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Elastic crystalline membranes exhibit a buckling transition from sphere to polyhedron. However, their
morphologies are restricted to convex polyhedra and are difficult to externally control. Here we study morpho-
logical changes of closed crystalline membranes of superparamagnetic particles. The competition of magnetic
dipole-dipole interactions with the elasticity of this magnetoelastic membrane leads to concave morphologies.
Interestingly, as the magnetic field strength increases, the symmetry of the buckled membrane decreases from
5-fold to 3-fold, to 2-fold and, finally, to 1-fold rotational symmetry. This gives the ability to switch the
membrane morphology between convex and concave shapes with specific symmetry and provides promising
applications for membrane shape control in the design of actuatable microcontainers for targeted delivery
systems.
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I. INTRODUCTION

Polyhedra are of great interest to scientists, mathemati-
cians, and engineers. They emerge spontaneously in many
fields of science. For example, single crystals take various
polyhedra shapes, fullerenes adopt beautiful truncated icosa-
hedron shapes [1], and bacterial micro-compartments are ob-
served in multiple regular and irregular polyhedral shapes [2].

Soft homogeneous elastic membranes, including hallow
capsules [3–5], viral capsids [6,7], elastic biological mem-
branes [8,9], and crystalline vesicles [10–12], can buckle
under many conditions. Deformable capsules under pres-
sure changes take on irregular shapes [13–16]. On the other
hand, self-assembled crystalline membranes, like the shells of
viruses, generally buckle into shapes with icosahedral sym-
metry [17]. These icosahedral membrane shapes have been
explained by homogeneous elasticity theory [6,18]. Further-
more, membranes with heterogeneous elasticity have been
demonstrated to form various regular and irregular polyhedral
shapes [19]. Such polyhedral morphologies are formed by the
competition between stretching energy and bending energy.
Although it is possible to engineer membrane morphologies
by arranging defects in closed membrane topologies [20],
these morphologies cannot go beyond polyhedra.

Here, we explore the possibility to create new closed
shell morphologies, other than polyhedra, in a controllable
manner. For this purpose, we consider elastic membranes
of superparamagnetic particles because of the exceptional
penetration of magnetic fields and biocompatibility. This
provides opportunities to design magnetically responsive
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nanocarriers for targeted delivery systems in therapeutic
applications [21–24]. Magnetoelastic materials form rich mor-
phologies [25,26] and can accomplish multimodal locomotion
[27] as well as deformations that generate forces between sur-
faces [28] when directed by magnetic fields. The versatility of
magnetoelastic filaments, which consist of superparamagnetic
particles connected by elastic linkers, has also been demon-
strated experimentally [29–31] and numerically [32,33].

Compared to magnetoelastic filaments and open mem-
branes, closed magnetoelastic membranes, which have ad-
ditional topological constraints, are found here to generate
specific symmetries due to the interplay between nonlinear
elasticity and magnetic dipole-dipole interactions. By using
molecular dynamics simulations, we find the minimum energy
configurations of magnetoelastic membranes, which can be
directly controlled by external magnetic fields.

II. MODEL

As dictated by Euler’s polyhedron formula, we start by tri-
angulating a spherical shell with twelve isolated 5-fold discli-
nations. The disclinations are positioned on the vertices of
an inscribed icosahedron (Fig. 1) to minimize the interactions
between them [34], as proposed by Caspar and Klug [35].

The elastic component of the Hamiltonian of a magne-
toelastic membrane, following the discretization scheme of
Nelson et al. [18], is written as

He =
∑
e∈E

1

2
k
(∣∣re

1 − re
2

∣∣ − l0
)2 +

∑
e∈E

1

2
κ̃
∣∣ne

1 − ne
2

∣∣2
, (1)

where k is the microscopic stretching constant and κ̃ is the
microscopic bending rigidity. The sum is over all e elements
of E, which is the set of all edges; re

1 and re
2 are two vertices
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FIG. 1. Mesh configuration of the spherical shell according to
Caspar and Klug construction, which is characterized by two integers
h and k [35]. Above figure shows the example of (6,6) strucutre
and it has 1082 vertices, 3240 edges, and 2160 faces. Blue vertices
correspond to the locations of 5-fold disclinations and there are 12
disclinations in total which are located on vertices of an inscribed
icosahedron.

of the edge e; and ne
1 and ne

2 are normal vectors of the two ad-
jacent triangles of the edge e; and l0 is the equilibrium length.
Note that the corresponding continuum limit of the above
discretized Hamiltonian is mesh dependent [36]. With the
above-described triangulation of a spherical shell, it has been
shown that in the continuum limit [18,37] Young’s modulus
Y = 2k√

3
, Poisson’s ratio ν = 1

3 , and bending rigidity κ = κ̃√
3
.

Incompressible membranes (ν = 1/3) of radius R can be
described by two parameters Y and κ . Then, a single dimen-
sionless parameter γ = Y R2

κ
, called the Föppl–von Kármán

parameter [38], completely determines the buckling transition
of the system. Nelson et al. [6] showed that homogeneous
elastic membranes undergo a spontaneous buckling transition
from sphere to icosahedron when γ > γ ∗ = 154, where 154
is the value of γ ∗ for a flat disk.

In our study, we place a small superparamagnetic particle
at each vertex. An external magnetic field induces a magnetic
dipole on each vertex. Therefore, an additional term for mag-
netic dipole-dipole interactions is added into the Hamiltonian
of the system

Hm = − μ0

4π

∑
ri,r j∈V

1

|ri j |3 [3(μi · r̂i j )(μ j · r̂i j ) − μi · μ j], (2)

where μ0 is the magnetic permeability in vacuum, μi is the
magnetic dipole moment at vertex i, V is the set of all vertices,
ri is the position vector of vertex i, ri j = r j − ri and r̂i j =
ri j/|ri j |, and the sum is over i �= j.

The magnetic dipole-dipole interaction is long-range and
anisotropic. A simplified form which considers only near-
est neighbor interactions in the inextensible limit (see
Appendix A) is helpful for extracting another dimensionless
parameter and yields

Hm ≈
⎛
⎝ ∑

ri∈Vhex

6 +
∑

ri∈Vpen

5

⎞
⎠(

ni
z
2 − 1

3

)
M̃, (3)

where M̃ = 1
4

μ0

4π

(3μ)2

l3
0

2
3 , μ is the induced magnetic dipole

moment which assumes only one type of superparamagnetic

particles, Vhex is the set of vertices with six neighbors, Vpen

is the set of vertices with five neighbors, and ni
z is the z

component of a normal vector at vertex i.
M̃ gives the characteristic energy scale for each nearest-

neighbor pair of magnetic dipole-dipole interactions in the
discretization limit. Similar to the case of elastic membranes,
a magnetic modulus can be defined in the continuum limit as
M = 8

√
3 M̃

l2
0

, and a dimensionless parameter � = MR2

κ
, called

the magnetoelastic parameter [39], can be similarly defined.
The magnetoelastic parameter � characterizes the relative
strength between magnetic energy and bending energy (see
Appendix B).

Therefore, the magnetoelastic membrane has one addi-
tional energy competition from magnetic dipole-dipole inter-
actions, which is tunable via an external magnetic field. The
total magnetoelastic energy of the membrane Hem is the sum
of elastic and magnetic energies, which divided by κ gives the
dimensionless form

H̃em[{ri}; γ , �] = Hem

κ
= H̃e[{ri}; γ ] + H̃m[{ri}; �], (4)

where the tilde indicates dimensionless quantities and note
that H̃e and H̃m depend linearly on γ and �, respectively.

Besides magnetic and elastic contributions, a volume con-
straint is also imposed on the membranes to account for
internal pressure. This internal pressure is necessary when the
membrane is not penetrable, which is modeled as

Hv = �

(∑
k

�k − Vref

)2

, (5)

where �k is the signed volume of the tetrahedron extended by
the kth triangle on the membrane, Vref is the reference volume
of the membrane, and � is the Lagrange multiplier which
characterizes the system pressure. Vref is set as the volume
of the icosahedron after buckling and � is set to a large-
enough value such that the membrane has additional rigidity
from the volume constraint. The volume constraint is used to
capture the effect from the environment surrounding the mag-
netoelastic membrane and eliminate possible crumpled states
[40]. Corresponding cases without the volume constraint are
also explored, and their morphologies generally do not differ
significantly from the cases with the volume constraint. Some
crumpled states and collapsed states are observed in high field
strength limit for the cases without the volume constraint (see
Appendix F).

In the simulation, a shifted Lennard-Jones potential is also
included for each pair of vertices to account for the exclude
volume effect. Each vertex is assigned a point magnetic dipole
moment. Stretching and bending are treated with a harmonic
bond interaction and a harmonic dihedral interaction, re-
spectively. Magnetic dipole-dipole interactions are calculated
without a cutoff. The connectivity of the membrane is pre-
served during simulations. The external magnetic field is static
along the z direction. We assume superparamagnetic particles
respond to an external magnetic field instantaneously and
ignore rotational degrees of freedom of each vertex because
superparamagnetic particles do not have spontaneous mag-
netization, which decouples magnetics and elasticity. Kinetic
energy is also assigned to each vertex to give a fictitious
temperature of the system. The simulations start at high
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temperature and are gradually annealed to find the minimum
energy configuration of the system. This annealing process is
repeated several times to ensure that the system is not trapped
in local minima (see Appendix C for more simulation details).

III. RESULTS

A collection of possible morphologies of magnetoelastic
membranes obtained by systematically varying the two di-
mensionless parameters, the Föppl–von Kármán parameter
γ and the magnetoelastic parameter �, are shown in Fig. 2
(for a more detailed shape diagram, please refer to Fig. 4).
Without magnetic dipole-dipole interactions (� = 0), when
γ < γ ∗, the homogeneous elastic crystalline membrane tends
to stay spherical [Fig. 2(a)] and when γ > γ ∗ it buckles into
an icosahedron [Fig. 2(b)] as expected in the conventional
homogeneous elastic crystalline membranes [6].

At moderate strengths of the magnetic dipole-dipole inter-
action, as shown in the second row of Fig. 2, the structures
deform since the magnetic dipoles prefer to line up and
stay closer to each other to minimize the magnetic energy.

FIG. 2. A collection of representative minimum energy mor-
phologies of closed magnetoelastic membranes with different param-
eters pair (γ , �): Föppl–von Kármán parameter γ and magnetoelas-
tic parameter �; γ increases from left to right and � increases from
top to bottom. (a) Spherical shape (100,0); (b) icosahedral shape
(1000,0); (c) ellipsoidal shape (100,25); (d) star shape with six ridges
(1000,100); (e) cylindrical shape (100,50); (f) star shape with four
ridges (1000,200). Note that the first column is shown from the y
direction and the second column is shown from the z direction to give
better illustration of morphologies. Arrows indicate the direction of
the external magnetic field. Please see SM1 - 6 for corresponding
animated membrane morphologies [41].

When the membrane is relatively soft (γ < γ ∗), the mem-
brane tends to elongate along the direction of the external
magnetic field. However, this is opposed by elastic interac-
tions since elasticity prefers the membrane to stay spherical,
resulting in an ellipsoid like membrane morphology as shown
in Fig. 2(c).

When the membrane is relatively stiff (γ > γ ∗), the mem-
brane undergoes an elastically driven buckling transition. The
interplay between nonlinear elasticity and magnetic dipole-
dipole interactions distorts the icosahedron. The flat regions of
the icosahedron bend inward to reduce the distance between
magnetic dipoles and disclinations pair up, resulting in a
star-like morphology with six ridges as shown in Fig. 2(d).
Unlike the conventional convex polyhedral morphologies of
the purely elastic membranes, the magnetoelastic membranes
develop concave regions.

Then, consider the case of strong magnetic dipole-dipole
interactions, as shown in the third row of Fig. 2. The elastic
energy becomes comparable to the magnetic energy until the
membrane is highly deformed. In this regime, the competition
between magnetic energy and elastic energy results in another
new family of morphologies.

When the membrane is easily deformed (γ < γ ∗), mag-
netic dipole-dipole interactions tend to elongate the membrane
further along the direction of the external magnetic field in
this high field strength regime. However, the elastic energy
can no longer hold the membrane in a spherical or ellipsoidal
shape. The membrane forms a cylindrical shape, as shown
in Fig. 2(e), to minimize the magnetic energy. Although the
bending energy is high along edges of two end caps of the
cylinder, the total energy decreases by lining up vertices on
the side surface of the cylinder.

When the membrane is relatively rigid (γ > γ ∗), the elas-
tic energy tries to preserve the total surface area of the mem-
brane since stretching is much more expensive than bending in
this case. Meanwhile, the magnetic dipole-dipole interaction
tries to reduce the total volume of the membrane to minimize
the magnetic energy. This competition, combined with the
nonlinearity introduced by the 12 disclinations, results in a
star-like morphology with four ridges as shown in Fig. 2(f).
Note that the membrane in this case is highly bent inward,
which reduces its total volume significantly and opens some
possible applications as discussed later.

Among all these mentioned morphologies of the magne-
toelastic membrane, the γ ∼ 1000 cases are particularly in-
teresting because this regime corresponds to a typical Föppl–
von Kármán parameter of viral shells [6]. In this regime,
where both nonlinear elasticity and magnetic dipole-dipole
interactions can be significant, we find that the magnetoelas-
tic membrane tends to choose configurations that decrease
symmetry with increasing external magnetic field strength.
This point is illustrated by plotting the mean curvature and
energy distribution of the membrane in spherical coordinates
as shown in Fig. 3.

In the weak field strength limit, the membrane forms an
icosahedron [Fig. 3(a)] with five-fold rotational symmetry
around the z axis as shown in Figs. 3(b) and 3(c). In this
limit, the elastic energy dominates and the magnetic energy
is negligible [Fig. 3(d)]. With a moderate external magnetic
field strength, the membrane morphology has six ridges
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FIG. 3. Membrane morphologies (first column), mean curvature distribution (second column), elastic energy distribution (third column),
and magnetic energy distribution (fourth column) showing symmetry of magnetoelastic membranes. Membrane morphologies in the first
column are shown from z direction. All other plots are shown in spherical coordinates. Horizontal axis is polar angle θ ∈ [0, π ] and vertical axis
is azimuthal angle φ ∈ (−π, π ]. Mean curvatures are chosen to be signed values where positive values indicate convex regions and negative
values indicate concave regions. Elastic energy is sum of stretching energy (bond interaction) and bending energy (dihedral interaction).
Magnetic energy is sum of magnetic dipole-dipole interactions. Energy from Lennard-Jones interactions is negligible in all three cases.
Parameters pairs (γ , �) of membranes in each row are (1000,1), (1000,100), (1000,200) from top to bottom.

[Fig. 3(e)]. However, the 12 isolated disclinations prefer to
pair up and form ridges connecting each pair of disclinations
[42]. These disclinations pairs are arranged alternatively to
maximize the mutual distance to reduce interactions between
disclinations [34] and ridges [43], as shown in Figs. 3(f)
and 3(g). Because of this alternative arrangement, the mem-
brane with six ridges has only 3-fold rotational symmetry
around the z axis, which is also reflected by the magnetic
energy distribution [Fig. 3(h)]. If the field strength is further
increased, the membrane starts to form morphologies with
four ridges [Fig. 3(i)]. In this regime, two pairs of disclinations
break and there is a single disclination near each of the four
concave regions as show in Figs. 3(j) and 3(k). Therefore,
the symmetry of the membrane reduces to 2-fold rotational
symmetry [Figs. 3(j), 3(k), and 3(l)] around the z axis. In the
extremely high field strengths regime, the magnetic energy
completely dominates and the membrane collapses and takes
1-fold rotational symmetry (the collapsed state is not shown
in Fig. 3).

A natural question is to ask why the 4-fold rotational sym-
metry is missing among all these above-mentioned morpholo-
gies. This is due to two important facts: the ridges connecting
each pair of disclinations are energetically expensive to break
up [44] and there are effective repulsive interactions between
disclinations [34] and ridges [43]. The existence of 4-fold
symmetric structures requires that 12 disclinations are divided

into four groups of three disclinations, which needs strong
enough external magnetic field strength to break up the ridge
structures. Even these four groups of three disclinations are
formed, 4-fold symmetric structures are still not energetically
favorable since the total energy of the system can be further
reduced by choosing an alternative arrangement to increase
mutual distances and reduce repulsive interactions between
disclinations and ridges. This alternative arrangement brings
the system directly into 2-fold symmetric structures, which
makes 4-fold symmetric structures never observed as a lowest
energy configuration in our simulations.

When the volume constraint is removed, we find similar
morphologies to those discussed above except in high mag-
netic field strengths, where they take on crumpled or collapsed
morphologies (see Fig. 6).

IV. CONCLUSION

In summary, crystalline magnetoelastic membranes ex-
hibit concave morphologies beyond the conventional poly-
hedral shapes found in elastic membranes. Magnetic dipole-
dipole interactions give an additional control parameter which
is the magnetoelastic parameter �. Combining with the
Föppl–von Kármán parameter γ in the elastic membranes,
these two dimensionless parameters provide guidelines for an-
alyzing properties of crystalline magnetoelastic membranes.
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Importantly, since γ is hard to change once a membrane is
assembled, the magnetoelastic parameter, which can be easily
manipulated by an external magnetic field, provides a way to
tune the membrane morphology between convex shapes and
concave shapes with specific symmetry.

Exciting applications, including reversible membrane
shape control, design of micro-containers, and targeted drug
delivery, are expected for the closed crystalline magnetoe-
lastic membranes. For example, since the volume to surface
ratio of magnetoelastic membranes can be highly reduced by
imposing an external magnetic field, the concentration inside
can be much higher than that in the outside environment. This
morphological change induced by the external magnetic field
can facilitate release of cargoes. Therefore, the magnetoelastic
membrane can be used as a container to carry and protect
volatile or toxic molecules and release them in a targeted
region labeled by the external magnetic fields.
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APPENDIX A: APPROXIMATE MAGNETIC
ENERGY EXPRESSION

Compared to the conventional elastic membranes, the en-
ergy of magnetoelastic membranes has an additional contri-
bution from magnetic dipole-dipole interactions, which can
be expressed as

Hm = − μ0

4π

∑
ri,r j∈V,i �= j

1

|ri j |3 [3(μi · r̂i j )(μ j · r̂i j ) − μi · μ j],

(A1)

where μ0 is the magnetic permeability in a vaccum, μi is the
magnetic dipole moment at vertex i, V is the set of all vertices,
ri is the position vector of vertex i, ri j = r j − ri and r̂i j =
ri j/|ri j |.

We further assume the magnetic filed strength is strong
enough that the induced magnetic dipole of each superpara-
magnetic particles always aligns with the external magnetic
field. For simplicity, we only consider the case where a
magnetoelastic membrane is composed of the same type
of superparamagnetic particles. Then, the induced magnetic
dipole moments of each super-paramagnetic particles are the
same: μi = μ = μm̂, where m̂ is the direction of the external
magnetic field.

The above magnetic dipole-dipole interactions term can be
simplified by including only nearest-neighbor interactions

Hm ≈ − μ0

4π

∑
ri,r j∈V,i �= j

1

|ri j |3 [3(μ · r̂i j )
2 − μ2]

≈ − μ0

4π

∑
ri∈V

∑
r j∈neighbors of i

1

|ri j |3 [3(μ · r̂i j )
2 − μ2]

= μ0μ
2

4π

∑
ri∈V

∑
r j∈neighbors of i

1

|ri j |3 [1 − 3(m̂ · r̂i j )
2]. (A2)

Furthermore, we assume the membrane is inextensible,
which means that the stretching constant is large enough and
thus all edge lengths are close to the equilibrium length l0.
With this assumption, all vertices are roughly equally distant
and there are only two types of vertices: vertices with five
neighbors (5-fold disclinations) and vertices with six neigh-
bors. Thus, the magnetic energy associated with each vertex
type can be calculated accordingly:

(1) Hexagonal vertex. In this case, the vertices have six
neighbors which locate on vertices of a regular hexagon.
Assuming the equilibrium length l0 is small enough that
locally six neighbors are in the same plane. By choosing
the z axis as the normal direction of this regular hexagon
(moving frame), locations of six neighbors can be written
as r̂ j = (cos jπ

3 , sin jπ
3 , 0), j = 0, . . . , 5 and the direction of

the external magnetic field in this coordinate system can
be expressed as m̂ = (ri

t cos θ i
t , ri

t sin θ i
t , mi

n), where ri
t is the

magnitude of in-plane component of m̂ at vertex i, θ i
t is

the corresponding polar angle in the plane and mi
n is the

magnitude of out-plane component of m̂ at vertex i. Note
that the components of m̂ in the chosen coordinate system
depend on the location of vertex i. Then, the magnetic energy
associated with each hexagonal vertex is

εi
hex = μ0μ

2

4π

∑
j∈neighbors of i

1

|ri j |3 [1 − 3(m̂ · r̂i j )
2]

= μ0μ
2

4π

5∑
j=0

1

l3
0

[
1 − 3ri

t
2

cos2

(
θ i

t − jπ

3

)]

= μ0μ
2

4π

6

l3
0

[
1 − 3

2
ri

t
2
]
. (A3)

(2) Pentagonal vertex. By similarly choosing the coordi-
nate system, the locations of neighbor vertices in the pen-
tagonal case can be written as r̂ j = (cos 2 jπ

5 , sin 2 jπ
5 , 0), j =

0, . . . , 4. The magnetic energy associated with each of the
disclination vertices is

εi
pen = μ0μ

2

4π

∑
j∈neighbors of i

1

|ri j |3 [1 − 3(m̂ · r̂i j )
2]

= μ0μ
2

4π

4∑
j=0

1

l3
0

[
1 − 3ri

t
2

cos2

(
θ i

t − 2 jπ

5

)]

= μ0μ
2

4π

5

l3
0

[
1 − 3

2
ri

t
2
]
. (A4)

We consider a static external magnetic field pointing along
the z direction. Then, the direction of the external magnetic
field is m̂ = (0, 0, 1) in the laboratory coordinate system.
Denote the normal vector of ith vertex as ni and it can be
expressed as n̂i = (ni

x, ni
y, ni

z ) in the laboratory coordinate
system. Thus, the in-plane component of m̂ at each vertex i is

ri
t
2 = [m̂ − (m̂ · n̂i )n̂i]

2 = 1 − (m̂ · n̂i )
2 = 1 − ni

z
2
. (A5)

Plugging the above expression back into the energy
expressions of the hexagonal vertex and the pentagonal

012610-5



HANG YUAN AND MONICA OLVERA DE LA CRUZ PHYSICAL REVIEW E 100, 012610 (2019)

vertex, we get

εi
hex = 6M̃

(
ni

z
2 − 1

3

)
, (A6)

εi
pen = 5M̃

(
ni

z
2 − 1

3

)
, (A7)

where M̃ gives the characteristic dipole-dipole interaction
strength between a pair of nearest neighbors and is defined as

M̃ = 1

4

μ0

4π

(3μ)2

l3
0

2

3
. (A8)

Then, putting all parts together gives the total magnetic energy
of the membrane with the nearest-neighbor approximation in
the inextensible limit

Hm ≈
⎛
⎝ ∑

ri∈Vhex

6 +
∑

ri∈Vpen

5

⎞
⎠M̃

(
ni

z
2 − 1

3

)
. (A9)

We can bring the above discretization limit expression into the
continuum limit by associating each vertex with its Voronoi
cell area. The area of a regular hexagon with edge length l0 is
3
√

3
2 l2

0 and the corresponding Voronoi cell area of hexagonal

vertex is
√

3
2 l2

0 . Then, the magnetic energy density in the
continuum limit is

εM = εhex√
3

2 l2
0

= 1

2
M

(
n2

z − 1

3

)
, (A10)

where the magnetic modulus M is defined as

M = 2
√

3
μ0

4π l0

(
3μ

l2
0

)2 2

3
. (A11)

Note that the above magnetic modulus has an addition factor
of 2

√
3 compared to the result derived for square mesh [39].

The total magnetic energy in the continuum limit can be
expressed as an integral of the magnetic energy density

Hm ≈
∫

1

2
M

(
n2

z − 1

3

)
dS. (A12)

APPENDIX B: DIMENSIONLESS PARAMETERS

The total magnetoelastic energy of the membrane in the
discretization limit can be expressed as

Hem =
∑
e∈E

1

2
k
(∣∣re

1 − re
2

∣∣ − l0
)2 +

∑
e∈E

1

2
κ̃
∣∣ne

1 − ne
2

∣∣2

− μ0

4π

∑
ri,r j∈V,i �= j

1

|ri j |3 [3(μi · r̂i j )(μ j · r̂i j ) − μi · μ j]

≈
∑
e∈E

1

2
k
(∣∣re

1 − re
2

∣∣ − l0
)2 +

∑
e∈E

1

2
κ̃
∣∣ne

1 − ne
2

∣∣2

+
⎛
⎝ ∑

ri∈V hex

6 +
∑

ri∈Vpen

5

⎞
⎠M̃

(
ni

z
2 − 1

3

)
, (B1)

where k is the microscopic stretching constant, κ̃ is the
microscopic bending constant, and M̃ is the microscopic char-
acteristic dipole-dipole interaction strength. By choosing the

unit energy as κ̃ and the unit length as R (radius of the initial
spherical shell), the above expression becomes dimensionless:

H̃em =
∑
e∈E

1

2

kR2

κ̃

(∣∣r̃e
1 − r̃e

2

∣∣ − l̃0
)2 +

∑
e∈E

1

2

∣∣ne
1 − ne

2

∣∣2

+
⎛
⎝ ∑

ri∈V hex

6 +
∑

ri∈Vpen

5

⎞
⎠M̃

κ̃

(
ni

z
2 − 1

3

)

=
∑
e∈E

1

2
γ̃
(∣∣r̃e

1 − r̃e
2

∣∣ − l̃0
)2 +

∑
e∈E

1

2

∣∣ne
1 − ne

2

∣∣2

+
⎛
⎝ ∑

ri∈V hex

6 +
∑

ri∈Vpen

5

⎞
⎠�̃

(
ni

z
2 − 1

3

)
. (B2)

Note that the above Hamiltonian has two dimensionless
parameters γ̃ = kR2

κ̃
and �̃ = M̃

κ̃
, which give characteristic

interaction strengths in the microscopic scale. We can also
bring the system into the continuum limit, which gives two
more familiar dimensionless parameters of the system

γ = Y R2

κ
, � = MR2

κ
, (B3)

where γ is the Föppl–von Kármán parameter, which gives
characteristic relative strength between stretching interaction
and bending interaction. � is the magnetoelastic parameter,
which gives characteristic relative strength between magnetic
dipole-dipole interaction and bending interaction. Also note
that � ∝ μ2 and the induced magnetic dipole moment μ is
proportional to the strength of the external magnetic field,
which means that � can be directly controlled by an external
magnetic field. Correspondences between parameters in the
discretization limit and the continuum limit [18,37] are listed
below:

Y = 2k√
3
, κ = κ̃√

3
, M = 8

√
3

l2
0

M̃. (B4)

APPENDIX C: DETAILS OF SIMULATION SETUP

The simulations are performed in LAMMPS [45]. All inter-
actions in the Hamiltonian of the system can be mapped to
commonly available interactions in LAMMPS. More specifi-
cally, stretching interactions are modeled as harmonic bond
interactions, bending interactions are modeled as harmonic
dihedral interactions, and magnetic dipole-dipole interactions
are modeled as electric dipole-dipole interactions (both are
equivalent in reduced units). Shifted Lennard-Jones interac-
tions are included to account for finite size effect of the
superparamagnetic particles and to increase the stability of
the collapsed state simulation. The cutoff of the Lennard-
Jones interactions is set as 0.6 of equilibrium length l0. The
equilibrium length l0 is set as the average bond length of the
initial mesh.

Each vertex is represented as a point dipole in the simu-
lations. The computation of the long-range magnetic dipole-
dipole interactions is performed using the long-range solver
PPPM/dipole in LAMMPS. Because of the properties of su-
perparamagnetic particles, the directions of each dipole are
always aligned with the external magnetic field. Besides, only
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translational degrees of freedom are updated in each timestep.
Rotational degrees of freedom of each vertex are ignored
because superparamagnetic particles do not have permanent
magnetization which decouples magnetics and elasticity.

The initial mesh of the membrane is constructed with
the scheme proposed by Caspar and Klug [35]. Different
mesh choices (different h, k numbers) are tested to ensure
that the observed phenomena are not mesh dependent. All
simulations mentioned in this paper are performed with mesh
(6,6), which has 1082 vertices, 3240 edges, and 2160 faces.
We use reduced units for all simulations; the unit energy is κ̃

and the unit length is R (radius of initial mesh). By choosing
a different stretching constant for harmonic bond interactions
(k) and the induced magnetic dipole momen t(μ), all possible
dimensionless parameters pairs (γ , �) can be constructed
accordingly.

The simulations are performed with a typical annealing
process to get the minimum energy configuration of the
magnetoelastic membranes. The annealing process is repeated
five times to ensure the final membrane configuration is not
trapped in local minima.

The volume constraint is added when the membrane is not
penetrable, which is implemented as a fix package of LAMMPS.
An additional potential energy from the volume constraint is
modeled as following:

Hv = �

(∑
k

�k − Vref

)2

, (C1)

where �k is the signed volume of the tetrahedron extended by
the kth triangle on the membrane, Vref is the reference volume
of the membrane, and � is the Lagrange multiplier. Then,
taking derivatives of the above potential with respect to each
vertex gives the constraint forces from the volume constraint.
For example, consider a triangle consists of three vertices:
r1, r2, r3. The signed volume of the tetrahedron extended by
this triangle is

�k = 1
6 r1 · r2 × r3. (C2)

Then, taking derivatives of �k with respect to r1 is

∇�k|r1 = 1
6 (−y3z2 + y2z3, x3z2 − x2z3,−x3y2 + x2y3).

(C3)

Other cases are cyclic permutations of the above result. Note
that the interaction from the volume constraint is not a pair-
like interaction and the total constraint force of vertex i is

f (i)
constraint = 2�

∑
k∈neighbors of i

∇�k|ri . (C4)

APPENDIX D: COMPUTATION OF CURVATURES

The computation of curvatures generally requires a surface
is differentiable. However, in the discretization limit, the sur-
face is composed of flat triangles and is a piece-wise constant
surface, which has only C0 continuity. Then, the computation
of curvatures on the triangulated surface needs additional
considerations.

The method used in this paper to compute the curva-
tures of the magnetoelastic membranes follows the work of

Meyer et al. [46], which is introduced in the context of
computer graphics. By associating each vertex with its cor-
responding Voronoi cell, the mean curvature vector K and the
Gaussian curvature κG are calculated by following formulas:

K(ri ) = 1

2A(ri )

∑
j∈neighbors of i

(cot αi j + cot βi j )(ri − r j ),

(D1)

κG(ri ) =
⎛
⎝2π −

∑
j∈external angles

θ j

⎞
⎠/A(ri ), (D2)

where αi j and βi j are two angles opposite to the edge defined
by vertices ri and r j . A(ri ) is the area of Voronoi cell of
vertex i:

A(ri ) = 1

8

∑
j∈neighbors of i

(cot αi j + cot βi j )|ri − r j |2, (D3)

and θ j are the external angles of the Voronoi cell around
vertex i. Note that when triangles are obtuse, A(ri ) needs
to be modified [46] to make sure that the Voronoi cells are
nonoverlapping, which, in turn, makes sure that the sum of
Gaussian curvature fulfills the Gauss-Bonnet theorem. By
comparing the direction of mean curvature vector K to the
exterior normal direction of the membrane, a sign can be

FIG. 4. A shape diagram for the closed homogeneous magne-
toelastic crystalline membranes with the volume constraint. γ is the
Föppl–von Kármán parameter and � is the magnetoelastic parameter.
Blue crosses represent data points from simulations. Colors repre-
sent the magnetic energy contribution χm. Blue vertical dash line
indicates the elastic buckling transition point and two red contour
lines (30% and 60%) indicate estimations of magnetically induced
membrane morphologies transition points. Different regions in the
shape diagram correspond to different membrane morphologies: A.
spheres; B. icosahedra; C. ellipsoids; D. star shapes with six ridges;
E. cylinders; F. star shapes with four ridges.
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associated with the mean curvature value to distinguish con-
vex and concave regions of the membrane.

APPENDIX E: MEMBRANE MORPHOLIGIES
WITH THE VOLUME CONSTRAINT

Possible membrane morphologies with the volume con-
straint are presented in Fig. 2. Here we provide a more detailed
analysis of membrane morphologies in terms of the energy
competition between elastic and magnetic energy (Fig. 4).
Simulations with different dimensionless parameters (γ , �)
are represented by blue cross symbols in Fig. 4. Colors are
obtained by the linear interpretation based on simulation data
points, which represent the magnetic energy contributions.
The magnetic energy contribution χm is defined as

χm = |Hm|
|Hm| + He

, (E1)

where Hm and He are the total magnetic energy and elastic
energy, respectively. Based on the magnetic energy contribu-
tions, two red contour lines (∼30% and ∼60%) are drawn

FIG. 5. A collection of representative minimum energy mor-
phologies of the closed magnetoelastic membrane without the vol-
ume constraint. Different parameters pairs (γ , �), Föppl–von Kár-
mán parameter γ , and magnetoelastic parameter � are explored. γ

increases from left to right and � increases from top to bottom.
(a) Spherical shape (100,0); (b) icosahedral shape (1000,0); (c) el-
lipsoidal shape (100,20); (d) star shape with six ridges (1000,80);
(e) pancake shape (100,40); (f) star shape with four ridges
(1000,150). Note that (a) and (c) are shown from y direction, (e) is
shown in angled view, and second column is shown from z direction
to give better illustration of morphologies.

to indicate estimated magnetically induced membrane mor-
phologies transition points. Combining the elastic buckling
transition point γ ∗ ∼ 154 (blue vertical dash line), the phase
space of the system is roughly divided into regions which cor-
respond to different possible membrane morphologies. Below
the elastic buckling transition point (γ < γ ∗), the membrane
morphologies change from spherical shapes (region A), to
ellipsoidal shapes (region C), and to cylindrical shapes (region
E) with increasing magnetoelastic parameter �. Above the
elastic buckling transition point (γ > γ ∗), membrane mor-
phologies change from icosahedral shapes (region B), to star
shapes with six ridges (region D), and to star shapes with four
ridges (region F) with increasing magnetoelastic parameter �.
Blank regions correspond to an extremely strong magnetic
field strength limit, where membrane morphologies are gen-
erally 2-fold symmetric or collapsed.

APPENDIX F: MEMBRANE MORPHOLOGIES
WITHOUT THE VOLUME CONSTRAINT

We also explore cases without the volume constraint,
which correspond to the situation that materials inside the
membrane can freely penetrate the membrane. Possible mor-
phologies of the membranes without the volume constraint are
shown in Fig. 5.

When compared to the results with the volume constraint,
the volume constraint shifts the transition points between
different morphologies, which is expected and controlled by
the parameters Vref and �. The morphologies without the
volume constraint generally do not differ significantly from
cases with the volume constraint, except in cases with a high
magnetic field strength.

For example, as shown in Fig. 5(e), the membrane mor-
phology becomes “pancake” shaped when the membrane

FIG. 6. Examples of crumpled states and collapsed states. These
morphologies are observed in the cases without the volume con-
straint in the high magnetic field strength limit. Their correspond-
ing parameters pairs (γ , �) are (a) (2000,600); (b) (4000,200);
(c) (6000,500); (d) (8000, 400). All of them are shown from z direc-
tion and are represented by triangulation meshes to show overlapping
regions.
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is relatively soft (γ < γ ∗) in the high field strength limit.
The “pancake” shape brings magnetic dipoles even closer
than cylindrical shape [Fig. 2(e)] since there is no ad-
ditional volume constraint to prevent the membrane from
shrinking.

When the membrane is relatively stiff (γ > γ ∗) in the
high field strength limit, many crumpled states or collapsed
states are observed as shown in Fig. 6. These morpholo-
gies are difficult to describe and generally differ a lot from
each other. The magnetoelastic membranes in those cases are
highly nonlinear and both magnetic and elastic energy are
important. Small fluctuations of the membrane disclinations
can change the membrane morphology significantly in those
cases and lead to different crumpled states or collapsed states.
Without the volume constraint, the membranes resist magnetic

dipole-dipole interactions by elasticity (although Lennard-
Jones interactions also help stabilize the membrane when the
membrane is collapsed). After reaching a certain magnetic
field strength, the membranes cannot hold a definite shape
anymore and are free to crumple or collapse since there is
no volume constraint to restrict these crumpling or collapsing
processes. This creates a family of complicated morpholo-
gies, which are strongly deformed. Selected representative
crumpled and collapsed morphologies shown in Fig. 6 are
repeated with finer mesh size [up to mesh (12,12) which has
4322 vertices] to ensure that these morphologies do not result
from insufficient discretization. It is interesting to notice that
these morphologies in Fig. 6 (γ > γ ∗ in high magnetic field
strength limit), still roughly maintain 2-fold symmetry for
some states [Figs. 6(a), 6(c) and 6(d)].
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