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Mechanically induced Helfrich-Hurault effect in a confined lamellar
system with finite surface anchoring
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Soft lamellar phases confined between two parallel plates and subject to a dilatative strain can become unstable
exhibiting periodic deformations patterns of the layers. By a variational energy approach, a critical threshold for
the imposed finite strain is derived in the case of weak anchoring conditions. The potential, associated to the
system, includes a two-terms energy which accounts for the bending of the layers and the dilatation of the
bulk as well as an anchoring potential. Classical results for strong anchoring at the walls are recovered. It is
shown that weak anchoring conditions can lead to a lower critical threshold of the field, similarly as happens
for the instability induced by a magnetic or an electric field normal to the layers. Nevertheless, in the limit of
weak anchoring, the model reveals that this instability does not occur. Analytical formulas are provided which
certainly encourage further experimental investigations.
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I. INTRODUCTION

Lamellar structures like cholesteric or smectic liquid crys-
tals confined between two parallel plates and subject to ex-
ternal fields (electric, magnetic, as well as a mechanically
deformation) can, under a certain critical threshold, become
unstable and buckle into a new different configuration [1–4].

Cholesteric liquid crystal samples subject to a magnetic or
electric field applied normally to its layers tend to reorient
them along the normal, while the molecules anchored at the
boundary walls do not allow the adjacent layers to freely
rotate. In the early 1970s, Helfrich [5] and Hurault [6] first ob-
served that this competition can lead to periodic undulations
of the layers’ orientation. This instability is nowadays known
in literature as the Helfrich-Hurault effect [1]. Theoretical
predictions for this instability and for an infinite sample can
be found in Refs. [1,7], while theoretical results extended
to finite samples of smectic-A liquid crystals, if subject to
both a uniform pressure and a magnetic field, can be found
in Ref. [8] and if subject to an electric field in Refs. [9,10].
Further theoretical results for the Helfrich-Hurault instability
induced by a magnetic field but for smectic-C liquid crystals
can be found in Refs. [11,12].

Ishikawa and Lavrentovich [13] observed the undulations
of the layered systems of a cholesteric stripe phase with a
macroscopic supramicron periodicity induced by an in-plane
magnetic field normal to the layers. A few years later, Senyuk
et al. [14] observed this instability for a confined cholesteric
liquid crystal sample subject to an electrical field applied
along the normal to the layers. Both studies [13,14] emphasize
that a displacement of the layers immediately above the
instability threshold is much larger than the values expected
from the previous classical theories. They were able to de-
scribe their experimental data by including a finite anchoring
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potential to the wall, demonstrating [for the two-dimensional
(2D) case in Ref. [13] and for the extended three-dimensional
(3D) case in Ref. [14]] that the undulations depend from
the molecules anchoring at the wall. Moreover they deduced,
qualitatively and quantitatively, that the finite strong condi-
tions can decrease the critical threshold applied field allowing
larger displacements of the layers.

Undulations of the layers also can be caused by a dilatative
mechanical applied deformation [15–20], where layers, in
order to increase their effective thickness due to the dilata-
tion, tend to tilt and to balance the stretch imposed to the
sample, which tends to separate the boundary walls. All these
studies are, however, confined to the case of strong anchoring
conditions. In particular, Refs. [18,19] explored the case of
nonlinear undulations where the instability shows a transition
from sinusoidal to a chevron structure. Napoli and Nobili [20]
extended the classical results valid for infinitesimal imposed
strain [see Eq. (40)] to the most general case valid for an
imposed finite dilatative strain [see Eq. (39)1], capable there-
fore of covering cases where the specimen thickness d can be
comparable to the characteristic length λ. Analogous observed
instabilities are reported in Refs. [21,22]. The former refers
to active cholesteric liquid crystals where buckling can be
induced by both extensile or contractile applied stresses, while
the latter concerns freely floating smectic liquid crystalline
films [22] where spontaneous wrinkling can appear in order
to compensate lateral compressions.

Here the Helfrich-Hurault effect is analyzed for an infinite
smectic-A liquid crystals sample which exhibits homeotropic
alignments of the layers, and it is subjected to a dilatative finite
applied strain along the normal to the layers when molecules
are weakly anchored at the walls. By a variational energy
approach, a critical strain γc at which buckling can occur is
investigated for the symmetric anchoring case. The energy
associated to the system includes a classical two-terms energy,
with one term associated to the bending of the layers and the
other associated to the dilatation of the bulk [see Eq. (11)],
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as well as a Rapini and Papoular-type anchoring potential
[23] at the walls [see Eq. (16)]. Classical results for strong
anchoring conditions are recovered [1,15,16], noticing that
the derived model is valid to describe both the infinitesimal
and the finite applied strain case (see Ref. [20] for further
details). Noteworthy, for example, are the experimental find-
ings on the cholesteric fingerprint texture with a macroscopic
≈10 mm periodicity; this profile deviates from the classic
pattern predicted by the linear elastic theory but fits well with
the nonlinear theory of dislocations [24,25].

Furthermore, in analogy with a sample subject to a mag-
netic [13] or electric field [14] normal to the layers, respec-
tively, here we show also that a similar result is still valid,
i.e., finite anchoring conditions lead to the lower critical
threshold field. Nevertheless, the equations derived from this
model reveal that, in the limit of weak anchoring, the type
of instability considered here does not occur. An analytical
expression for the anchoring strength bound in terms of η =
λ/d , beyond which the instability is not predicted from this
model, is provided. Worth noting that this feature is also
exhibited from the critical field derived in Ref. [13] for the
sample subject to an external magnetic field normal to the
layers. In order to explore the limit case of weak anchoring
conditions further experimental investigations are therefore
encouraged. Remarkably, observations have been made of
cholesteric liquid crystal samples with a short pitch, which can
behave as a layered smectic-A liquid crystal, and for which
under an applied electric field sufficiently larger than the an-
choring energy, the nonlinear undulations can be transformed
to a system of defects [26,27].

The paper is organized as follows: Sec. II introduces the
geometry of the sample and the applied deformation field as
well as the assumptions on the energy associated to it. In
Sec. III, in order to compute the critical threshold, the Euler-
Lagrange equation with boundary conditions at the walls are
derived by a variational approach. These equations are then
specialized to the symmetric anchoring in Sec. IV, where
analytical formulas for the whole critical field are derived.
Importantly, it is shown that the limit for strong anchoring
conditions is recovered, while the instability does not occur
for very weak anchoring. In this last section, we provide this
analytical cutoff critical bound as well as a general discussion
of the obtained results.

II. THE MODEL

A. Geometric preliminaries

Smectic-A liquid crystals can be described by isosurfaces
ϕk (k labels the layer) defined by

ϕ(x, k) = 0, (1)

where x denotes the current vector position of a point on ϕk . In
particular, in the undeformed state such surfaces are parallel
planes described by the relationship

ϕ0(X, k) = N · X − k�0, (2)

where X = XE1 + ZE3 is a position vector of a point written
in its undeformed coordinates, N denotes the unit normal
vector N ≡ E3, while �0 represents the distance between
the considered plane and the reference plane Z = 0, where
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FIG. 1. A sample of a smectic-A liquid crystal in the undeformed
configuration (no scale is implied).

(X,Y, Z ) is a Cartesian reference frame (see Fig. 1 for a
schematic representation of the sample in the undeformed
configuration). The operator “·” denotes the inner product.

Let us consider the invertible transformation x = χ (X),
which maps the undeformed configuration into the distorted
one described, in a Cartesian coordinate system, by (x, y, z).
By using its inverse X = χ−1(x), Eq. (2) can be rewritten as

ϕ(x, k) = N · χ−1(x) − k�0. (3)

Let us denote by F the deformation gradient of the trans-
formation χ , which, in component form, is given by Fi j =
(Gradx)i j = ∂xi/∂Xj, (i, j = 1, 2, 3). By taking the spatial
gradient of Eq. (3) with respect to x coordinates and by
application of the chain rule,

∇ϕ = ∂ϕ

∂x
= ∂ϕ0

∂X
∂X
∂x

= F−T ∂ϕ0

∂X
, (4)

where the superscript “−T” denotes the transpose of the
inverse, so that

∇ϕ = F−TE3. (5)

A cell of material, which is in the homeotropic alignment,
between two parallel planes Z = 0 and Z = d is subjected to
the following deformation:

x = X + U (X, Z )E3, (6)

which, in the XZ plane, gives

F =
⎛
⎝ 1 0 0

0 1 0
∂XU 0 1 + ∂ZU

⎞
⎠, F−T =

⎛
⎝1 0 −∂X U

1+∂ZU
0 1 0
0 0 1

1+∂ZU

⎞
⎠,

(7)

where ∂X and ∂Y denote the partial derivatives with respect to
X and Y , respectively. From (5) and (7)2 it follows that

|∇ϕ|2 = 1 + (∂XU )2

(1 + ∂ZU )2 . (8)

Let consider the displacement U as a small perturbation
superposed to a finite homogeneous displacement,

U (X, Z ) = γ Z + εu(X, Z ), (9)
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where γ > 0 is a strain along the Z direction and ε represents
a small perturbative dimensionless positive parameter

ε =
√

γ

γc
− 1, (10)

where γc is the critical strain at which buckling occurs. Note
that for ε = 0 the �0 distance changes to a current distance �

given by � = (1 + γ )�0.

B. Distortion energy density

When a deformation field is imposed, the layers can un-
dergo a static distortion with respect to their natural configu-
ration. The free energy related to this distortion is the elastic
energy density [28]

fe = K

2
(div n)2 + B

2

(
1

|∇ϕ| − 1

)2

, (11)

where K and B are two positive constants called the bend-
ing stiffness and the compression modulus, respectively, and
where n is the unit normal vector in the current configuration,

n = ∇ϕ

|∇ϕ| . (12)

The first term of (11) penalizes the layer bending, since
1
2 div n represents the mean curvature of the layer surface. The
second term represents the energy related to the dilation or
compression of the layers thickness.

By application of the chain rule, we obtain

divn = Gradn · F−T = Tr(F−1Gradn) = −ε∂XX u + O(ε2),
(13)

while

1

|∇ϕ| − 1 = γ + ε∂Zu − ε2

2
(1 + γ )(∂X u)2, (14)

so that, up to the second order in ε, the elastic energy density
(11) can be written as

fe = 1

2
K (∂XX u)2ε2 + B

2
{γ 2 + 2γ ε∂Zu

+ ε2[(∂Zu)2 − γ (γ + 1)(∂X u)2]} + O(ε3). (15)

C. Anchoring potential

According to the Rapini and Papoular formula [23], we
assume that, at the walls, n prefers to align along the E3

direction. Consequently, the anchoring energy takes the form

fa = 1
2

[
w−(n · E1)2

Z=0 + w+(n · E1)2
Z=d

]
, (16)

where w± are two positive constants, and n is the unit normal
vector (12) in the deformed configuration, given by

n = 1√
1 + ε2u2

X

(−εuX E1 + E3). (17)

D. Nondimensionalization

The quantity λ = √
K/B defines a characteristic length

of the material which is of the order of the layer thickness,
while K/w, named the extrapolation length, is the measure

for the relevance of the competing elastic distortion versus
the anchoring induced order. Let define the nondimensional
parameters

ξ = X

d
, ζ = Z

d
, υ = u

d
, η = λ

d
, β± = d

K
w±,

(18)

which allow us to rewrite the energies densities (11) and (16)
in a dimensionless form,

φe = fe
d2

K

= 1

2
(υξξ )2ε2 + 1

2η2

{
γ 2 + 2γ ευζ

+ ε2[υ2
ζ − γ (γ + 1)υ2

ξ

]} + O(ε3) (19)

and

φa = fa
d

K
= 1

2

[
β−υ2

ξ (ξ, 0) + β+υ2
ξ (ξ, 1)

]
ε2 + O(ε4), (20)

respectively. The quantities β− and β+ given in Eq. (18)
measure the strength of the anchoring at the wall ζ = 0 and
ζ = 1, respectively (see Ref. [1] for further details). Note
that the strong planar anchoring conditions, where layers are
clamped at the walls, are recovered in the limit β± → ∞.
On the other hand, the conditions β± = 0 expresses free
anchoring conditions, and, in this case, the layers are simply
supported at the walls.

III. CRITICAL THRESHOLD

We assume that the perturbative displacement field is sep-
arable in ζ and ξ by an amplitude unknown ζ -dependent
function and a periodic cosine ξ -dependent function [2,20],

υ(ξ, ζ ) = a(ζ ) cos(qξ ξ ), (21)

with qξ representing a dimensionless wave number along the
x direction. By integrating the total energy density φe + φa

with respect to ξ and averaging it over the period T = 2π/qξ ,
and then by integrating it with respect to the ζ variable in
[0,1], we obtain the total potential of the system

� = γ 2

2η2
+ ε2

4η2

∫ 1

0
�(a, a′) dζ

+ ε2

4
q2

ξ [β−a2(ζ )|ζ=0 + β+a2(ζ )|ζ=1] + O(ε3), (22)

where �(a, a′) = �a2 + a′2 with the prime denoting the
differentiation of a function with respect to its argument and

� = q2
ξ

[
q2

ξ η
2 − γc(γc + 1)

]
. (23)

Equilibrium configurations are stationary points of the free
energy functional �. By considering a certain test function α,
we impose

�′(a)(α) = d

dt
�(a + tα)|t=0 = 0, (24)

and at second order in ε, after carrying some straightforward
algebra and from the arbitrariness of the function α, we
deduce the Euler-Lagrange equation for a:

a′′ − �a = 0, (25)

012705-3



RICCARDO DE PASCALIS PHYSICAL REVIEW E 100, 012705 (2019)

which must also satisfy the following boundaries conditions
(BCs):

a′ − β−η2q2
ξ a = 0, at ζ = 0, (26)

a′ + β+η2q2
ξ a = 0, at ζ = 1. (27)

Note that γ positive ensures � negative. Thus, the most
general solution of Eq. (25) can be written as combination of
sine and cosine functions as

a(ζ ) = C1 cos(qζ ζ ) + C2 sin(qζ ζ ), (28)

where qζ denotes a dimensionless wave number along the z
direction and where C1,C2 are two integration constants. BCs
(26) and (27) allow us to obtain one of these constants as well
as the relation imposed to qζ and qξ :

C1 = C2qζ

β−η2q2
ξ

, f (qζ , qξ ) = 0, (29)

where

f (qζ , qξ ) = (
β−β+η4q4

ξ − q2
ζ

)
sin qζ

+ (β− + β+)η2q2
ξ qζ cos qζ . (30)

IV. SYMMETRIC ANCHORING: RESULTS AND
DISCUSSION

In the symmetric anchoring case β− = β+ = β, in order to
take into account the imposed symmetry at the walls as well
as to cover results for strong anchoring conditions [13,20], we
can further assume a to be of the form

a(ζ ) = A cos
[
qζ

(
1
2 − ζ

)]
, (31)

where the amplitude A is a constant to be determined. Note
that BCs (26) and (27) reduce now to one independent relation

q2
ξ = qζ

βη2
tan(qζ /2), (32)

which has to be satisfied with the constraint given by imposing
a in Eq. (31) being a solution of (25):

q2
ζ = −�. (33)

By the assumption of the solution made in Eqs. (21) and
(31), respectively, the minimization of the total energy (22)
with respect to qξ allows us to determine the critical wave
number

q2
ξ = γc(γc + 1)

2η2
− βqζ

1 + cos qζ

qζ + sin qζ

, (34)

which, combined with (32) and (33), gives rise a nonlinear
equation for the wave number qζ :

tan2
(qζ

2

)
+ β2η2 sin qζ − qζ

sin qζ + qζ

= 0. (35)

In terms of the existence of solutions for qζ , Eq. (35) exhibits
a different behavior in the limit of strong anchoring from that
of finite weak anchoring. While it guarantees solutions qζ for
any large value of the strength parameter β, on the other hand
(35) reveals a lower β cutoff bound, which clearly depends

on η, and beyond which qζ solutions do not exist. Indeed, by
expanding β in powers of qζ up to order two, it must hold

β =
√

3

η
+ q2

ζ

5
√

3η
+ O

(
q4

ζ

)
, (36)

which provides the lower expected β (at a fixed η) for the
occurrence of the instability as qζ → 0. Note that Eq. (35)
is the equivalent of Eq. (5) in Ref. [13] when a sample of
cholesteric is subjected to a magnetic field normal to the
layers.

By replacing the β expression from (35) into (32) and
(33) and after straightforward algebra, we can derive the
expression for γc and qξ in terms of the computed critical qζ

and the parameter η:

γc = 1

2

⎛
⎝−1 +

√√√√1 + 8ηq2
ζ

√
1

q2
ζ − sin2 qζ

⎞
⎠,

q2
ξ = qζ

η

√
qζ − sin qζ

qζ + sin qζ

, (37)

respectively. For qζ ≈ 0 they become

γc = 1

2

(
−1 +

√
1 + 8

√
3η

)
+ 2ηq2

ζ

5
√

3 + 24
√

3η

+ O
(
q4

ζ

)
,

q2
ξ = q2

ζ

2
√

3η
+ O

(
q4

ζ

)
, (38)

respectively, which allows us to find easily their bounds values
as qζ → 0.

According to the experimental setup carried in Ref. [13],
let us consider λ = 2.9 μm and d = 1.7 mm, which set η =
ηIL ≈ 1.7 × 10−3. Figure 2 shows the predictions for the
critical wave numbers qζ and qξ , against the scaled strength
anchoring β̄ = 10−3β and predicted by (35) and (37)2, respec-
tively. Note, from Fig. 2(a), that the classical limit qζ → π of
strong anchoring conditions is recovered [13,15,20]. Indeed,
as β → ∞ the relationship (32) imposes qζ → kπ (with k a
nonzero integer number), and this nontrivial critical minimum
threshold is obviously attained for k = 1, i.e., at qζ = π .
Consequently, in this limit, from (37) the critical strain γc and
critical wave number qξ reduce to

γc = −1

2
+ 1

2

√
1 + 8πη, qξ =

√
π

η
, (39)

in agreement with Ref. [20], where it is remarked that, for
η 	 1, (39)1 reduces to a classical linear result [1,15,16]:

γ0 = 2πη. (40)

Instead, for very low β, curves in Fig. 2(a) follow the law (36)
and those in Fig. 2(b) the law (37)2.

Figure 3 shows several predictions of γc/η versus β̄, for η

in a range [ηIL, 60ηIL] where η = 60ηIL ≈ 0.1. First, note that
all curves are monotonic in β, confirming here the analogous
result given in Refs. [13,14], i.e., finite anchoring at the
walls favors (compared to the case of strong anchoring) the
instability. Nevertheless, it is worth noting that all curves arise
from a lower cutoff bound [represented in the graph by a
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(a) (b)

FIG. 2. The critical wave numbers when η = ηIL (solid line), η = 1/2ηIL (dotted line), and η = 2ηIL (dashed line) against β̄ = 10−3β and
predicted by (35) (a) and (37)2 (b), respectively.

red dashed curve obtained in the continuous limit qζ → 0
according to (36) and (38)1]. Thus, the model suggests that
very weak anchoring of molecules at the boundary walls
might not be sufficient for the system to compensate for the
effect instead observed for stronger anchoring conditions and
instability is not favored. Finally, as β̄ → ∞, all the curves
tend asymptotically to a different limit γc/η according to (39)
in disagreement with the classical limit γ0/η → 2π given by
using (40).

The derived model accounts for an instability of the
Helfrich-Hurault type induced from an incremental deforma-
tion superposed to a finite homogeneous dilatation of the
cell along the normal to the layers. The obtained results are
therefore valid to predict the instabilities occurring in the
linear case η 	 1 as well as to recover the case for larger
η. In the particular case when strong anchoring at the walls
is applied, Napoli et al. [20] showed (see their Fig. 2) the
discrepancy between γ0 and γc versus η, which becomes
significant for cell thickness d comparable to the charac-
teristic length λ. In fact, considering a 1-stearoyl-2oleoyl-
3-sn-phospatidylcholine sample of thickness d = 40 Å and
λ ≈ 4.47 Å ([29–31]), which implies η ≈ 0.09, they showed
a 29% difference between the classical γ0 and γc. According

γc/η

β̄

η = ηil

η = 10ηil

η = 20ηil

η = 60ηil

qζ = 0

η = ηssl

FIG. 3. Predictions of γc scaled by η against β̄ = 10−3β for
several values of η. The red dashed curve shows the lower cutoff
bound for qζ = 0.

to the parameters set deduced in Ref. [14] for a cholesteric
liquid crystal confined between two parallel planes subject
to an electric field applied along the normal to the layers,
B ≈ 10 J/m3, K = 5.8 pN, and d ≈ 60 μm, which imply η =
ηSSL ≈ 0.013. In this latter case and for strong anchoring con-
ditions the differences between γc and γ0 would be of the 8%.
Although it is still reasonable small, this disagreement there
would be more consistent for weaker anchoring conditions
whereas it has been observed larger layer displacements (see
Ref. [14]). The present model would also therefore predict
more accurately those most general cases.

To conclude the analysis, at the critical threshold, the
incremental deformation field can therefore be written as

υ(ξ, ζ ) = A cos
[
qζ

(
1
2 − ζ

)]
cos(qξ ξ ), (41)

with qζ given as a solution of (35) and qξ given by (37)2 and
where the amplitude A is still an unknown of the problem.
Following the proposed scheme in Refs. [13,32], in order to
compute A, we impose to the total energy (22) a perturbed
strain γ = γc(1 + ε2), and we retain it up to its fourth-order
term in ε:

� = γ 2
c

2η2
+ ε2

4η2

{ ∫ 1

0
(a′2 + �a2) dζ + 4γ 2

c

+ η2βq2
ξ [a2(0) + a2(1)]

}

+ ε4

64η2

(∫ 1

0
q2

ξ a2
{
3q2

ξ a2
[
γc(4γc + 5) − 4η2q2

ξ + 1
]

− 4[a′2 + 4γc(2γc + 1)]
}

dζ + γ 2
c

2

− 12η2q4
ξβ[a4(0) + a4(1)]

)
+ O(ε5). (42)

The minimization of the fourth-order term in ε of (42) with
respect to A allows us to find the unknown amplitude A 
= 0,
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which is a solution of the following second-order equation:

CA2 + D = 0 (43)

with

C = 1

64

{
2qζ

[−4q2
ζ + 2qζ sin(2qζ ) + 9�q2

ξ

]
+ 3�q2

ξ [8 sin qζ + sin(2qζ )]
} − 6β

[
η2qζ q2

ξ cos4

(
qζ

2

)]

(44)

and

D = −γc(1 + 2γc)(qζ + sin qζ ), (45)

where � = 1 + γc(5 + 4γc) − 4η2q2
ξ . Finally, in the

limit of strong anchoring β → ∞ the results given in

Ref. [20],

A = ±4

√
2

π

√
η(1 + 8πη − √

1 + 8πη)

9 + 64πη + 9
√

1 + 8πη
, (46)

are also recovered, which show that for η 	 1, the amplitude
A can be approximated by

A = ±8

3
η ∓ 128π

27
η2 ± 1360π2

81
η3 + O(η4). (47)
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