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Monte Carlo simulations are used to study the translocation of a polymer into a cavity. Modeling the polymer
as a hard-sphere chain with a length up to N = 601 monomers, we use a multiple-histogram method to measure
the variation of the conformational free energy of the polymer with respect to the number of translocated
monomers. The resulting free-energy functions are then used to obtain the confinement free energy for the
translocated portion of the polymer. We characterize the confinement free energy for a flexible polymer in
cavities with constant cross-sectional area A for various cavity shapes (cylindrical, rectangular, and triangular)
as well as for tapered cavities with pyramidal and conical shape. The scaling of the free energy with cavity
volume and translocated polymer subchain length is generally consistent with predictions from simple scaling
arguments, with small deviations in the scaling exponents likely due to finite-size effects. The confinement free
energy depends strongly on cavity shape anisometry and is a minimum for an isometric cavity shape with a
length-to-width ratio of unity. Entropic depletion at the edges or vertices of the confining cavity are evident
in the results for constant-A and pyramidal cavities. For translocation into infinitely long cones, the scaling
of the free energy with taper angle is consistent with a theoretical prediction employing the blob model. We
also examine the effects of polymer bending rigidity on the translocation free energy for cylindrical cavities.
For isometric cavities, the observed scaling behavior is in partial agreement with theoretical predictions, with
discrepancies arising from finite-size effects that prevent the emergence of well-defined scaling regimes. In
addition, translocation into highly anisometric cylindrical cavities leads to a multistage folding process for stiff
polymers. Finally, we examine the effects of crowding agents inside the cavity. We find that the confinement free
energy increases with crowder density. At constant packing fraction the magnitude of this effect lessens with
increasing crowder size for a crowder-to-monomer size ratio �1.
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I. INTRODUCTION

The equilibrium conformational behavior of polymers con-
fined to small spaces has been the subject of much theoretical
interest for decades [1,2]. The basic concept is straightfor-
ward: if one or more confinement dimensions is smaller than
the mean size of the polymer, the number of accessible con-
formations is significantly reduced. This results in a reduction
in the conformational entropy and an increase in the free
energy of the polymer relative to its unconfined state. In
spite of this apparent simplicity, theoretical and computational
studies have revealed a wide variety of scaling regimes for
polymers confined to channels [3] and cavities [4–6]. Al-
though the precise scaling behavior is dependent on just a few
system properties such as the confinement dimensions and
the polymer contour length and bending rigidity, new regimes
continue to be discovered [7]. These theoretical studies have
been complemented by progress in the experiment realm,
where recent advances in nanofabrication techniques have
enabled the study of DNA (deoxyribonucleic acid) confined
to narrow channels [8] and cavities [9–14]. In addition, some
experimental studies have examined more complex confine-
ment behavior for cases where individual DNA molecules
are distributed among many cavities connected by nanopores
[15] or by narrow slits between confining surfaces [16,17].

The insights provided by these experimental and theoretical
studies are expected to benefit the development of nanofluidic
technologies for the manipulation and analysis of DNA and
other biopolymers.

Confinement is a relevant factor in many examples of
polymer translocation through nanopores [18]. For example,
many biological phenomena such as viral DNA packaging
or ejection, transport of messenger RNA (ribonucleic acid)
across the nuclear pore complex, and horizontal gene transfer
between bacteria involve translocation into or out of a con-
fined or otherwise crowded environment [19,20]. In addition,
some recently developed experimental techniques for study-
ing translocation use devices that incorporate confinement of
DNA in cavities. For example, Liu et al. designed a device
with an “entropic cage” placed near a solid-state nanopore
to trap a translocated DNA molecule. Upon chemical mod-
ification inside the cage the same molecule can be driven
back through the pore and a comparison of the ionic current
traces for translocation enables characterization of the altered
DNA [10]. Langecker et al. measured the mobility of a DNA
molecule using time-of flight measurements with a stacked-
nanopore device in which the molecule enters a pyramidal
cavity through one pore and exits through a second pore
[9]. Another recent study examined translocation into conical
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enclosures [21]. Optimizing the functionality of such devices
would benefit from an understanding of the effects of cavity
shape and size on the translocation process.

Numerous theoretical and computer simulation studies
have examined polymer translocation into or out of confined
spaces of various geometries, including spherical or ellip-
soidal cavities [22–51], cylindrical cavities [52], or laterally
unbounded spaces between flat walls [53–57]. Many of these
studies have emphasized on the role of the confinement free
energy in driving polymer translocation out of the enclosure
or in countering other applied forces that drive polymers
into such spaces [22–25,27,28,32,34,35,37,39,41,50]. One ap-
proach to interpreting the observed dynamics is using the
Fokker-Planck (FP) formalism with the translocation free-
energy functions [18]. Although recent theories of polymer
translocation have emphasized the importance of out-of-
equilibrium effects on the translocation dynamics [58,59], it
has been noted by Katkar and Muthukumar [60] that numer-
ous experimental studies have reported results consistent with
quasistatic translocation, a condition required for the valid
application of the FP formalism. Consequently, the character-
ization of the translocation free-energy functions is of value.

Of the simulation studies that have examined translocation
into or out of cavities, most have focused on spherical cavities
while only a few have considered the effects of cavity shape
anisometry [28,39,44,47,52]. In addition, studies in which
direct calculation of the confinement free energy using Monte
Carlo (MC) methods have been carried out typically address
only the simple case of spherical cavities [61]. Given the
variety of confinement cavity shapes used in the recent DNA
translocation experiments described above, it is clear that
characterization of the free energy with respect to cavity shape
would be useful. In a recent study, we made some progress
toward this goal. Using a multiple-histogram MC method
we measured the variation in the translocation free-energy
function for the case of ellipsoidal cavities and observed a
significant effect on the confinement free energy by varying
the cavity anisometry [47]. Generally, for a given cavity
volume, we found that the free energy is lowest for spherical
cavities and increases as the cavity shape becomes more
oblate or prolate. The purpose of the present study is to extend
that work. We consider here cavities of a variety of shapes,
including cylindrical, rectangular, and triangular, as well as
those with tapered geometries such as cones and pyramids.
We also consider the effects of varying the polymer bending
rigidity as well as the presence of crowding agents inside the
cavity. The scaling properties of the free-energy functions are
compared with predictions using simple models and recent
theoretical studies. Generally, the results are semiquantita-
tively consistent with the predictions, with small discrepancies
between measured and predicted scaling exponents likely
arising from finite-size effects.

The remainder of this article is organized as follows.
Section II presents a brief description of the model employed
in the simulations, following which Sec. III gives an outline
of the methodology employed and other relevant details of
the simulations. Section IV presents the simulation results
for the various systems we have examined. Finally, Sec. V
summarizes the main conclusions of this work.

II. MODEL

We employ a minimal model to describe a polymer translo-
cating through a nanopore in a flat barrier from a semi-
infinite space into a cavity. The polymer is modeled as a
chain of hard spheres, each with diameter σ . The pair poten-
tial for nonbonded monomers is thus unb(r) = ∞ for r � σ

and unb(r) = 0 for r > σ , where r is the distance between
the centers of the monomers. Pairs of bonded monomers
interact with a potential ub(r) = 0 if 0.9σ < r < 1.1σ and
ub(r) = ∞, otherwise. In the case of semiflexible polymers,
the stiffness of the chain is modeled using a bending potential
associated with each consecutive triplet of monomers. The
potential has the form ubend(θ ) = κ (1 − cos θ ). The angle θ

is defined at monomer i such that cos θi ≡ ûi · ûi+1, where ûi

is a normalized bond vector pointing from monomer i − 1 to
monomer i. The bending constant κ determines the stiffness
of the polymer and is related to the persistence length P
by κ/kBT = P/〈lbond〉 ≈ P/σ , as the mean bond length is
〈lbond〉 ≈ σ .

We consider confinement cavities of two main types. In the
first case, we consider cavities with constant cross-sectional
area that have circular, square, and (equilateral) triangular
cross sections. In the second case we examine tapered cavities
with a variable cross-sectional area with circular and square
cross sections, which correspond to conical and pyramidal
shaped spaces. For these cavities, the cone or pyramid is
truncated at the apex. The walls of each cavity are “hard”
such that the monomer-wall interaction energy is uw(r) = 0
if monomers do not overlap with the wall and uw(r) = ∞
if there is overlap. The effective channel width is defined
to be D = √

A, where A is the cross-sectional area for the
subspace in the channel that is accessible to the centers of
the monomers. Likewise, the cavity length L measures the
span of the same subspace. The aspect ratio of the cavity
is defined r ≡ L/D. The conical and pyramidal cavities are
characterized by two effective widths, Da and Db (>Da)
at the (truncated) apex and the base, respectively. A single
nanopore of length lp and width wp is located on one end of
the cavity. In most of the calculations we use lp = 1.4σ and
wp = 1.4σ . In some simulations we include crowding agents,
which are modeled as hard spheres with a diameter of σc and
are confined to the cavities. The various model systems are
illustrated in Fig. 1.

Note that unlike Ref. [47] we do not include forces required
to actually drive the polymer into the cavity (such as electric
forces in the pore or attraction to the cavity surface). Conse-
quently, the free energy is greater inside the cavity than it is
outside. Thus, the polymer is spontaneously driven outward
from the cavity for the model systems used here. Inclusion of
forces that offset the effect of this free energy gradient to drive
translocation inward is straightforward but beyond the scope
of this study.

III. METHODS

Monte Carlo simulations employing the Metropolis al-
gorithm and the self-consistent histogram (SCH) method
[62] were used to calculate the free-energy functions for
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FIG. 1. Illustration of the system studied in this work. (a) The
polymer translocates through a cylindrical pore of length lp and
diameter wp from a cavity of dimensions L and D, defined by
the subspace accessible to the centers of the monomers. The lat-
eral dimension is defined D = √

A, where A is the constant cross-
sectional area of the subspace. (b) As in (a) except the cavity
has a varying cross-sectional area. The lateral dimensions of the
subspace at the truncated apex and base of the cavity are Da and
Db, respectively. (c) As in (a), except crowding agents of size σc

partially occupy the cavity space. The shapes on the left side of each
picture indicate the cavity cross-section shapes examined in each
case.

the polymer-nanopore model described in Sec. II. The SCH
method provides an efficient means to calculate the equilib-
rium probability distribution P (m), and thus its correspond-
ing free-energy function, F (m) = −kBT lnP (m). Here, m is
defined as the number of bonds that have crossed the midpoint
of the nanopore. Typically, one bond spans this point for
any given configuration, and this bond contributes to m, the
fraction that lies on the cavity side of the point. Note that m is
a continuous variable in the range m ∈ [0, N − 1], and m − 1
is essentially the number of monomers inside the cavity. We
have previously used this procedure to measure free-energy
functions in other simulation studies of polymer translocation
[40,41,63] as well in studies of polymer segregation under
cylindrical confinement [64,65] and polymer folding in long
nanochannels [66,67].

To implement the SCH method, we carry out many inde-
pendent simulations, each of which employs a unique “win-
dow potential” of a chosen functional form. The form of this

potential is given by

Wi(m) =
⎧⎨
⎩

∞, m < mmin
i

0, mmin
i < m < mmax

i

∞, m > mmax
i

, (1)

where mmin
i and mmax

i are the limits that define the range of
m for the ith window. Within each “window” of m, a proba-
bility distribution pi(m) is calculated in the simulation. The
window potential width, �m ≡ mmax

i − mmin
i , is chosen to be

sufficiently small that the variation in F does not exceed a few
kBT . Adjacent windows overlap, and the SCH algorithm uses
the pi(m) histograms to reconstruct the unbiased distribution,
P (m). The details of the histogram reconstruction algorithm
are given in Refs. [62] and [40].

Polymer configurations were generated carrying out
single-monomer moves using a combination of translational
displacements and crankshaft rotations. In addition, reptation
moves were also employed. The trial moves were accepted
with a probability pacc = min(1, e−�E/kBT ), where �E is the
energy difference between the trial and current states. Prior to
data sampling, the system was equilibrated. As an illustration,
for a N = 601 polymer chain, the system was equilibrated
for typically ∼107 MC cycles, following which a production
run of ∼108 MC cycles was carried out. On average, during
each MC cycle one reptation move and one single-monomer
displacement or crankshaft rotation for each monomer is
attempted once.

The windows are chosen to overlap with half of the adja-
cent window, such that mmax

i = mmin
i+2. The window width was

typically �m = 4σ . Thus, a calculation for N = 601, where
the translocation coordinate spans a range of m ∈ [0, 600],
required separate simulations for 299 different window poten-
tials. For each simulation, individual probability histograms
were constructed using the binning technique with 20 bins per
histogram.

In the results presented below, distance is measured in units
of σ and energy in units of kBT .

IV. RESULTS

A. Translocation of fully flexible polymers into isometric cavities

We consider first the scaling properties of the free energy
of flexible polymers translocating into isometric cylindrical
cavities, i.e., cylindrical cavities with an aspect ratio of r ≡
L/D = 1. Figure 2 shows the variation of F with translocation
coordinate m for various cavity volumes and polymer lengths.
The free-energy curves are vertically shifted so that F = 0
at m = 0. Note that the limiting case of V = ∞ corresponds
to translocation between two semi-infinite subspaces through
an infinitely large flat wall. In this case, F is nearly con-
stant with respect to m with only slight decreases near the
limiting values of m = 0 and m = N − 1. The shape of this
profile is well understood and in the case of infinite polymer
length is given by F (m) = (1 − γ ) ln[(N − m)m], where λ ≈
0.69 is a critical exponent in three dimensions [18]. For cavi-
ties of finite volume, the free energy increases monotonically
with m (except near m = N − 1). The rate of this increase of
F increases as the volume V of the cavity space decreases.
This follows from the fact that increasing confinement reduces
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FIG. 2. Free energy functions for several polymer lengths (N =
41, 81, 121, 161, 201, and 241) and a cylindrical cavity of aspect
ratio r = 1. Results for three different cavity volumes are shown. The
inset shows Fc vs m, where Fc(m) ≡ F (m;V ) − F0(m) and F0(m) ≡
F (m;V = ∞).

the number of accessible conformations of the polymer and
thus lowers the entropy. The free-energy functions each have
positive curvature over most of their range. This results from
the fact that as translocation proceeds, the fraction of the
cavity space occupied by monomers increases. The reduction
in available cavity space means that the loss in conformational
entropy upon transfer of each monomer from outside to the
inside of the cavity also increases.

Another notable feature in Fig. 2 is the overlap of the
curves for polymers of different contour lengths entering a
cavity of a given volume. This overlap arises from the fact
that the confinement free energy of the translocated subchain
of length m dominates the total free energy, and the con-
finement free energy of this portion of the polymer is inde-
pendent of polymer contour length. We define the confine-
ment free energy as the difference Fc(m) ≡ F (m) − F0(m),
where F0(m) ≡ F (m;V = ∞) is the free energy for polymer
translocation through a flat barrier. To clarify the meaning of
Fc(m), consider the commonly used approximation that the
free energy of a partially translocated polymer is the sum
of contributions from two subchains, one of length m on the
trans side of the pore, and the other of length N − m on the
cis side, each of which is effectively tethered to the pore-
containing wall [18]. Thus, F (m) = F (cw)

trans (m) + F (cw)
cis (N −

m) and F0(m) = F (w)
trans(m) + F (w)

cis (N − m), where “w” denotes
tethering to a wall and “c” denotes the presence of cavity con-
finement. For the systems considered in this work illustrated
in Fig. 1 the confinement only affects the trans subchain. It
follows that F (cw)

cis (N − m) = F (w)
cis (N − m), and so Fc(m) =

F (cw)
trans (m) − F (w)

trans(m). Thus, Fc(m) can be interpreted as the
additional free energy of a polymer tethered to a hard wall
arising from a reduction in the conformational entropy due to
the cavity confinement. The approximation employed neglects
subtle effects from the pore that lead to oscillations in the free
energy, as described in detail in Ref. [40]. However, it can be
shown that subtraction of F0(m) from the free-energy function
eliminates this feature in Fc(m). The confinement free-energy
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FIG. 3. (a) Free energy difference Fc vs m for polymers of
different lengths. In each case, the confinement cavity is a cylinder
with an aspect ratio of D/L = 1 and a volume determined by the
condition that the packing fraction for m = N − 1 is φc = 0.15.
The dashed lines show fits to the curves for a fitting function of the
form Fc = c0 + c1(m − 1)β . The minimum m of the fitting curves
is the minimum of the range over which the Fc was fit. The fitting
exponents are β = 2.01, 2.05, 2.08, 2.10, 2.11, and 2.13 for N =
101, 201, 301, 401, 501, and 601, respectively. (b) Scaled free-energy
functions using the data from (a), where the scaling FcV 1.15 leads to
data collapse, as explained in the text. The inset shows the variation
of �Fc(≡ Fc(m = N − 1)) vs cavity volume for a N = 401 polymer
entering a cavity with D/L = 1. The solid line shows a fit to a
power law �Fc ∼ V α , where the fit yielded a scaling exponent of
α = 1.12 ± 0.02.

functions for the data of Fig. 2 are shown in the inset of the
figure. Note that the small deviations from perfect overlap for
F (m) are now gone and the Fc(m) overlap perfectly for all N at
each cavity volume, as expected. [The deviations from perfect
overlap for the F (m) curves are due to the nonextensive part of
the free energy of a wall-tethered polymer, which also gives
rise to the slight curvature in the free-energy curves in the
absence of confinement (V = ∞).]

Let us now examine the scaling properties of Fc(m).
Figure 3 shows the confinement free energy for polymers
with lengths ranging from N = 101 to 601. For convenience,
each simulation was carried out for a cavity volume chosen
so that the packing fraction in the cavity at m = N − 1 was
φ = 0.15; consequently, the cavity volume was proportional
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to the polymer length. The variation of Fc with m can be
estimated using scaling arguments developed for polymer
solutions in the semidilute regime. Here, the confined section
of the polymer can be viewed as a collection of blobs, each
with a size of ξ ∼ φν/(1−3ν), where φ ∼ m/V is the packing
fraction and ν ≈ 0.588 is the Flory exponent [68]. Since the
number of blobs is nb ≈ V/ξ 3 and each blob contributes of
order kT to the confinement free energy, it follows that

Fc/kT ∼ V −α (m − 1)β, (2)

where α = 1.31 and β = 2.31. Note that we have substi-
tuted m → m − 1 to account for the finite length of the
pore, which holds approximately one monomer. Also note
that the commonly employed approximation of ν = 3

5 leads
to a slightly different scaling of Fc/kT ∼ V −1.25(m − 1)2.25.
Previous work has shown that the semidilute regime scaling is
accurate for packing fractions of φ < 0.15 [61], which is the
motivation here for choosing the cavity volume to be such that
φ = 0.15 at full insertion. As a consequence, the condition
that φ < 0.15 is satisfied for all m. A lower limit on the
range of validity for this prediction is the requirement that the
number of blobs nb ≈ (m − 1)φ1/(3ν−1) satisfy nb � 1. For
the polymer lengths considered here, it is not possible to find
a range of m that satisfies both conditions simultaneously. To
analyze the data, we follow the approach taken in our previous
study [47] and use the more relaxed condition for low density
of nb � 3.

Figure 3(a) shows the results of fits to each of the con-
finement free-energy functions using a fitting function of the
form Fc = c0 + c1(m − 1)β , where c0, c1 and α are fitting
coefficients. The best fit curves are plotted on the graph as
dashed lines. The lower bounds of the plotted fitting curves
mark the lower limit of the range of the simulation data that
were included in the fit, i.e., the point where nb = 3. The
fitting exponents were measured to be β = 2.01, 2.05, 2.08,
2.10, 2.11, and 2.13 for N = 101, 201, 301, 401, 501, and 601,
respectively. These values are underestimates of the predicted
scaling exponent of β = 2.31. This is clearly a finite-size
effect, as suggested by the fact that β tends (slowly) toward
the predicted value as the system size increases. As noted
above, a different cavity volume was used for each simulation.
Equation (2) predicts that the scaling FcV 1.31 should collapse
these functions onto a universal curve if we scale using
the volume V employed in each of the simulations. As is
evident in Fig. 3(b), we find scaling with a somewhat smaller
exponent, i.e., FcV 1.15, produces the best collapse. As with
the small discrepancy in the observed and predicted varia-
tion of Fc with respect to m, this difference is undoubtedly
due to finite-size effects. To further investigate the volume
dependence of Fc, we examine the case of translocation of a
N = 401 polymer into a r = 1 cavity of different volumes. We
define the confinement free energy at full insertion to �Fc ≡
Fc(m = N − 1). The inset of Fig. 3(b) shows the variation of
�Fc with V in cases where the cavity volume fraction at full
insertion was φc = 0.06, 0.08, 0.1, 0.12, and 0.14. Fits to a
power law yield a scaling of �Fc ∼ V −1.12±0.02. Again we
find a discrepancy between the measured exponent and that
predicted using scaling arguments.

The discrepancies between the measured and predicted
scaling exponents α and β are somewhat smaller than those
obtained in our previous study of translocation into spherical
cavities (a special case of ellipsoidal cavities that were stud-
ied) [47]. This is likely due to the shorter polymer lengths
considered in that study (N � 140) and further supports our
claim that they are due to finite-size effects.

It is worth noting here that the confinement free energy
calculated in the simulations is that for a polymer whose
end monomer is effectively tethered to a point on the inner
surface of the confining cavity. This is due to the fact that
when m = N − 1, a single monomer is still located in the
nanopore. On the other hand, the theoretical model imposes no
such condition. In principle, the difference in confinement free
energies for these two cases will contribute to the discrepancy.
In a recent study, we described a method to calculate the
free-energy cost of localizing an end monomer of a confined
polymer [69]. Using the same model for flexible chains as that
employed here we find that for polymer lengths and packing
fractions comparable to those used here that the end-monomer
localization free energy was 1–2 kBT . Thus, the effect is very
small and unlikely to be the principal cause of the discrepancy.

Why do finite-size effects lead to effective scaling expo-
nents that are lower than the predicted values? Some insight
is provided by the arguments presented by Sakaue in Ref. [6].
The scaling prediction derived above begins with the assump-
tion that Fc ∼ nblob = V/ξ 3, which implicitly assumes that the
monomer density is uniform throughout the enclosed space.
However, Sakaue notes that monomer depletion in a layer
of width ≈ξ near the surface of the cavity is expected. This
gives rise to a surface correction term to the free energy,
�Fsurf , which is approximated as a surface integral �Fsurf =∫

da( × ξ ), where the osmotic pressure is given by  ≈
kBT/ξ 3. This is approximately �Fsurf = ξAs, where As ∼
D2 is the surface area of the cavity. Noting again that ξ ∼
φ1/(1−3ν), it follows that

�Fsurf/kBT ∼ D−0.87(m − 1)1.54. (3)

[Using ν = 3
5 gives �Fsurf/kBT ∼ D−0.83(m − 1)1.5.] Com-

paring Eqs. (2) and (3), we see that the exponents for D and
m − 1 in the case of the surface term �Fsurf are each smaller
than those for the volume term (i.e., 0.87 < 1.31 and 1.54 <

2.31). For a sufficiently small cavity, the surface term could
make an appreciable contribution to the total free energy. For
the results shown in Fig. 3, this appears to be the case, and
the smaller scaling exponents of the surface term reduce the
values of the measured effective exponents. A thorough in-
vestigation of this effect requires additional calculations with
much larger cavity sizes where the volume of the depletion
layer near the surface is a much smaller fraction of the entire
cavity volume. However, this also necessitates using polymers
at least an order of magnitude longer, which is currently not
feasible.

B. Effects of confinement shape

We now consider how the free energy is affected by varying
the both the geometry type and the shape anisometry of the
cavity. In this section we examine translocation into cavities
with constant cross-sectional area for the cases of cylindrical,

012504-5



JAMES M. POLSON AND DAVID R. HECKBERT PHYSICAL REVIEW E 100, 012504 (2019)

10 20 30 40 50 60 70
L

0

10

20

30
ΔF

c

Triangular
Rectangular
Cylindrical

8 10 15 20 25 30
D

5

10

20

50

100

ΔF
c

(a)

(b)

D = 14

D = 19

D = 24

L = 9

L = 24

L = 59

FIG. 4. (a) Confinement free energy �Fc vs cavity length for
various cavity geometries. Results are shown for a polymer of length
N = 201 for three different cavity widths. (b) Confinement free
energy �Fc vs cavity width D for various cavity geometries. Results
are shown for a polymer of length N = 201 for cavity lengths of
L = 9 (red symbols), L = 24 (green symbols), and L = 59 (blue
symbols). The blue dashed lines for L = 59 are fits to a power law,
�Fc ∼ D−β , which yield exponents of β = 1.82 ± 0.03 (triangular),
β = 1.87 ± 0.03 (rectangular), and β = 1.87 ± 0.03 (cylindrical).

rectangular, and triangular cross sections as illustrated in
Fig. 1(a). Figure 4(a) shows the confinement free energy �Fc

vs cavity length L for three different cavity types, each with
three different values of cavity width D. Results are shown for
a polymer of length N = 201. Several trends are notable. First,
for all cavity dimensions D and L the confinement free energy
is greatest for triangular cavities and lowest for cylindrical
cavities. This is due to the effect of entropic depletion, in
which the monomer density is significantly reduced in sharp
corners of confined spaces [67,70,71]. This effect tends to
be especially strong in triangular cavities, which have the
sharpest angles, and is absent for the case of cylindrical
confinement. Such monomer depletion in these regions leads
to an effective cross-sectional area that is less than the actual
area accessible to the monomer centers. Since decreasing the
area and therefore D increases the confinement and therefore
the free energy, the trends with regard to cross-section shape
follow accordingly.

Another trend is that for sufficiently long channels �Fc

is invariant with respect to L. This results simply from the
fact that a polymer in a sufficiently long tube is insensitive
to the presence of longitudinal confinement. Thus, decreasing
L in this range does not reduce the number of accessible
conformations and decrease the entropy. However, as L is

further reduced the polymer is uniformly compressed along
the channel, leading to entropy loss and the observed increase
in �Fc. The onset of the effects of longitudinal confinement
upon decreasing L occurs at higher values of L for narrower
channels, reflecting the fact that the extension length is greater
for smaller channels widths. In addition, �Fc decreases with
increasing channel width at each fixed tube length. This is
a consequence of the fact that narrower channels distort the
polymer more relative to the unconfined state, leading to a
greater reduction in entropy.

Figure 4(b) shows the variation of �Fc with D for the same
three cavity geometries and for three different cavity lengths.
Consistent with the results of Fig. 4(a), �Fc increases with
decreasing cavity length at any given D. In addition, the trend
with regard to channel shape (i.e., �Fc for triangular channels
is greater than those for square channels, which in turn is
greater than those for cylindrical channels) still holds. In the
case of L = 59, where the effects of longitudinal confinement
are negligible for this polymer length (N = 201), the polymer
behaves simply as one confined to an infinitely long channel.
For this confinement, the de Gennes blob model predicts a
confinement free energy that scales as �F ∼ D−1/ν ≈ D−1.70

(for ν ≈ 0.588). We have fit the L = 59 data to a power
law �F ∼ D−β , and the fitting curves overlaid on the data
in Fig. 4(b) show that the data do indeed exhibit power-
law behavior. However, the measured scaling exponents of
β = 1.82 ± 0.03 for triangular channels, β = 1.87 ± 0.03 for
rectangular channels, and β = 1.87 ± 0.03 for cylindrical
channels deviate somewhat from the predicted value. It is
unlikely that this discrepancy arises from confinement cavities
that are insufficiently wide since the condition that D � 10 for
blob-model scaling behavior to emerge noted in a previous
study [72] is satisfied here. Instead, it arises from the fact that
the chains are insufficiently long, leading to a violation of the
condition that the number of blobs satisfies nb � 1, which is
also necessary to recover the predicted scaling.

Figure 5(a) shows the variation of �Fc with the cavity
aspect ratio r ≡ L/D at fixed volume for three different cavity
shapes. Data are shown for a volume of V = 1000, which
corresponds to V/R3

g = 0.64, where Rg = 11.60 is the radius
of gyration for an unconfined N = 201 polymer. At all aspect
ratios, the same patterns noted in Fig. 4 are observed, i.e.,
the confinement free energy is greatest for triangular cavities
and lowest for cylindrical cavities. Notably, for all three
geometries, �Fc is a minimum at an aspect ratio of r = 1,
i.e., for equal lateral and longitudinal cavity dimensions. The
same trend is observed for other cavity volumes (data not
shown). The curves are approximately symmetric about r = 1
on a logarithmic scale. This indicates that the confinement free
energy for aspect ratios of r and 1/r appear to be roughly
equal, though some degree of asymmetry is evident. This
asymmetry is more visible in Fig. 5(b), which shows the rela-
tive difference in the confinement free energy, ζr ≡ [�Fc(r) −
�F(r = 1)]/�Fc(r = 1), as a function of cavity volume for
the cases of r = 1/4 and r = 4. For all cavity geometries
ζ4 > ζ1/4. This is an illustration of the general trend that “pro-
late” cavities (L > D) have a higher confinement free energy
than “oblate” cavities (L < D). This trend is consistent with
results of our previous study that examined translocation into
ellipsoidal cavities [47] and demonstrates that it is a generic
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FIG. 5. (a) Confinement free energy �Fc vs cavity shape anisom-
etry r. Results are shown for polymer of length N = 201 and for
cavities of various geometry, each with a volume of V = 1000 (i.e.,
V/R3

g = 0.67). (b) Relative difference in the confinement free energy
ζr vs scaled cavity volume V/R3

g, where ζr ≡ [�Fc(r) − �F(r =
1)]/�Fc(r = 1) and where Rg is the radius of gyration of a free
polymer. Data are shown for anisometry ratios of r = 4 and r = 0.25
for triangular, rectangular, and cylindrical cavities and for polymers
of length N = 201. The solid symbols correspond to ζ4 and the open
symbols are for ζ0.25. The inset shows the absolute difference in
confinement free energy, �F †

c (r) ≡ �Fc(r) − �F(r = 1) vs V/R3
g

using the same data.

effect independent of the details of the cavity shape. The inset
shows the absolute difference, �F †

c (r) ≡ �Fc(r) − �F(r =
1), for r = 4 and r = 0.25 and is a measure of the degree of
asymmetry of the free energy for prolate and oblate cavities
of the same volume. Interestingly, �F †

c exhibits a maximum
near V/R3

g ≈ 0.5.
A naive application of the approximation borrowed from

the theory of semidilute polymer solutions that the free energy
is proportional to the number of blobs, i.e., Fc/kBT = V/ξ 3

where the correlation length scales as ξ = φ−0.77, suggests
that Fc should depend only on the cavity volume and not
its shape. The observed dependence of the confinement free
energy on the cavity shape is most likely a result of the
breakdown of this approximation in the limit of small cavities
where ξ is of the order of one or more cavity dimensions. In
the case of V = 1000 and N − 1 = 200 for the data in Fig. 5,
full insertion of the polymer leads to a volume fraction of
φc = 0.1047, and thus a correlation length of approximately
ξ = φ−0.77 ≈ 5.7. In the case of cylindrical cavities where
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FIG. 6. Confinement free energy �Fc vs taper angle θ for poly-
mer translocation into a truncated pyramid. The taper angle of the
pyramid is labeled in Fig. 1(b). Results are shown for a N = 201
polymer for various cavity volumes, each for translocation through
a pore in the pyramid base and through a pore at the pyramid apex.
The solid lines are guides for the eye.

r ≡ L/D = 1, D = L = 10.9. However, for r = 4, D = 6.8
and L = 27.3, while for r = 1/4, D = 17.2 and L = 4.3. In
these latter cases, the smallest dimension lmin ≡ min(L, D)
is very close to the estimated blob size. Evidently, in the
regime where lmin = O(ξ ), an increase in the ratio ξ/lmin leads
to an increase in the free energy. As the volume decreases
and the volume fraction increases, the blob size decreases.
Thus, the effect is expected to be less significant, consistent
with the observed decrease in ξr with decreasing V in Fig. 5.

C. Translocation into tapered confinement spaces

Let us now consider the case of translocation into spaces
with tapered geometries, illustrated in Fig. 1(b). We consider
first the case of a cavity shaped as a truncated pyramid. As
noted earlier, this choice is relevant to previous experimental
studies that have employed a pore-cavity-pore device to study
DNA translocation into and out of pyramidal cavities [9,73].
Here we examine the effects of size, shape, and nanopore
location (i.e., at the apex or the base) on the translocation free
energy. In our calculations, we fix truncation section width to
Da = 2.

Figure 6 shows the variation in confinement free energy
�Fc with the taper angle θ , which is illustrated in Fig. 1(b).
Results are shown for a polymer of length N = 201 entering
the cavity from either the base or the apex of the pyramid.
We also consider two different cavity volumes. For all values
of the taper angle, the confinement free energy increases
with decreasing volume, as expected. In each case there is a
broad minimum of �Fc with respect to θ . This is qualitatively
similar to the trend observed in Fig. 5(a) for the aspect ratio
in the case of constant cross-sectional area geometries. This is
not surprising, as the value of the taper angle θ determines the
base-to-height ratio of the pyramid, which is the equivalent of
the aspect ratio for this type of geometry. As a reference, the
base-to-height ratio is unity when θ = tan−1(0.5) = 26.6◦.
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The location of the minimum is θmin ≈ 20◦ for all cases except
for the case of V/R3

g = 3 and translocation through the apex.
A more notable feature is the contrast between apex- and

base-entry translocation. At high density, �Fc for the two
cases converge at large θ (i.e., “squat” pyramids). However,
as θ decreases and the pyramids become “taller,” �Fc for
apex-entry translocation becomes increasingly greater than
that for base entry. This trend is connected to the phenomenon
of entropic depletion in the corners of the pyramid. Recall
that this depletion effect was also the cause of the difference
in the values of �Fc for cavities of different cross-section
shapes shown in Figs. 4 and 5. We propose the following
explanation for the observed trends. As θ decreases, the apex
becomes sharper and the polymer that enters through the
base avoids occupying the region near the apex. However,
apex-entry translocation necessarily constrains a portion of
the polymer to remain in the apex region in opposition to the
tendency for depletion. The strong confinement of that part of
the polymer ultimately leads to a reduction in conformational
entropy and thus a higher free energy relative to the case
of base-entry translocation where depletion in the apex does
occur. Depletion for the base-entry case increases as the apex
narrows, and thus the difference between the free energies
grows with decreasing θ . For large θ (i.e., a wide apex),
the entropic depletion for base-entry is negligible, and thus
�Fc for the two cases converge in this limit. As V decreases
(i.e., as the density increases) the monomers are likely pushed
deeper into all the corners of the pyramid. Thus, entropic
depletion near the apex in the case of base-entry translocation
is reduced and the difference between �Fc for the two cases
lessens even for small θ , as is evident by a comparison
of the results for the two volumes in Fig. 6. A rigorous
test of this explanation would benefit from future measure-
ment of the density distribution in the cavity upon variation in
its size and shape.

Now we consider the case of translocation into a very
narrow and gradually tapered space. We choose L = ∞ and a
circular cavity cross section, i.e., an infinitely long cone. The
free energy and dynamics of polymers in such conical spaces
have been the subject of other theoretical and simulation
studies [74–77], and the behavior of DNA in conical channels
has been examined in experimental studies [78]. Figure 7
shows the confinement free energy �Fc of a flexible polymer
translocating into an infinitely long cone. The free energy
is calculated as the difference Fc(m) ≡ Fcone(m) − F0(m) be-
tween the free-energy function for the translocation into the
cone, Fcone(m), and that for the planar geometry, F0(m). The
nanopore is located on a truncation surface cross section of
diameter D0 = 6.

To analyze the results, we follow the approach taken in
Ref. [76] and derive an expression for Fc(m) using the de
Gennes blob model. First note that the diameter of the cone
is given by D(z) = D0 + 2z tan θ , where θ is the taper angle,
illustrated in Fig. 1, and z is the distance from the pore along
the central axis of the cone. The blob size of the portion
of the polymer confined in the cone is ξ (z) ≈ D(z), and the
number of monomers in each blob is g(z) ∼ [ξ (z)]1/ν . The
number of monomers dn in a slice of thickness dz is dn(z) ∼
[g(z)/ξ (z)]dz, and so the linear density of monomers along
the cone, λ(z) ≡ dn/dz, scales as λ(z) ∼ [ξ (z)]1/ν−1. If the
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FIG. 7. (a) Confinement free energy Fc vs degree of translocation
m for translocation into an infinitely long truncated cone. Results
are shown for N = 601 for different values of the cone angle θ .
The diameter of the truncation cross section containing the pore is
D0 = 9. Overlaid on the solid curves for simulation data are fits using
Eq. (6). (b) The same data as in (a) plotted on scaled and shifted axes.
The translocation coordinate shift value is m0 = 8, as explained in
the text.

extension of the m monomers of the polymer in the cone along
z is R||, it follows that m ∼ ∫ R||

0 λ(z)dz. Thus,

m = B

tan θ

[
(D0 + 2R|| tan θ )1/ν − D1/ν

0

]
, (4)

where B is a proportionality factor of order unity. In addition,
the free energy due to the tube confinement can be determined
by noting that each blob contributes of the order of kT to
the confinement free energy. In the case of a continuously
varying blob length, this implies that Fc/kT ∼ ∫ R||

0 [ξ (z)]−1dz.
It follows that

Fc

kT
= A

tan θ
[ln(D0 + 2R|| tan θ ) − ln D0], (5)

where A is another proportionality factor of order unity.
Solving Eq. (4) for R|| and substituting this expression into
Eq. (5), we find that

Fc(m)

kT
=

(
A

tan θ

)
ln

[
2

D0

(
(m − m0)

B
tan θ + D1/ν

0

)ν

− 1

]
.

(6)

Note in the final step we have made the substitution m →
m − m0. This shift in the translocation is required to correct
for the fact that Fc is otherwise predicted to increase mono-
tonically for m � 0. In practice, this is not the case, as several
monomers must first enter the cone from the pore before the
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effects of lateral confinement are felt. This value is expected
to increase with D0. For D0 = 9, we find that Fc is zero until
m has a threshold value of m0 = 8. Equation (6) predicts that
the free energies for all cone angles should fall on a universal
curve when plotting Fc tan θ vs (m − m0) tan θ . Figure 7(b)
shows that the data come close to collapse on such a universal
curve, though small discrepancies remain. Overlaid on the
calculated curves in Fig. 7(a) are fits using Eq. (6). Generally,
the quality of each fit is excellent. However, we note that the
fitting parameter values for the fits for each angle vary in the
range A = 1.90–2.14 and B = 0.487–0.502. This small vari-
ation is consistent with the good but imperfect data collapse
for the scaled data in the Fig. 7(b).

D. Effects of polymer stiffness

We now examine the effects of polymer stiffness on the
translocation free energy. Given the rich scaling behavior
expected for the confinement free energy of semiflexible poly-
mers upon variation in the persistence and contour lengths
as well as the cavity dimensions [5], we choose to focus
on two important limiting cases and defer a more complete
exploration of parameter space to a future study. In particular,
we choose to examine translocation cavities with (1) an aspect
ratio of r ≡ L/D = 1, and (2) and aspect ratio of r � 1.

Figure 8(a) shows the confinement free-energy function
Fc(m) for a r = 1 cavity in the case of a N = 201 polymer
of persistence length P = 5. Results for various cavity sizes
are shown. The key trend is an increase in the confinement
free energy as D decreases. There are two contributions to this
effect. First, as in the case of flexible polymers, a reduction in
the cavity size will reduce the number of available conforma-
tions of the polymer, thus reducing the entropy. Second, as
cavity size is decreased the polymer is increasingly forced to
bend, leading to an increase in the mean bending energy and
thus the free energy. The inset of Fig. 8(a) shows the variation
of �Fc with D for semiflexible polymers of stiffness κ = 5
and 10, as well as for a fully flexible polymer (κ = 0). In the
range of D = 9–35, the data appear to scale as �Fc ∼ D−γ ,
though there is a slight deviation from power-law scaling for
small cavities with D � 12. Fits in the domain D � 13 yield
exponents of γ = 2.04 ± 0.02 for κ = 10, γ = 2.30 ± 0.03
for κ = 5, and γ = 2.76 ± 0.03 for a fully flexible polymer.
Figure 8(b) shows the variation of �Fc with P in the domain
P = 4–15 for cavities of various size. Again, the scaling of
data appears to follow a power law of the form �Fc ∼ Pβ ,
where fits to the data yield scaling exponents of β = 0.54,
0.66, 0.72, and 0.75 for D = 19, 27, 31, and 35, respectively.

If the system was in a well-defined scaling regime such
that the confinement free energy satisfied �Fc ∼ D−γ Pβ , the
value of γ would not depend on P, nor would the value of
β change with D. As noted above, however, such depen-
dencies are observed. One possibility is that the fits have
merely yielded effective exponents in a cross-over region
between well-defined scaling regimes. To clarify this issue
let us consider the theoretical studies of Sakaue [5,6], who
has predicted a number of free energy scaling regimes for
semiflexible polymers in closed spaces upon variation in
the polymer contour and persistence lengths and the cavity
dimensions. The boundaries between the regimes depend on
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FIG. 8. (a) Confinement free energy Fc vs m for a semiflexible
polymer of contour length N = 201 and stiffness κ = 5 (i.e., per-
sistence length P = 5) translocating into a cylindrical cavity with
an aspect ratio of D/L = 1. Results are shown for various values of
cavity sizes. The inset shows the �Fc vs D for polymers of stiffness
κ = 10, 5, and 0 (i.e., full flexible). Fits to �Fc ∼ D−γ in the region
D � 14 yields exponents γ = 2.08, 2.35, and 2.80 for κ = 10, 5,
and 0, respectively. (b) �Fc vs persistence length P for N = 201 and
D/L = 1. Results are shown for four different cavity sizes. The solid
lines are fits to �Fc ∼ Pβ , where β = 0.54, 0.66, 0.72, and 0.75 for
D = 19, 27, 31, and 35, respectively.

the polymer length, N = Lc/σ , cavity size D, and the ratio
p ≡ lK/σ = 2P/σ , where lK is the Kuhn length. (We use
the notation of the present article and the convention for
the definition of N in Ref. [6] rather than Ref. [5].) In our
calculations, N  p3 in all cases and thus the scaling of the
fluctuating semidilute regime (regime I from Ref. [6] and F3

0
in Ref. [5]) is not expected to be relevant to our results. (It
does, however, provide the correct scaling with respect to
D for flexible polymers.) On the other hand, we note that
N ≈ p2 and D � p. As a consequence, the system is expected
to be in a region of parameter space near the convergence
of the following four scaling regimes illustrated in Fig. 2 of
Ref. [6]: (a) the mean-field semidilute regime (regime II),
where �Fc/kBT ∼ N2D−3P0; (b) the liquid crystalline regime
(regime III), where �Fc/kBT ∼ N1D0P−1; (c) the ideal chain
regime (regime IV), where �Fc/kBT ∼ N1D−2P1; (d) the
bending regime (regime V), where �Fc/kBT ∼ N1D−2P1.
(Note that in Ref. [5] these regimes are labeled M3

0, N3
0,

I0, and S0, respectively.) The effective scaling exponents ex-
tracted from fits to our data are qualitatively inconsistent with
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regime III and so suggest the system is in a transition region
between regime II and regimes IV or V (note that the latter
two satisfy the same scaling). In particular, the measured
γ lies between the values for those regimes of γ = 2 and
γ = 3. Likewise, the measured value of β lies between the
values for those regimes of β = 0 and β = 1. Note as well
that increasing D leads to a measured scaling exponent β

closer to the value of β = 1 predicted for regime IV, consistent
with the trends of the scaling regime boundaries in Fig. 2 of
Ref. [6]. Likewise, increasing κ , and therefore P, leads to an
exponent γ that tends toward the value of γ = 2 for regime
IV, which is also qualitatively consistent with the trends for
the confinement regimes predicted in Ref. [6].

One feature of the present system that complicates a com-
parison of our results with Sakaue’s predictions is the fact
that here �Fc represents the confinement free energy of a
polymer that is effectively tethered to one wall of the cavity
(because one monomer still lies in the pore when m = N − 1).
As noted in Ref. [69] for the case of flexible chains, the free-
energy cost of such tethering is only 1–2 kBT for polymers
of comparable length and packing fraction as that considered
here. Thus, the effect on the free energy is expected to be
negligible. However, for stiff chains this tethering also leads
to an orientational anchoring to the cavity wall with the chain
contour tending to be perpendicular to the wall at the effective
tethering point (i.e., the pore). It is possible that this feature
will alter the confinement free energy in a manner that could
further perturb the scaling properties of the free energy.

Obviously, this analysis of our simulation results represents
nothing like a rigorous test of the predictions of Refs. [6]
and [5]. At a minimum, such a test requires using polymers
of substantially greater length in order for a system to lie
unambiguously in a well-defined scaling regime rather than
in a transition region. Nevertheless, our results do at least
provide some tentative and indirect supporting evidence for
the scaling predictions.

Having first considered the case of translocation of semi-
flexible polymers into cavities with aspect ratios of r = 1, let
us now consider the case of highly asymmetric cavities with
r � 1. In addition, we also focus on very narrow cavities such
that D � P. In the case of very long cavities where L > Lc

(where Lc is the polymer contour length), this corresponds to
the Odijk or backfolded Odijk regimes. However, for L < Lc

the finite cavity length is expected to produce different con-
formational behavior. Figure 9(a) shows free-energy functions
for a semiflexible polymer of length N = 201 entering a cylin-
drical cavity of width D = 4. Results are shown for polymers
of varying degrees of rigidity ranging from fully flexible to
κ = 15. In each case, curves are shown for a cavity of length
L = 50 (solid curves) and L = ∞ (dashed curves). Functions
for different κ are vertically shifted relative to each other for
clarity. The curves for each κ initially overlap at low m, where
the translocated part of the polymer is not sufficiently long
to feel the effects of longitudinal confinement for L = 50. As
m increases further, the free-energy functions for the longitu-
dinally confined systems diverge from the L = ∞ curves at
the point where the polymer makes contact with the confining
cap. The free energy increase with respect to the L = ∞
case arises from the reduction in the conformational entropy
resulting from this additional confinement. As expected, the
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FIG. 9. (a) Free energy for translocation of a semiflexible poly-
mer of length N = 201 into a cylindrical channel of width D =
4. Results are shown for various degrees of polymer stiffness for
cylinders of length L = 25 and L = ∞. The curves are vertically
shifted and spread out along the vertical axis to minimize overlap
for clarity. (b) Difference in the free energy, �F ∗

c ≡ Fc(m; L = 50) −
Fc(m; L = ∞) vs m. The black line segments in the inset are linear
fits (shifted upward) to the linear sections of the κ = 15 curve. The
slopes of the fits are each labeled, as are the locations of each hairpin
that separate the linear regions.

value of m at which the divergence occurs decreases with
increasing polymer stiffness. This follows from the fact that
stiffer polymers are more elongated in the tube, and thus
fewer translocated monomers are required before the polymer
reaches the cap. For P < D, F increases smoothly with posi-
tive curvature. However, for P � D, curves are qualitatively
different in that F increases markedly in steps with linear
regimes in between. The size of the step increases with κ and
the locations of the steps appear to converge to values of m
that are integer multiples of approximately �m = 55.

The origin of the step behavior is straightforward. In the
case of the more flexible chains, increasing m will typi-
cally cause a gradual increase in the density of monomers,
which will likely maintain their linear organization along the
channel, i.e., a longitudinally uniform compression. At high
density (i.e., high m), the translocated portion of the polymer
may lose its linear organization as it forms backfolds, but no
obvious signature in Fc(m) is expected. By contrast, a stiffer
polymer is expected to initially undergo uniform longitudinal
compression until the point that it becomes more favorable
to pay the cost of forming a hairpin turn to minimize Fc.
The steps in Fc(m) are signatures of these backfolds, and the
increase in Fc in each step corresponds to the free energy
of hairpin formation. As expected, the hairpin free energy
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FIG. 10. Illustration of the backfolding domains present for the
data of κ = 15 in Fig. 9. Panels (a)–(d) show domains with 0, 1, 2,
and 3 backfolds, respectively.

increases with increasing polymer stiffness, principally as a
result of the greater energy requirement to form the hairpin,
though it should be noted that there can be a significant
entropic contribution to the hairpin free energy as well [66].
In the limit of large κ , the translocated section of the polymer
becomes highly aligned with the channel and the end of the
polymer is expected to make contact with the confining cap
when the contour length of this section is close to the length
of the cylinder, i.e., when m ≈ 50 for a tube of length L = 50.
Small lateral fluctuations in the polymer conformation mean
that a slightly longer translocated subchain length is required
before the polymer end reaches the cap. In the case of κ = 15
the first step occurs at m ≈ 55. The successive steps each
correspond to increasing numbers of hairpin backfolds. For
example, the step at m ≈ 110 corresponds to the formation
of a second backfold located on the wall where the nanopore
is located, and so on. The process of formation of successive
backfolds as translocation proceeds is illustrated in Fig. 10.

As noted above, for sufficiently high κ the regions between
the steps exhibit a linear variation of Fc with m. Furthermore,
the slope of these linear regions increases as the number of
backfolds increases. To illustrate this, we plot the difference
�F ∗

c ≡ Fc(m; L = 50) − Fc(m; L = ∞) in Fig. 9(b). The in-
crease in the slopes for κ = 15 is more clearly evident. Linear
fits to each of these regions are shown as black line segments
in the figure (shifted vertically for clarity). The slope of each
fit, labeled in the figure, increases as the number of hairpin
backfolds increases.

To explain the origin of the linear regions and the variation
of the slope with the number of hairpins, we use a theoretical
approach that we previously employed to explain backfolding
of semiflexible polymers in infinitely long channels [66,67].
This model relies on the Odijk regime condition that P � D,
which is marginally satisfied for κ = 15 and D = 4. In the
case of L = ∞ there is no backfolding and thus no overlap
of the polymer along the tube. In this case the confinement
free energy is proportional to the number of deflection seg-
ments, each of which contributes of order kT . Since the
number of deflection segments is proportional to the number
of translocated monomers, it follows that Fc ∝ m. In a back-
folded regime where overlap is present, there are additional
contributions to the free energy from the hairpin and excluded
volume interactions between the deflection segments. After
a complete hairpin is formed, increasing m simply increases

the degree of overlap. Modeling the deflection segments as
hard rods of length ld ∼ D2/3P1/3, the interaction free energy
of N such rods is Fint ≈ l2

d wN2〈| sin γ |〉/V , where V is the
volume occupied by the segments and where the angle γ

between a pair rods satisfies 〈| sin γ |〉 ≈ D/ld in the case
where they are highly aligned in the cylinder. The overlap
volume can be written V ∼ lovD2, where lov is the length of
the overlap regime along the tube. Thus, the interaction free
energy is Fint ∼ ldwN2/(lovD2). Now, in a region where F (m)
is linear, there are two different overlap regions along the
tube, one with n overlapping strands and one with n′ = n + 1
such strands, where n is the number of hairpins present. The
number of deflection segments in each region is N = nlov/ld
and N ′ = (n + 1)l ′

ov/ld, where lov and l ′
ov are the lengths of

the two overlapping regions. [These lengths are illustrated in
Fig. 10(c) for the case of n = 2.] The total free energy arising
from interacting segments from the two regions is

Fint ∼ ldwN2

lovD
+ ldw(N ′)2

l ′
ovD

. (7)

The overlap lengths are simply related by lov = L − 2hz −
l ′
ov, where hz is the size of the hairpin along the channel.

In addition, for a highly aligned polymer, l ′
ov ∼ m. Finally,

noting that the Odijk deflection length scales as ld ∼ D2/3P1/3,
it is straightforward to show that Eq. (7) reduces to Fint ∼
D−5/3P−1/3(2n + 1)m plus terms independent of m. Thus, the
contribution to the free-energy gradient from the excluded
volume interactions is expected to scale as

fint ≡ dFint

dm
∼ D−5/3P−1/3(2n + 1). (8)

Thus, fint is predicted to increase with the number of hair-
pins, consistent with the observation in Fig. 9(b). For a
quantitative comparison, we use Eq. (8) to estimate ratios
of the gradients. We find that fint (n = 2)/ fint (n = 1) ≈ 1.67
and fint (n = 3)/ fint (n = 1) ≈ 2.33. By comparison, we find
the corresponding ratios of the gradients in Fig. 9(b) are
0.281/0.143 = 1.96 and 0.459/0.143 = 3.21, respectively.
Thus, the theoretical model underestimates the ratios of the
gradients, and the discrepancy appears to grow as the number
of hairpins increases. A similar discrepancy was observed us-
ing Ref. [66] for the ratios of overlap free-energy gradients of
backfolded semiflexible polymers confined to long cylinders
in the case where a single hairpin is present and the case of an
S-loop with two hairpins. Likely origins of this discrepancy
include not sufficiently satisfying the Odijk condition P � D,
treating interactions at the second-virial level in a regime
where the strands are tightly packed in a very narrow tube,
and the neglect of correlations in position and orientation of
deflection segments connected to the same hairpin.

Finally, it should be noted that the conformations charac-
terized by multiple hairpins separated by elongated strands of
Odijk deflection segments were observed here for the case
where the persistence length P is significantly less than the
contour length Lc of the polymer, in addition to satisfying
P > D. Recently, qualitatively different behavior was ob-
served in the case much stiffer polymers [7]. In the regime
where P ≈ Lc, compression of a polymer in a finite-length
channel resulted in the formation helical structures prior to the
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FIG. 11. Free energy for translocation of a polymer of length
N = 201 into a cylindrical cavity of dimensions D = L = 28 that
is partially occupied by monomer-sized crowding agents. Results are
shown for various values of the number of crowders, Nc. The inset
shows the corresponding excess free energy Fex obtained from the
translocation free-energy functions, where Fex(m; Nc ) ≡ F (m; Nc ) −
F (m; Nc = 0).

formation of hairpins. In the future, it would be of interest to
examine the confinement free energy in this regime.

E. Effects of crowding agents

We now investigate the effects of crowding agents on the
free-energy functions for polymer translocation into confined
cavities. For this purpose, we choose to employ symmetric
cylindrical cavities (i.e., D = L) and consider first the case of
monomer-sized crowding agents, i.e., σc = σ = 1. Figure 11
shows free-energy functions for translocation of a N = 201
polymer into a cylindrical cavity of dimensions D = L =
28 whose volume is partially occupied with Nc crowding
agents, where Nc ranges from 0 to 4800 (i.e., crowder packing
fractions up to φc = 0.146). As expected, the free-energy
cost for polymer insertion increases with increasing crow-
der density. The inset of the figure shows the excess free
energy, which we define as Fex(m) ≡ F (m; Nc) − F (m; Nc =
0); that is, Fex(m) measures the variation of the free energy
of the cavity-crowder system in excess of the variation in
the free energy due to confinement alone, F (m; Nc = 0). As
is evident in the figure, Fex varies linearly with m. Note
that cavity size is such that D/Rg = 2.33, where Rg is the
radius of gyration of a free polymer of the same size. For
smaller values of D/Rg, the same general trends are ob-
served, though Fex becomes increasingly less linear (data not
shown).

Figure 12 shows the variation of the excess insertion
free energy for complete polymer insertion, �Fex ≡ Fex(m =
N − 1), vs crowding packing fraction φc for N = 201 and
isotropic cavities with D = L. Results are shown for different
cavity sizes with D ranging from 10 to 28 (and thus D/Rg =
0.83–2.33). For each cavity size, �Fex increases monotoni-
cally with increasing crowder packing fraction. At any given
packing fraction, the excess free energy decreases monoton-
ically with increasing cavity size and appears to converge to
a single curve for sufficiently large D. This is illustrated in
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FIG. 12. Excess free energy �Fex ≡ Fex(m = N − 1) of insert-
ing a polymer into a cavity partially occupied with crowding agents
vs crowding agent packing fraction φc. We employ monomer-sized
crowders, i.e., σc = 1, a polymer of length N = 201, and a cylindri-
cal cavity with D = L. Results are shown for several different cavity
sizes, each labeled in the figure in relation to the radius of gyration
Rg for a free polymer. The inset shows the variation of �F ∗

ext with D,
where �F ∗

ext ≡ �Fex(φc = 0.1).

the inset of the figure, which shows �Fex vs D for a packing
fraction of φc = 0.1.

Figure 13(a) shows the variation of �Fex with φc for N =
201 and cavities with dimensions D = L = 28. Results are
shown for different crowder sizes in the range σc = 1.0–2.0.
For each σc considered, �Fex increases with increasing φc.
More significantly, at fixed crowder packing fraction, the
excess free energy decreases monotonically with increasing
crowder size. The effect is quite pronounced, as is also evident
in the inset which shows �Fex vs σc for various packing
fractions.

The results in Fig. 13(a) are relevant to the simulation
study by Chen and Luo [79]. In that work, the rate of translo-
cation was examined for a polymer translocating between
two spaces each occupied with crowding agents of different
sizes but with equal packing fractions. They observed that a
polymer initially configured with its center monomer in the
nanopore tends to translocate into the space with the larger
crowding agents. Note that the range of packing fractions and
crowder sizes they considered (φc = 0.05–0.4, σc = 1–2.5) is
comparable to that examined here. However, since they used
a two-dimensional system, a direct quantitative comparison
with our results is not possible. Nevertheless, their observation
is qualitatively consistent with our calculations, which predict
a lower free energy for larger crowders at fixed φc and thus
a free-energy gradient that will drive translocation in that
direction. Chen and Luo note, however, that the probability
that the polymer goes to the high-σc side exhibits a maximum
upon increasing σc, and likewise the translocation rate exhibits
a minimum. This is not consistent with trends evident in
the free-energy calculations. Chen and Luo attribute this to
kinetic effects due to “bottlenecks” related to the relative
timescales of the conformational relaxation of the polymer
and the diffusion of the obstacles. At low φc and large σc,
this leads to “resisting force” of appreciable magnitude that
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FIG. 13. (a) Excess free energy �Fex ≡ Fex(m = N − 1) of in-
serting a polymer into a cavity partially occupied with crowding
agents vs crowding agent packing fraction φc. Results are shown for
several values of the crowder size diameter σc for a polymer of length
N = 201 and a cylindrical cavity of dimensions D = 14 and L = 28.
The inset shows �Fex vs σc for three different packing fractions using
interpolations of the data in the main part of the figure. (b) Prediction
of free-energy difference �F = F (m = N ) − F (m = 0) vs φc using
Eq. (9). The inset shows the prediction for �F vs σc for various
packing fractions using Eq. (9).

effectively counteracts the entropic force, reducing the likeli-
hood that the polymer reaches the higher-σc side. As this is an
out-of-equilibrium effect, our free-energy calculations cannot
account for this behavior. However, our results can be used to
test the analytical model used in Ref. [79] to approximate the
free-energy gradient.

In their theoretical model, Chen and Luo assume that
this entropic force exerted by obstacles on either side of
the nanopore scales f ∼ 1/R, where R is the mean spacing
between the crowders. This assumption is inspired from a
previous observation that a polymer ejected from a cylindrical
nanochannel of diameter R experiences a driving force with
the same scaling. However, since a channel of fixed shape
differs appreciably from the effective channels of fluctuating
shape and size formed by the spaces between crowders, the
accuracy of this prediction is not obvious a priori. Following
the approach in Ref. [79] and adapting it to a 3D system, it is
easily shown that the mean spacing between crowders is given
by R ≈ (π/6φc)1/3σc − σc. Noting that f ∝ dF/dm ∝ 1/R
and integrating with respect to m, it follows that

�F ≡ F (N ) − F (0) ∝ N

(π/6φc)1/3σc − σc
. (9)

Figure 13(b) shows the predicted variation of �F with σc

and (in the inset) with φc. Comparing the prediction with the
simulation data reveals that the theory correctly predicts the
qualitative trends, i.e., �F increases monotonically with in-
creasing φc for arbitrary crowder size, and it decreases mono-
tonically with increasing σc for arbitrary packing fraction. As
expected, however, the quantitative accuracy is very poor. It
significantly overestimates the rate of increase in �F with
φc at low φc, and it significantly underestimates the rate of
decrease in �F with increasing crowder size. Doubtless, the
main cause of the discrepancy is the assumption that f ∼ 1/R.

V. CONCLUSIONS

In this study, we have used computer simulations to mea-
sure the free energy of a polymer undergoing translocation
through a nanopore into a confining cavity. The scaling prop-
erties of the confinement free energy were examined with re-
spect to the variation in several key system properties, includ-
ing polymer length, cavity size and shape, polymer stiffness,
and crowding from mobile crowding agents inside the cavity.
These results complement and build on those of a previous
study where we examined translocation into an ellipsoidal
cavity [47]. The scaling results were typically compared with
predictions obtained using standard scaling theories of poly-
mer physics. While the measured scaling exponents are gener-
ally comparable to the predicted values, discrepancies arising
from finite-size effects persist even for the longest polymer
length employed here (N = 601). A more rigorous test of the
theoretical predictions in the future will likely require simula-
tions employing polymer lengths at least an order of magni-
tude larger than is currently feasible. It will also be beneficial
to consider other experimentally relevant factors such as the
effects of electric driving forces and adsorption to the inner
surface of the confining cavity [35,47]. Clearly, in the absence
of such forces the gradient in the free energy tends to drive the
polymer out of the cavity. When present, however, they can
provide a decrease in the potential energy as the monomers
move inside the cavity that offsets or eliminates the loss in
conformational entropy, thus driving the polymer inward.

Finally, it will be of interest to carry out additional sim-
ulations to measure and characterize the dynamics of poly-
mer translocation into or out of confined cavities. For hard-
sphere-chain polymers used here, either MC dynamics [41]
or discontinuous molecular dynamics [80] simulations would
be appropriate, while use of Brownian or Langevin dynamics
techniques requires the use of continuous-potential models.
A comparison of the rates of translocation into or out of
the cavity with predictions from calculations employing the
Fokker-Planck formalism will provide a means to delineate
the regime in which translocation is a quasistatic process
governed by the equilibrium free-energy function, as shown
in previous work [41,63].
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