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Active microrheology, Hall effect, and jamming in chiral fluids
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We examine the motion of a probe particle driven through a chiral fluid composed of circularly swimming
disks. We find that the probe particle travels in both the longitudinal direction, parallel to the driving force,
and in the transverse direction, perpendicular to the driving force, giving rise to a Hall angle. Under constant
driving force, we show that the probe particle velocity in both the longitudinal and transverse directions exhibits
nonmonotonic behavior as a function of the activity of the circle swimmers. The Hall angle is maximized when
a resonance occurs between the frequency of the chiral disks and the motion of the probe particle. As the density
of the chiral fluid increases, the Hall angle gradually decreases before reaching zero when the system enters a
jammed state. We show that the onset of jamming depends on the chiral particle swimming frequency, with a
fluid state appearing at low frequencies and a jammed solid occurring at high frequencies.
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I. INTRODUCTION

A variety of systems can be described as assemblies of
particles that exhibit chiral or circular motion [1,2], such as
circularly moving colloids [3–6], biological circle swimmers
[7], active spinners [8–12], circularly driven particles [13–17],
and chiral robot swarms [18]. Other systems in which chiral
or gyroscopic motion occurs include skyrmions in chiral mag-
nets [19,20] and classical charged particles moving in a mag-
netic field [21]. Such chiral particle assemblies can exhibit
a variety of dynamical phases such as large-scale rotations
[18], self-assembly [5,6,8,9,11], edge currents [5,9,15,22],
and odd-viscosity responses [10,23,24].

Damping, fluctuations, and jamming in particle assemblies
can be examined at the local level using active rheology, which
is based on the response of a probe particle that is driven at
either constant force or constant velocity through a fluid or
jammed medium [25–30]. Active rheology has been applied
to the onset of jamming [26,27,31–34], where the threshold
for probe particle motion increases from zero to a finite value
at the jamming transition. It has been used to measure changes
in viscosity and diffusive responses [26,35–40] as well as
velocity-force relations [25,26,32,41–44]. Active rheology
has been applied not only to soft-matter systems, but also to
the dynamics of individual vortices dragged across pinning
landscapes in type-II superconductors [45–47]. In systems
that are active rather than passive, active rheology shows large
changes in the velocity of the probe particle as a function of
increasing bath activity when the system transitions from a
fluid state to an actively phase-separated state [48]. In each
case, when the probe particle is driven at constant force,
it moves in the direction of drive and exhibits symmetric
fluctuations in the transverse direction, with no transverse drift
or Hall velocity.

Here we study the active rheology of a probe particle
driven through a chiral fluid of circularly swimming disks.
We find that for low and intermediate fluid densities, the
probe particle exhibits a longitudinal velocity 〈Vlong〉 in the

direction of drive as well as a finite transverse or Hall velocity
〈Vtrans〉, giving rise to a Hall effect with a Hall angle of θHall =
arctan(〈Vtrans〉/〈Vlong〉). We examine the evolution of the Hall
angle as a function of applied driving force, temperature, and
chiral fluid density, and find Hall angles that are as large
as θHall = 45◦. We also observe nonmonotonic behavior of
θHall in which the transverse velocity is maximized when a
commensuration occurs between the chiral disk rotation fre-
quency and the time interval between consecutive collisions
of the probe particle with the chiral disks. In general, θHall

decreases with increasing chiral disk density, and it drops to
zero at high densities when a jammed state appears. In the
dense limit, the probe particle can move only when the driving
force is larger than a finite threshold value, and this threshold
depends strongly on the chiral disk swimming frequency. At
low frequencies, the threshold is nearly zero, while at high
frequencies, the threshold increases when the system acts
like a solid. We compare the dynamics of the probe particle
to driven skyrmions, which have recently been shown to
exhibit a skyrmion Hall effect that also exhibits nonmonotonic
behavior as a function of dc drive, temperature, and skyrmion
density [49–53].

II. SIMULATION AND SYSTEM

We consider a two-dimensional L × L system with L = 36
in which we place N nonoverlapping disks with a radius
Rd = 0.5, where the disks have repulsive harmonic interac-
tions. The density of the system is characterized by the area
covered by the disks, φ = NπR2

d/L2. For monodisperse disks
at T = 0, when φ = 0.9 the system forms a triangular solid
in which the disks are just touching. The force between disks
i and j is given by Fi j

pp = k(ri j − 2Rd )�(ri j − 2Rd )r̂i j , where
ri j = |ri − r j |, r̂i j = (ri − r j )/ri j , and � is the Heaviside step
function. The spring stiffness is set to k = 50, ensuring that
the maximum overlap between disks is less than one percent.
The densities and parameters we consider here have also been
studied in previous works [15,32,48]. The dynamics of disk
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i is determined by the following overdamped equation of
motion:

η
dri

dt
=

N∑

j �=i

Fi j
pp + Fi

circ + FT
i . (1)

We set the damping constant η = 1 and our simulation time
step is �t = 0.002. Here Fi

circ is a driving force that creates a
circular motion of the disks of the form Fi

circ = A[sin(ωt )x̂ +
cos(ωt )ŷ], controlled by varying the drive amplitude A. All of
the chiral disks move in phase with each other. The thermal
force F T is produced by Langevin kicks with the properties
〈F T

i (t )〉 = 0 and 〈F T
i (t )F T

j (t ′)〉 = 2ηkBT δi jδ(t − t ′). Unless
otherwise noted, we fix F T = 2.0, a value large enough to
maintain the system in a liquid state up to the solidification
density φ = 0.9. We note that the thermal kicks cause each
particle to undergo diffusive behavior at long timescales,
which could be appropriate for many types of active colloidal
systems. To create our probe particle, we select a single
disk and replace Fi

circ with FD = FDx̂. We measure the aver-
age velocity response in the longitudinal direction, 〈Vlong〉 =∑Ta

i vp(ti ) · x̂, as well as in the transverse direction, 〈Vtrans〉 =∑Ta
i vp(ti ) · ŷ, where vp(ti ) is the instantaneous velocity of the

probe particle. These quantities are averaged over an interval
of Ta = 5 × 106 time steps, which is long enough to ensure
that the system has reached a steady dynamical state for the
parameters we consider. In the absence of collisions between
the probe particle and the chiral disks, we obtain the free-flow
value 〈Vlong〉 = FD/η.

We focus on two regimes. The first is well below the jam-
ming density at φ = 0.424 and F T = 2.0, where the system
forms a liquid state, and the second is in a high-density regime
at φ = 0.8482, close to the jamming limit, where the disks
exhibit a finite depinning threshold below which motion does
not occur. In the low-density regime, we consider a finite
chiral activity with A = 2.5 and ω = 0.006. Here the effects
of the active rotation are maximized near FD = 1.0 when the
active disks undergo one rotation during the mean interval
between collisions with the probe particle. We also study the
passive A = 0 case with the same parameters. We examine the
effects of varying A, ω, FD, and F T , as well as the variation
of the density φ for fixed activity, and in all cases we show
that the transverse response can be maximized at an optimum
parameter value.

III. RESULTS

In Fig. 1 we show an image of the system highlighting
the chiral disk locations and trajectories over a fixed period
of time for a system with φ = 0.181, A = 2.5, ω = 0.006,
and a thermal force of F T = 2.0. The disks execute circular
orbits, and the center of mass of each circular orbit has a
diffusive behavior. The red disk is the probe particle, which
does not experience a circular drive but instead moves under
a force FD applied in the x direction, as indicated by the
arrow.

In Figs. 2(a) and 2(b) we plot 〈Vlong〉 and 〈Vtrans〉, respec-
tively, versus FD in a system with φ = 0.424, A = 2.5, and
ω = 0.006. Here 〈Vlong〉 monotonically increases with increas-
ing FD and there is no threshold for motion, while 〈Vtrans〉

FIG. 1. Instantaneous positions (dark blue circles) and trajec-
tories (light blue lines) of chiral disks during a fixed period of
time along with the position (red circle) and driving direction (red
arrow) of the probe particle in a sample with φ = 0.181, A = 2.5,
ω = 0.006, F T = 2.0, and FD = 2.0. The chiral disks undergo a
combination of diffusion and circular motion.

increases with increasing drive at low FD before reaching a
maximum near FD = 1.25 and then decreasing again. Since
both the longitudinal and transverse velocities are finite, the
driven particle is moving at an angle with respect to drive
direction, similar to the Hall effect found for the motion
of a charged particle in a magnetic field. We plot the Hall
angle θHall = tan−1(〈Vtrans〉/〈Vlong〉) versus FD in Fig. 2(c). The
maximum value of θHall = 23◦ occurs at FD = 0.75, a drive

FIG. 2. Local probe response in a system with φ = 0.424, A =
2.5, and ω = 0.006. (a) The longitudinal velocity 〈Vlong〉 vs FD.
(b) The transverse velocity 〈Vtrans〉 vs FD. (c) The Hall angle θHall =
tan−1(〈Vtrans〉/〈Vlong〉) vs FD.
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FIG. 3. (a) The longitudinal motility Mlong = 〈Vlong〉/FD vs FD for
the active system in Fig. 1 (dark blue triangles) and for a passive
system with A = 0 (light blue circles). Also plotted is the transverse
mobility Mtrans = 〈Vtrans〉/FD vs FD for the same active (dark red trian-
gles) and passive (light red circles) systems. (b) The effective damp-
ing ηeff obtained from the net velocity 〈V 〉 = (〈Vtrans〉2 + 〈Vlong〉2)1/2

for the active (dark brown triangles) and passive (light brown circles)
systems. The damping is enhanced in the active system, particularly
at low drives. The black dashed line indicates the damping η = 1
experienced by an isolated free particle.

smaller than the value of FD = 1.26 at which the maximum
in 〈Vtrans〉 appears. For higher drives, θHall gradually deceases,
reaching a value close to zero for FD > 4.0.

We measure the longitudinal mobility Mlong = 〈Vlong〉/FD

and transverse mobility Mtrans = 〈Vtrans〉/FD for the system in
Fig. 2 and show the resulting curves in Fig. 3(a). Starting
from a small value, Mlong increases with increasing FD until
it approaches the free-flow limit of Mlong = 1 at high drives.
In contrast, Mtrans increases to a maximum value of Mtrans ≈
0.2 near FD = 1.0 and then decreases to Mtrans = 0 at high
drives. For comparison, in Fig. 3(a) we also plot the behavior
of Mlong and Mtrans in the A = 0 or inactive limit, where
Mtrans = 0 for all values of FD. The value of Mlong is always
higher in the inactive system than in the sample with finite
chiral motion, indicating that the chiral motion increases the
effective damping or viscosity experienced by the moving
probe particle. A current topic in many chiral active matter
systems is the question of odd-viscosity response [22–24],
but it is not clear exactly what the signature of odd viscosity
would be in the local driven probe system. In Fig. 3(b) we
plot the effective damping constant ηeff = 1/〈V 〉 versus FD

for the active and passive systems shown in Fig. 3(a). Here
the net velocity is given by 〈V 〉 = (〈Vtrans〉2 + 〈Vlong〉2)1/2. The
effective damping for A = 0 is largest at low FD and decreases
monotonically with increasing drive, gradually approaching
the free-particle limit of η = 1 at high drives. When we
introduce finite activity, we find a large increase in ηeff at low
drives FD < 1. This also means that the viscosity of the active
system is larger, indicating that the active rotation increases
the net damping in the system.

FIG. 4. Instantaneous positions of chiral disks (dark blue circles)
and probe particle (red circle) along with the probe particle trajectory
(red line) over a period of time for the system in Fig. 2 with φ =
0.424, A = 2.5, and ω = 0.006 at FD = 1.0, where the probe particle
moves at an average Hall angle of θHall = 20◦.

In Fig. 4 we illustrate the trajectory of the probe particle
over a fixed time interval superimposed on a snapshot of the
instantaneous chiral disk locations for the system in Fig. 2
at FD = 1.0. The probe particle is moving at an angle of
approximately θHall = 20◦ with respect to the drive; however,
there are local trajectory segments in which the Hall angle is
larger or smaller than average.

The chiral disks have an intrinsic rotation frequency of
ω, and therefore the time required for each chiral disk to
complete one orbit is τP = 2π/ω. The average spacing be-
tween chiral disks is a = 1/

√
φ. When the probe particle

comes into contact with a chiral disk at small FD, the chiral
disk can complete multiple rotations during the time required
for the probe particle to move out of interaction range since
FDτP 	 a. As a result, the average transverse force exerted on
the probe particle by the chiral disk is small and θHall is nearly
zero. At high FD, the probe particle is moving rapidly in the
longitudinal direction and spends a very short time interacting
with the chiral disks during a collision since FDτP 
 a, so
once again the maximum transverse shift experienced by the
probe particle is small and the Hall angle is small. Between
these limits, a resonance can occur. When ω = 0.006 and
φ = 0.424, as in Fig. 2, the average spacing between chiral
disks is a = 1.35, and τP = 1047�t , where �t = 0.002 is the
size of a simulation time step. At FD = 0.75, the probe particle
would move a distance FDτP = 1.57 during one chiral rotation
period in the absence of collisions with the chiral disks.
Collisions reduce this travel distance to a value that is close to
a, so that on average the probe particle interacts with a given
chiral disk for one rotation period. This maximizes the chance
that the chiral disk will exert a coordinated, monodirectional
transverse force on the probe particle, resulting in a significant
transverse displacement. The maximum in θHall thus arises
due to a resonance between the chiral rotation timescale and
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FIG. 5. (a) 〈Vlong〉 (dark blue circles) and 〈Vtrans〉 (red squares) vs
FD for a nonchiral fluid with the same parameters as in Fig. 2 except
with A = 0. Here 〈Vtrans〉 = 0 for all values of FD. (b) 〈Vlong〉 (dark
blue circles) vs FD for the system in panel (a) at A = 0.0 and 〈Vlong〉
(light blue circles) vs FD for the chiral system in Fig. 2 with A = 2.5,
showing that the damping of the longitudinal motion is larger in the
chiral fluid.

the collision timescale. For higher ω at the same chiral disk
density φ, the peak in θHall shifts to higher values of FD.
We can compare these results to the behavior of θHall for
driven skyrmions [49,51,52]. In the absence of pinning, θHall

for the skyrmion system has a constant value determined by
the materials properties [49]. When pinning is present, θHall

gradually increases from zero at small FD, similarly to what
appears in Fig. 2(b). In the skyrmion case, θHall saturates to
the intrinsic value at large FD, while for the chiral liquid, θHall

decreases as FD increases above the peak value.
In Fig. 5(a) we plot 〈Vlong〉 and 〈Vtrans〉 versus FD for a

nonchiral fluid with the same parameters as in Fig. 2 but with
A = 0. Here, 〈Vlong〉 increases monotonically with increasing
FD, similarly to the chiral system; however, 〈Vtrans〉 = 0 for all
values of FD, indicating that θHall = 0 and that it is the chiral
motion of the bath particles that produces the Hall effect. We
find that 〈Vlong〉 is slightly lower in the chiral liquid than for
the A = 0 passive disks, as shown in Fig. 5(b), where we
compare the 〈Vlong〉 versus FD curves for the A = 0 system
from Fig. 5(a) and the A = 2.5 system from Fig. 2(a). The
A = 2.5 curve is lower for all FD, indicating that the chirality
of the bath particles increases the longitudinal drag on the
probe particle.

In Fig. 6(a) we plot 〈Vlong〉 and 〈Vtrans〉 versus ω for a system
with φ = 0.424, A = 2.5, and FD = 1.0. Here there is a dip in
〈Vlong〉 near ω = 0.008 that coincides with a peak in 〈Vtrans〉.
The corresponding θHall versus ω appears in Fig. 6(b), where
the Hall angle reaches a maximum value of θHall = 23◦ near
ω = 0.004. At low frequencies, the chiral disks are rotating
so slowly that the response is close to that of a passive fluid,
while at high frequencies, the chiral orbits diminish in radius
and the system again behaves like a passive fluid.

FIG. 6. (a) 〈Vtrans〉 (red squares) and 〈Vlong〉 (blue circles) vs ω

for a system with FD = 1.0, A = 2.5, and φ = 0.424. A minimum in
〈Vlong〉 coincides with a maximum in 〈Vtrans〉 near ω = 0.008. (b) The
corresponding θHall vs ω showing a maximum Hall angle of θHall =
23◦ near ω = 0.004.

Figure 7 shows θHall versus ω for the system in Fig. 6 at
FD values ranging from 0.125 to 4.0. The peak in θHall shifts
to higher values of ω with increasing FD since the chiral
particles must rotate faster in order to meet the resonance
condition FDτP ∼ a as FD increases. The maximum value of
θHall increases with decreasing FD since the lower longitudinal
velocity of the probe particle at the peak in θHall produces a
longer collision time and thus a greater transfer of momentum
from the chiral disks to the probe particle. The maximum Hall
angle we observe at very low FD is close to θHall = 45◦.

FIG. 7. θHall vs ω for the system in Fig. 6 with A = 2.5 and
φ = 0.424 for FD = 0.125 (violet circles), 0.25 (dark blue squares),
0.5 (light blue diamonds), 0.75 (teal up triangles), 1.0 (green left
triangles), 2.0 (orange down triangles), and 4.0 (red right triangles).
Here the maximum in θHall shifts to higher ω with increasing FD while
the maximum possible Hall angle decreases.
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FIG. 8. (a) ω0, the frequency at which the maximum Hall angle
appears, vs FD for the system in Fig. 7 with A = 2.5 and φ = 0.424.
There is a roughly linear increase in ω0 with increasing FD. (b) θmax

Hall ,
the value of the Hall angle at ω0, vs FD for the same system, showing
a roughly linear decrease with FD. (c) θHall/θ

max
Hall vs ω/ω0, showing a

collapse of the curves in Fig. 7 based on the fits in panels (a) and (b).
Here, FD = 0.125 (violet circles), 0.25 (dark blue squares), 0.5 (light
blue diamonds), 0.75 (teal up triangles), 1.0 (green left triangles),
2.0 (orange down triangles), and 4.0 (red right triangles). The thick
dashed line is a fit to θHall/θ

max
Hall ∝ 1/ω∗ for ω∗ > 0, where ω∗ ≡

ω/ω0 − 1.

In Fig. 8(a) we plot the frequency ω0 at which θHall reaches
its maximum value versus FD for the system in Fig. 7. We find
that ω0 increases linearly with increasing FD since it appears
at a frequency for which a resonance occurs between the time
required for an active disk to complete a revolution and the
time that separates consecutive collisions between the probe
particle and the active disks. The collision time is propor-
tional to the probe velocity, which varies linearly with FD,
and therefore the resonant frequency ω0 also varies linearly
with FD. We note that at lower FD, where the probe velocity
dependence on FD becomes nonlinear, this behavior breaks
down. In Fig. 8(b) we plot θmax

Hall , the maximum value of the
Hall angle, versus FD. Here θmax

Hall decreases roughly linearly
with increasing FD, with some deviation from linearity at
low values of FD. Using the linear fits of ω0 and θmax

Hall , we
can collapse the curves from Fig. 7, as shown in the plot
of θHall/θ

max
Hall versus ω/ω0 in Fig. 8(c). The dashed line in

Fig. 8(c) is a fit to the form θHall/θ
max
Hall ∝ 1/ω∗ for ω∗ > 0,

where ω∗ ≡ ω/ω0 − 1, showing that θHall decays as an inverse
power law above the resonant frequency.

In Fig. 9(a) we plot the trajectory of the probe particle and
the positions of the chiral bath particles for the system in Fig. 7
at FD = 0.25 and ω = 0.003, where θHall ≈ 45◦. During some
time intervals, the probe particle moves at an angle of nearly
90◦ with respect to the driving direction. Figure 9(b) illustrates
the same sample at FD = 2.0 and ω = 0.012, where the Hall
angle is much smaller, θHall = 6.5◦.

In Fig. 10(a) we show 〈Vtrans〉 and 〈Vlong〉 versus A for
a system with ω = 0.006, FD = 1.0, and φ = 0.424. Here
〈Vlong〉 is large in the A = 0 passive limit, and it decreases
with increasing A, passing through a local minimum near
A = 7.0. We find that there is a threshold value Ac = 0.5

FIG. 9. Instantaneous positions of chiral disks (dark blue circles)
and probe particle (red circle) along with the probe particle trajectory
(red line) over a period of time for the system in Fig. 7 with A =
2.5 and φ = 0.424. (a) FD = 0.25 and ω = 0.003, where θHall ≈ 45◦.
(b) FD = 2.0 and ω = 0.012, where θHall = 6.5◦.

below which 〈Vtrans〉 = 0 and there is no transverse response,
while a local maximum in 〈Vtrans〉 appears at A = 4.0. We
plot the corresponding θHall versus A in Fig. 10(b), where the
maximum value of θHall = 27◦ occurs near A = 4.0.

In Fig. 11(a) we plot 〈Vlong〉 and 〈Vtrans〉 versus φ for
a system with A = 2.5, FD = 1.0, and ω = 0.006, while in
Fig. 11(b) we plot the corresponding θHall versus φ. At the
lowest densities, the probe particle undergoes few collisions
and moves in the free-flow limit with 〈Vlong〉/FD = 1.0 and
〈Vtrans〉 = 0. As φ increases, the probe particle velocity grad-
ually decreases, dropping to zero near φ = 0.86, which is the
effective jamming density for these parameters. The decrease
in the mobility of the probe particle with increasing density
and the vanishing of the mobility as a jamming or crystal-
lization density is approached resembles what was found in
previous studies of active rheology for nonchiral passive disk

FIG. 10. (a) 〈Vlong〉 (blue circles) and 〈Vtrans〉 (red squares) vs A
for a system with ω = 0.006, FD = 1.0, and φ = 0.424. (b) The
corresponding θHall vs A. There is a threshold value of Ac = 0.5
below which θHall = 0 and the Hall response is absent.
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FIG. 11. (a) 〈Vlong〉 (blue circles) and 〈Vtrans〉 (red squares) vs
φ for a system with ω = 0.006, FD = 1.0, and A = 2.5. (b) The
corresponding θHall vs φ. A jamming transition occurs near φ = 0.86.

systems [26,27,31,32]. In those studies, 〈Vtrans〉 = 0 for all
values of φ; however, for the chiral disks we find an increase in
〈Vtrans〉 with increasing density at low values of φ, with a max-
imum in 〈Vtrans〉 appearing near φ = 0.35. This low-density
increase in the transverse response results from the increasing
frequency of collisions between the probe particle and the
chiral disks, since it is these collisions that are responsible
for the transverse probe particle motion. For φ > 0.35, 〈Vtrans〉
decreases with increasing density due to a crowding effect,
and at jamming 〈Vtrans〉 drops to zero. The maximum value of
θHall occurs at a higher density of φ = 0.55.

We note that in principle it would be possible to perform
a collapse of 〈Vtrans〉, 〈Vlong〉, and θHall for varied values of ω,
FD, and A, similarly to what is shown in Fig. 8. The number
of independent variables can be reduced slightly since the
behavior as a function of A should be proportional to the
behavior as a function of 1/ωp, where ωp ∝ 1/(FD + F c

D )
above the resonance and ωp ∝ 1/(FD − F c

D ) below the res-
onance. Here F c

D is the value of the dc drive at which the
resonance occurs. Although we find that the drift velocity
generally increases with FD, we do not observe unbounded
acceleration of the probe particle of the type that can occur
in a Fermi acceleration process. This is expected since the
inclusion of even a small amount of dissipation can destroy
the Fermi acceleration mechanism [54].

We next consider the effect of changing the magnitude
of the thermal fluctuations. In Fig. 12(a) we plot 〈Vlong〉 and
〈Vtrans〉 versus F T for a system with FD = 1.0, ω = 0.006,
A = 2.5, and φ = 0.424. At F T = 0, when the system is in the
granular limit, the probe particle leaves a low-density wake
behind it and 〈Vtrans〉 remains finite, indicating that thermal
fluctuations are not necessary to produce the Hall response.
In Fig. 12(a), 〈Vtrans〉 monotonically decreases with increas-
ing F T ; however, there is a local minimum in 〈Vlong〉 near
F T = 2.0. The local minimum roughly coincides with the

FIG. 12. (a) 〈Vlong〉 (blue circles) and 〈Vtrans〉 (red squares) vs F T

for a system with ω = 0.006, FD = 1.0, A = 2.5, and φ = 0.424.
(b) The corresponding θHall vs FT . (c) 〈Vlong〉 (blue circles) and 〈Vtrans〉
(red squares) vs F T for a system with ω = 0.006, FD = 1.0, A = 2.5,
and φ = 0.8482. (d) The corresponding θHall vs FT . Here we find a
freezing by heating phenomenon in the interval 4.0 < F T < 7.0.

crossover between low temperatures, where the probe leaves
behind a low-density wake, and higher temperatures, where
the wake rapidly refills with chiral disks. Figure 12(b) shows
that the corresponding θHall versus F T has its maximum value
at F T = 0, with a smaller local maximum appearing near
F T = 2.0. Above F T = 2.0, θHall decreases monotonically
with increasing F T .

In Fig. 13(a) we illustrate the probe particle motion for
the system in Fig. 12(a) with φ = 0.424 at F T = 0, where
the probe particle moves at a finite Hall angle and leaves a
low-density wake in its path. The appearance of an empty
region behind the probe particle is similar to what has been
observed for active rheology of nonthermal granular materials
below the jamming density [27,32,33], since in these sys-
tems there is no energy penalty for the formation of a void.

FIG. 13. Instantaneous positions of chiral disks (dark blue cir-
cles) and probe particle (red circle) for the system in Fig. 12(a) with
ω = 0.006, FD = 1.0, A = 2.5, and φ = 0.424 at F T = 0, where
the probe particle has a finite Hall angle but leaves a low-density
depletion zone or wake behind as it moves. (b) The same system
at a higher density of φ = 0.67. Here the probe particle mobility
is reduced but the Hall angle remains finite and the depletion zone
persists.
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At finite F T , the chiral disks diffusively fill-in the empty
space. In Fig. 13(b) we show the probe particle motion over
the same time interval in a denser system with F T = 0 and
φ = 0.67. The probe particle does not translate as far due
to the decrease in mobility; however, it still leaves behind a
low-density wake.

In Fig. 12(c) we plot 〈Vlong〉 and 〈Vtrans〉 versus F T for a
high-density system with φ = 0.8482, ω = 0.006, A = 2.5,
and FD = 1.0, and in Fig. 12(d) we show the corresponding
θHall versus F T . These parameters fall within a low-mobility
regime, where the probe particle is not stuck but can only
move relatively slowly through the chiral bath. At F T = 0,
〈Vlong〉 ≈ 0.2 and θHall = 4.5◦. As F T increases, both 〈Vlong〉
and 〈Vtrans〉 decrease, reaching a value that is close to zero near
F T = 4.0. This is a signature of a thermally induced jamming
transition that occurs when the thermal fluctuations increase
the effective size of the bath particles and raise the effective
density of the system to the jamming density. Such a transition
can also be regarded as an example of a freezing by heating
phenomenon in which the thermal fluctuations can effectively
freeze the disks into a jammed state [55]. If the thermal
fluctuations are finite but small, the chiral disks maintain
their ordering in the jammed state and the probe particle
slowly makes its way through the resulting mostly triangular
solid. As F T increases, the fluctuations become strong enough
to melt the chiral disk crystal. As a result, liquid behavior
reappears and the probe particle mobility rebounds, leading to
the increase in both 〈Vlong〉 and 〈Vtrans〉 for F T > 6.0. The Hall
angle θHall in Fig. 12(d) passes through a local maximum near
F T = 2.5 just before the onset of thermally induced jamming,
and it drops nearly to zero within the jammed state when the
probe particle motion becomes extremely slow. For F T > 6.5,
when the jammed state melts and the probe particle mobility
increases, θHall increases back to its prejammed level. These
results indicate that a finite Hall effect can be observed even
in nonthermal chiral systems.

Near the jammed state at high chiral disk densities, the
behavior of θHall depends strongly on FD and ω, since the
probe particle can only move through the jammed chiral disks
if the driving force is larger than a depinning threshold Fc.
A monodisperse assembly of passive disks at T = 0 forms a
triangular solid at a density of φ = 0.9. For densities close to
but below this solidification density, the addition of thermal
fluctuations can induce freezing by heating or the formation
of grain boundaries and other defects, and the disks exhibit
glassy or very slow dynamics for densities in the range
0.83 < φ < 0.9. In our chiral disk system at F T = 2.0 and
φ = 0.8482, the probe particle is mobile when FD = 1.0, but
if we reduce FD we find that there is a finite threshold drive Fc

below which the probe particle is no longer able to move. This
is illustrated in Fig. 14(a), where we plot 〈Vlong〉 and 〈Vtrans〉
versus FD for a system with φ = 0.8482, ω = 0.006, F T =
2.0, and A = 2.5. Here 〈Vlong〉 = 〈Vtrans〉 = 0 when FD < Fc,
where the threshold force Fc = 0.6. In the corresponding θHall

versus FD curve shown in Fig. 14(b), we find that θHall = 0
for FD < 0.8, indicating that within the window Fc < FD <

0.8, the probe particle has a finite longitudinal velocity but
exhibits no Hall effect. The Hall angle reaches its maximum
value of θHall ≈ 8.5 near FD = 1.75, and gradually decreases
toward zero for higher drives. Since this system is at a finite

FIG. 14. (a) 〈Vlong〉 (blue circles) and 〈Vtrans〉 (red squares) vs FD

for a system with φ = 0.848, A = 2.5, and F T = 2.0. There is a finite
depinning threshold near FD = 0.6. (b) The corresponding θHall vs FD

passes through a maximum at FD = 1.75.

temperature of F T = 2.0, the probe particle is best described
as undergoing a creep behavior at FD = 0.8. During long
periods of time, the probe particle is pinned, but there are
occasional events in which the probe particle jumps to a new
pinned location. Recent studies of driven skyrmions [51,56]
showed that the Hall angle is zero in the creep regime and
becomes finite at higher drives when the skyrmions transition
to continuous flow, similarly to what we observe in Fig. 14;
however, in the skyrmion case, θHall saturates to the intrinsic
value at high drives rather than decreasing back to zero as in
Fig. 14.

At high densities, we find that the threshold force Fc

depends on the frequency at which the chiral disks rotate.
In Fig. 15(a) we plot 〈Vlong〉 versus FD in a system with A =
2.5, F T = 2.0, and φ = 0.8482 at ω = 0.008, 0.006, 0.003,
and 0.001. The threshold for motion is finite at ω = 0.006
and ω = 0.008, and zero for ω = 0.003 and ω = 0.001. In

FIG. 15. (a) 〈Vlong〉 vs FD for a system with φ = 0.8482, A = 2.5,
and F T = 2.0 at ω = 0.008 (red triangles), 0.006 (green squares),
0.003 (light blue circles), and 0.001 (dark blue diamonds). (b) The
depinning force Fc vs ω for the same system highlighting regions in
which the probe particle is moving (pink) or pinned (yellow).
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Fig. 15(b) we show Fc versus ω for the system from Fig. 15(a).
For drives above Fc, the probe can flow through the sample,
but for drives below Fc, the probe particle is pinned. Here we
find that Fc is finite only when ω > 0.003, and that there is a
local maximum in Fc near ω = 0.01. We note that the appear-
ance of a finite depinning threshold for a probe particle has
been observed experimentally for systems in a high-density
or glassy regime [26,57]. For the passive A = 0 limit in our
system, we are always below the nonactive jamming density
of 0.9, so the inclusion of activity can be viewed as effectively
increasing the density of the particles. An open question is
what effect the chiral activity would have on a system that is
above the passive jamming density. For example, addition of
activity could increase or decrease the critical depinning force.
Our results indicate that at higher disk densities, the activity
level of the chiral disks can be used to control a transition from
jammed to unjammed behavior.

IV. SUMMARY

We have numerically examined the motion of a probe
particle driven through a chiral liquid composed of circularly
moving disks. In the absence of chirality, the probe particle
drifts only in the direction of drive so there is no Hall effect;
however, when the bath particles are chiral, both the longitu-
dinal and transverse velocities of the probe particle are finite.
Since a portion of the probe particle motion is perpendicular to
the drive direction, the probe particle exhibits a finite Hall an-
gle similar to what is observed for a charged particle moving
in a magnetic field or for driven skyrmion systems. We find
that the Hall angle has a nonmonotonic dependence on the
probe particle driving force and the amplitude and frequency
of the chiral disk motion. At low drives, the probe particle
can undergo multiple collisions with an individual chiral bath
particle, reducing the Hall angle, while at high drives the
collisions between the probe and chiral bath particles are very
brief, which again reduces the magnitude of the Hall angle. An
optimal Hall angle occurs when the time between collisions
of the probe particle with consecutive chiral bath particles is

roughly equal to the time required for a chiral bath particle
to complete a single rotation. We find that the Hall angle can
reach values as large as θHall = 45◦ and that the Hall effect
persists in the zero-temperature or granular limit. When the
chiral disk activity is fixed, the Hall angle is maximized at an
optimal chiral disk density, while the probe particle velocity
in both the longitudinal and transverse directions drops to
zero when the chiral disks reach the jamming density, which
is dependent on the frequency of the chiral motion. At low
frequencies, the depinning threshold is zero and the probe
particle is able to move under all applied drives, while at
higher frequencies there is a finite depinning threshold, and
for drives below this threshold, the probe particle is pinned.
We compare our results with those obtained for skyrmions
moving over random disorder, where drive-dependent Hall
angles that increase with increasing drive are observed. In the
skyrmion case, the Hall angle saturates to the clean limit at
high drives, whereas for the chiral liquid we consider here,
the Hall angle decreases to zero at high drives. Our results
could be tested by driving probe particles through active chiral
colloidal spinners, chiral granular matter, or even chiral robot
swarms. Additionally, these results could be relevant to other
systems that mimic chiral active baths, such as driving a single
skyrmion through an array of other skyrmions or driving a
single particle through an array of optical or fluid vortices.

Note added. Recently, we became aware of the work of
Kumar et al. [58] on the motion of spinning probe particles
through granular matter, where they report the onset of a
Magnus-like effect including a lift force.
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