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Milling and meandering: Flocking dynamics of stochastically interacting agents
with a field of view
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We introduce a stochastic agent-based model for the flocking dynamics of self-propelled particles that exhibit
nonlinear velocity-alignment interactions with neighbors within their field of view. The stochasticity in the
dynamics is spatially heterogeneous and arises implicitly from the nature of the interparticle interactions. We ob-
serve long-time spatial cohesion in the emergent flocking dynamics, despite the absence of attractive forces that
explicitly depend on the relative positions of particles. The wide array of flocking patterns exhibited by this model
are characterized by identifying spatially distinct clusters and computing their corresponding angular momenta.
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I. INTRODUCTION

The collective movement of large groups of microorgan-
isms, insects, birds, and mammals are amongst the most
spectacular examples of self-organized phenomena in the
natural world [1,2]. Species across a range of length scales
exhibit a rich variety of collective patterns of motion that are
united by similar underlying characteristics [3,4]. Advances
in experimental techniques for investigating flocking [5] has
sustained interest in uncovering the principles that underpin
this emergent phenomenon. For instance, recent experiments
have demonstrated that pairwise interactions motivated by
biological goals play a crucial role in determining insect
swarming patterns [6]. Flocks may fundamentally be viewed
as dry active matter, namely systems of self-propelled parti-
cles that do not exhibit conservation of momentum [7], and
their dynamics can be understood as a process similar to the
long-range ordering of interacting particles [8]. Following the
seminal work of Vicsek et al. [9,10], the dominant paradigm
in models of flocking is that stochasticity in the dynamics
can be accounted for through external noise (either additive
or multiplicative). However, this approach is only appro-
priate when fluctuations arise from the surrounding media,
for instance, in a system of Brownian particles. In contrast,
experimental evidence suggests that the dominant contribu-
tion to the stochasticity in flocks arises from variability in
the behavior of individual particles [11,12]. Furthermore, the
collective dynamics of a swarm is known to be density-
dependent [13,14], which tacitly suggests that variations in
individual behavior may have a cumulative impact. Indeed,
flocks may exhibit ordered macroscopic dynamics even if the
behavior of individual particles is subject to noise [15]. Hence
it is of significant interest to consider the emergent flocking
behavior in a system where stochasticity arises purely from
the uncertainties at the level of interparticle interactions.

In situations where individual particles are unable to
uniformly survey their neighborhood due to physiological
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or other constraints, their interactions would be limited to
neighbors that lie within a field of view [16]. It has been
observed that even a minimal assumption of fore-aft asym-
metry can significantly impact the collective dynamics of a
flock [17]. Furthermore, a range of flocking patterns can be
observed in a system with position-dependent short range
interactions restricted by a vision cone [18]. Recently, we
demonstrated that similar constraints on the field of view of
a particle in a two-dimensional lattice model of flocking can
yield a jamming transition even at extremely low particle
densities [19]. Recent studies have investigated the dynamics
of flocks that evolve via stochastic asynchronous update rules
with explicit alignment and repulsion [20,21], and the effect of
a field of view in Vicsek-like systems [22,23]. However, there
remain open questions as to the nature of emergent dynamics
when the stochasticity is not additive, but arises from uncer-
tainties in the alignment of each particle with a neighbor in
its field of view. Moreover, while certain types of position-
dependent interactions can facilitate cohesion in a flock
[24–26], it is intriguing to consider how this outcome might
be achieved with velocity alignments alone. This would help
shed light on the minimal conditions that underlie the emer-
gence of cohesion in complex flocking behavior. Furthermore,
while some flocking models have incorporated the accelera-
tion of particles to describe short-term memory [27], collision
avoidance [28], consensus decision making [29], and other
experimentally observed features [30], the role of position-
independent stochastic acceleration remains to be established.

In order to address these questions, we propose in this
article a paradigm for flocking in which long-time spatial
cohesion can emerge through a stochastic acceleration, de-
spite the absence of attractive forces or explicit confinement.
While a Langevin dynamics approach, where the determin-
istic and fluctuating components of motion are assumed to
be separable, is used to study interacting particles in the
presence of external noise, its validity in the context of
flocking has not been established. In contrast, we explicitly
consider a situation where, at each instant, particles interact
with a single randomly chosen neighbor in their field of view
through stochastic velocity alignments. Hence noise in this
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system is spatially heterogeneous and is intrinsically linked
to the dynamics of individual particles. We assume that the
strength of interaction between a chosen pair of particles
is independent of their relative positions and depends only
on their instantaneous velocities, as opposed to the typical
assumption of two-body or mean-field interactions. Finally,
we present an algorithm that determines the spatially distinct
clusters of the flock and their associated angular momenta.

II. MODEL

We consider an agent-based model of N interacting point-
like particles moving in two dimensions. The state of each
agent i at a time step t is described by its position xi(t ) and
velocity vi(t ). The dynamics of the system is governed by the
following update rule: at each time step t , an agent i interacts
with a randomly chosen agent j with a specified probability
p(x j (t ), v j (t )|xi(t ), vi(t )), defined later, leading to a change
in its velocity. If it does not find any agent to interact with,
it instead moves a distance |vi(t )| in a random direction. The
velocity vi(t ) and position xi(t ) are updated as

vi(t + 1) = vi(t ) + ai(t ), (1a)

xi(t + 1) = xi(t ) + vi(t + 1). (1b)

Here, ai(t ) is the agent’s acceleration and is given by

ai(t ) =
{

−vi(t ) + |vi(t )| η̂, if �i = ∅,

α[v j (t ) − vi(t ) + f (v j (t ) + vi(t ))], otherwise,
(2)

where �i is the set of all agents with which agent i may
interact, the coefficient α < 1 is the strength of interaction,
and η̂ is chosen from a uniform random distribution of vectors
on the unit circle. Note that the velocity has the dimension
of length. The initial condition is specified as xi(0) = x0

i and
vi(0) = v0

i for all i = 1, 2, . . . , N .
We note from Eq. (1a) that, when �i �= ∅, the velocity

update is dependent on the randomly chosen agent j. The
linear term α(v j − vi ) in Eq. (2) describes an alignment
interaction, while the nonlinear term f (v j + vi ) keeps the
velocity close to a critical value vc, i.e., it ensures that the
flock maintains a constant average speed. Assuming |vc| = 1,
we consider f (v) := v(1 − |v|)/(1 + |v|β ) with β = 3. Note
that, for large |v|, f (v) ∼ 1/|v|β−2. So when v j + vi is very
small, or very large, the linear velocity-alignment term of the
acceleration is dominant.

When the field of view of agent i is nonempty, i.e., �i �= ∅,
its velocity at time step t + 1 is

vi(t + 1) = vi(t ) + α[v j (t ) − vi(t ) + f (v j (t ) + vi(t ))].

For the functional form that we consider, we see that f (v j +
vi ) vanishes at |v j + vi| = 0, 1, and ∞, which implies that the
velocity vi(t + 1) � vi(t ) + α[v j (t ) − vi(t )] near these val-
ues. The case |v j + vi| = 0 corresponds to a situation where
the velocities of particles i and j have identical magnitudes
and opposite directions. In this scenario, the resulting velocity
update effectively prevents a direct collision. To understand
the case |v j + vi| = 1, let us assume that |vi + v j | = 1 + ε,

where |ε| � 1. In this situation, we see that

f (vi + v j ) = (vi + v j )[1 − (1 + ε)]

1 + (1 + ε)3
� −ε(vi + v j )

2
.

Substituting this expression into Eq. (2), we find that the
acceleration is

ai � α
(

1 − ε

2

)
v j − α

(
1 + ε

2

)
vi.

Using the velocity update expression from Eq. (1), we see
that |vi|ε �=0 < |vi|ε=0 if ε > 0 and |vi|ε �=0 > |vi|ε=0 if ε < 0.
This implies that, for ε > 0, the agent slows down, whereas,
for ε < 0, it moves faster. In other words, the nonlinear term
f (v j + vi ) ensures that the agent’s speed remains close to that
of the specified mean value.

For our current investigation, we assume that every agent i
has a field of view, symmetric around its direction of motion,
that is delimited by a maximum bearing angle θmax. Such an
assumption is valid for a wide class of systems where agents
are intrinsically polar, such as in bird flocks or in animal herds.
The probability p(x j, v j |xi, vi ) that an agent i interacts with
an agent j ∈ �i may be specified in terms of weights ωi, j . In
the absence of any external signals, or any intrinsic directional
bias, it is reasonable to assume that an agent in a flock would
align its direction of motion with an agent in its direct line
of sight with a higher probability compared to an agent lying
near the edge of its field of view. We assume that a given agent
mostly interacts with agents separated from it by an optimal
interaction length, and that the probability that it randomly
selects an agent lying very close to or very far away from itself
is negligible. With these properties in mind we assume the
following weight function:

ωi, j = |xi − x j | e− |xi−x j |2
2σ2

(
1 − θ2

i, j

/
θ2

max

)
, (3)

if θi, j � θmax and ωi, j = 0 for θi, j > θmax, where σ is the mean
interaction length and θi, j is the angle between the velocity vi

and the vector x j − xi. Given this weight function, the prob-
ability can be written as p(x j, v j |xi, vi ) = ωi, j/

∑
k∈�i

ωi,k .
The nature of this field of view is illustrated in Fig. 1. An agent
j within this field of view is picked by i with a probability
that is related to the distance between them, as well as the
angle between the velocity of i and the line connecting the
two agents. If the field of view of agent i is empty, it performs
a random rotation.

In the limiting case θmax = π , there are no random rota-
tions as, by definition, we would have �i �= ∅ ∀ i. In this sit-
uation any initial randomness will eventually get redistributed
over the whole population and it is expected that the velocities
will converge to that of the initial mean velocity. Furthermore,
here an agent i has the highest likelihood to align with any
neighbor j that approximately lies at a distance |xi − x j | = σ

(i.e., where ωi, j is at its maximum). Hence, in our simulations,
we assume that the initial positions x0

i are such that the agents
are uniformly distributed over a circular region of radius σ and
the velocities v0

i are chosen from a uniform distribution over
the range [0,1]. In addition, we note that �i is not invariant
under the transformation vi → −vi, as a consequence of the
inherent anisotropy of the field of view, which hence breaks
the time-reversal symmetry. However, such a transformation
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FIG. 1. Schematic of the field of view of an agent in our model.
The intensity of color in a given region is related to the the probability
with which a given agent i chooses an agent j that lies in that region.
Each agent has the highest probability of interacting with agents that
lie at a distance σ along its direction of motion. Similarly, the inten-
sity reduces as the angle θi, j between the velocity of i and the line
connecting the agents approaches the maximum bearing angle θmax.
Thus an agent i is most likely to align with an agent that is near its
direct line of sight and which is separated by a distance of around σ .

will not affect the nature of the pattern at the scale of the entire
flock.

III. RESULTS

Upon varying the interaction strength α, mean interaction
length σ , and the maximum bearing angle θmax over a range of
values for a system of N = 103 agents, we find that the model
exhibits a wide range of patterns (see Fig. 2). From our numer-
ical simulations, we find that the resulting patterns can sustain
their cohesiveness over a very long period of time (t � 106

steps). These observed patterns include an extended bandlike
flock that can move ballistically for long durations [Fig. 2(a)],
a very large and narrow closed trail pattern [Fig. 2(b)], a
spatially extended wriggling pattern [Fig. 2(c)], a flock that
exhibits a milling, or vortexlike, pattern [Fig. 2(d)], and a flock
with a meandering center of mass, and rotating profile, that
remains confined to a small region of space [Fig. 2(e)]. Similar
milling patterns have been observed in diverse contexts across
the natural world [31–34], including fish schools and ant
mills. We have verified that qualitatively similar flocking
patterns can be obtained even for much larger system sizes
[see Supplemental Material [35] which also includes movies
of the patterns displayed in Figs. 2(b1)–2(e1)]. Furthermore,
in addition to the patterns displayed in Fig. 2, this system can
exhibit multiple interacting clusters. To illustrate this we have
plotted in Figs. 2(a3)–2(e3) the temporal variation of the angu-
lar momentum per particle, L = N−1 ∑

i(xi − x̄) × vi for the
corresponding flocking patterns, where x̄(t ) = N−1 ∑

i xi(t )
is the center of mass of the flock. We observe that this quantity
exhibits remarkably distinct temporal profiles for each of the
displayed patterns and captures the spontaneous switching
and reversal in the direction of rotation of the flock, which
manifests as a change in the sign of L.
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FIG. 2. Examples of the spatially contiguous dynamical flocking
patterns exhibited by the model for a system of N = 103 agents. In
each row the left panel displays a snapshot of the flock, the right
panel displays the angular momentum per particle L over a duration
of time, and the middle panel displays the corresponding trajectory
of the center of mass of the flock x̄(t ) over the same duration.
(a1)–(a3) Agents moving in a band for the case σ = 6, θmax = 90◦,
and α = 0.1. (b1)–(b3) Agents moving in a closed trail for the
case σ = 3, θmax = 50◦, and α = 0.1. (c1)–(c3) Agents moving in
a wriggling pattern for the case σ = 5, θmax = 40◦, and α = 0.8.
(d1)–(d3) Agents moving in a milling pattern for the case σ = 1,
θmax = 20◦, and α = 0.025. (e1)–(e3) Agents moving in a flock with
a meandering center of mass for the case σ = 3, θmax = 15◦, and
α = 0.02. The numbered solid bars in the left and middle panels of
every row provide a measure of spatial distance in each case.

In Figs. 2(a2)–2(e2), the trajectories of the center of mass
of the flock, x̄(t ), illustrate the diversity of collective dynamics
that this model is capable of exhibiting. These range from
near-ballistic motion in the case of the bandlike patterns
[Fig. 2(a2)] to winding behavior with occasional long excur-
sions, similar to that of a correlated random walk, in the case
of the milling pattern [Fig. 2(e2)]. To discern the macroscopic
features of these trajectories, we discard an initial transient
period of duration t0 = 103 and compute the probability dis-
tribution function P(s, t ), where s = |x̄(t ) − x̄(t0)|, and the
mean square displacement (MSD) of the center of mass, 〈s2〉.
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FIG. 3. Statistics of the center of mass trajectories. (a) Time-
dependence of the average mean-squared displacement (MSD) of the
center of mass 〈s2〉, calculated over 104 trials, for each of the five sets
of parameter values considered in Fig. 2. The dashed line, shown
for reference, indicates the MSD for the case of normal diffusion.
(b), (c) The probability distribution function P(s, t ), calculated over
5 × 104 trials, shown over a range of displacements s and time t for
the cases (b) σ = 1, θmax = 20◦, α = 0.025 (a milling pattern) and
(c) σ = 5, θmax = 40◦, α = 0.8 (a wriggling pattern). The arrow in
panel (b) indicates a large excursion.

While the trail and wriggling patterns show a superdiffusive
behavior at small time scales, they appear to converge to
normal diffusion 〈s2〉 ∼ t asymptotically [cf. dashed line in
Fig. 3(a)]. In contrast, the milling and the meandering pat-
terns are initially subdiffusive and asymptotically converge
to normal diffusion, while the band pattern is superdiffusive
at all times. The probability density function P(s, t ) for the
milling and the wriggling patterns are shown in Figs. 3(b) and
3(c). We find that the patterns show a qualitatively similar
decay of P(s, t ) at small times. However, as indicated by an
arrow in Fig. 3(b), the center of mass of the milling pattern
exhibits a higher probability of large excursions at later times,
which corresponds to intervals where rotation ceases due to
an internal reorganization of the flock.

While a nonzero mean velocity of the flock corresponds
to ordered motion, indicating a band pattern, a zero mean
velocity may either correspond to randomly moving agents or
to an ordered swirling flock. Furthermore, for certain choices
of the system parameters, the flock comprises several clusters.
Hence simple scalar order parameters such as the mean veloc-
ity of the flock would only permit us to distinguish ordered
and disordered dynamics. In order to characterize the wide
array of flocking patterns observed in our simulations, we
would need information regarding translational and rotational
motion of the individual clusters of the flock.

To this end, we characterize the dynamics in terms of the
distinct (contiguous) clusters of particles through the follow-
ing cluster-finding algorithm and compute their associated
angular momenta. We define the resolution length R = λRmax,
where 0 < λ � 1 and Rmax is the maximum separation be-
tween any two particles in the flock at time t . At the length
scale Rmax the system can be viewed as comprising a single
cluster that encompasses the entire flock. For the chosen
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FIG. 4. Parameter space diagrams obtained using the cluster-
finding algorithm described in the text. The ensemble-averaged
quantities 〈Nc〉 and 〈�〉 are computed over a range of values of the
mean interaction length σ , interaction strength α, and the maximum
bearing angle θmax, and are averaged over 10 trials. The four panels
correspond to (a) α = 0.01, (b) α = 0.05, (c) α = 0.1, and (d) α =
0.5. In each, we display (in log scale) the dependence of the average
angular momentum of the flock 〈�〉 on system parameters, along
with contour lines that demarcate the regimes where the flock is
characterized by a single cluster (〈Nc〉 = 1) and multiple clusters
(〈Nc〉 > 1). The black markers within white circles in each panel
indicate locations in the parameter space where we observe a me-
andering pattern [(a) plus sign], a milling pattern [(b) filled square],
a closed trail [(b) cross], a band pattern [(c) filled circle], and a
wriggling pattern [(d) filled triangle]. A more detailed exploration
of the parameter space, with snapshots of the patterns obtained, is
provided in the Supplemental Material [35].

length scale R, we first compute ri, j = |xi(t ) − x j (t )| for all
i, j �= i and group the agents into distinct clusters such that a
pair of agents (i, j) in any given cluster satisfies the condition
ri, j � R. Next, we regroup the agents such that if ri, j � R and
r j,k � R but ri,k > R, then the agents i, j, and k are assumed
to belong to the same cluster. The resolution length R hence
provides a lower bound on the spatial separation of any pair
of detected clusters. Once the individual clusters ci (of size
Ni) have been determined, we define Nc to be the minimum
number of clusters whose collective population exceeds 90%
of N , i.e., Nc = min {n : 0.9 N � ∑n

i=1 Ni, 1 � n � N}. The
center of mass of a cluster ci is defined as x̄i = N−1

i

∑
j∈ci

x j

and the corresponding angular momentum about the center
of mass is Li = N−1

i

∑
j∈ci

(x j − x̄i ) × v j . We then compute

the quantity � = N−1
c

∑Nc
i=1 |Li|, where the absolute value

sign takes into account the fact that the flock may contain
clusters that swirl in opposite directions. A pseudocode of this
algorithm is provided in the Supplemental Material [35]. In
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our study we have used λ = 2−4, and find that the outcome
is robust with respect to a small variation R ± δ, where δ ∈
(0, R/2). Note that as λ → 0 we would, by definition, find N
clusters that each comprise a single agent.

In Fig. 4 we display a parameter space diagram that quanti-
fies the flocking dynamics in terms of two ensemble averaged
quantities, namely angular momentum 〈�〉 and the number of
clusters 〈Nc〉, over a range of values of σ , θmax, and α. The
contour lines demarcate regimes where the flocking pattern
is characterized by a single (〈Nc〉 = 1) and multiple clusters
(〈Nc〉 > 1). A general observation from Fig. 4 is that, at low
values of θmax, the mean angular momentum is very low,
regardless of σ or α and that the corresponding patterns are
characterized by a single diffusive cluster. Such cohesive but
highly disordered flocking behavior has been reported earlier
in the context of midge swarming patterns [36]. Patterns with
very high angular momentum, which typically correspond
to single or multiple closed trails, are observed for larger
values of α. For α = 0.01 we observe multiple clusters over
an intermediate range of values of θmax. Multiple clusters are
also observed for larger values of α, although the regimes
where they occur exhibit a more complex dependence on θmax.
Snapshots of the collective patterns obtained over the entire
range of parameter values considered in Fig. 4 are presented
in the Supplemental Material [35].

IV. CONCLUSION

A crucial feature of our model is that particles at the edge
of the flock are subject to more randomness, as there is a
relatively higher probability that their field of view is empty.
In contrast, the interior of the flock is comparatively ordered
through a process of self-organization, due to the increased
likelihood of alignment interactions. In addition to facilitating
cohesion, this may help explain the apparent symmetry of
several of the patterns (cf. milling, meandering, and closed

trails), as flocks with smoother boundaries have much lower
stochasticity overall. In this regard, the existence of the wrig-
gling pattern, which has a rougher boundary, is due to the fact
that the stochasticity at the edge is reduced for larger values of
σ . These results are intriguing in light of recent observations
that the boundary of a flock plays an important role in its
emergent dynamics [37]. Additionally, we note that, as the
alignment probability in our model is dependent on θmax,
there is an inherent spatial anisotropy in the stochastic interac-
tions. Specifically, for θmax < π/2 agents do not interact with
neighbors that lie directly behind them. This may relate to
the emergence of milling patterns in our model, as previous
flocking models that reported such patterns have typically
incorporated such a “blind zone” for agents [31,38–40].

In conclusion, our model provides a mechanism through
which stochasticity arises intrinsically from the interactions
between agents and yields a rich array of flocking patterns
that exhibit long-time cohesion. This framework can, in prin-
ciple, be generalized to the case of stochastic many-body
interactions. In addition, our algorithm for identifying and
computing the angular momenta of spatially distinct clusters
of a flock may help provide additional insights into other
flocking systems, both theoretical and experimental. Further-
more, the model proposed here could be extended to describe
pursuit and evasion in predator-prey systems [41], as well as
incorporate the role of social hierarchy in flocks [42–44] and
the role of memory on the emergent flocking behavior.
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