worth its while.
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