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The conformational states of a semiflexible polymer enclosed in a compact domain of typical size a are
studied as stochastic realizations of paths defined by the Frenet equations under the assumption that stochastic
“curvature” satisfies a white noise fluctuation theorem. This approach allows us to derive the Hermans-Ullman
equation, where we exploit a multipolar decomposition that allows us to show that the positional probability
density function is well described by a telegrapher’s equation whenever 2a/�p > 1, where �p is the persistence
length. We also develop a Monte Carlo algorithm for use in computer simulations in order to study the
conformational states in a compact domain. In addition, the case of a semiflexible polymer enclosed in a
square domain of side a is presented as an explicit example of the formulated theory and algorithm. In this
case, we show the existence of a polymer shape transition similar to the one found by Spakowitz and Wang
[Phys. Rev. Lett. 91, 166102 (2003)] where in this case the critical persistence length is �∗

p � a/8 such that
the mean-square end-to-end distance exhibits an oscillating behavior for values �p > �∗

p, whereas for �p < �∗
p it

behaves monotonically increasing.
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I. INTRODUCTION

Semiflexible polymers is a term coined to understand a
variety of physical systems that involve linear molecules.
For instance, understanding the behaviors of such polymers
serves as the basis to understand phenomena encountered in
polymer industry, biotechnology, and molecular processes in
living cells [1]. Indeed, biopolymers’ functionality is ruled
by their conformation, which in turn is considerably modified
in the geometrically confined or crowded environment inside
the cell [2–5]. Beyond the most prominent polymer example
being DNA compaction in the nucleus or viral DNA packed in
capsids [4,6], there is also the important outstanding example
of DNA transcription and replication processes that are gov-
erned by the binding of specific proteins. These mechanisms
are strongly connected to polymer configuration [7–9]. Fur-
thermore, a wide range of biophysical processes are derived
from DNA constrained to a ring enclosure and more general
topologies [10].

On the one hand, motivated by the packaging and coil-
ing problems mentioned above, Mondescu and Muthukumar
(MM) studied in Ref. [11] the conformational states of an
ideal Gaussian polymer [12] wrapping different curved sur-
faces, where they presented theoretical predictions for the
mean-square end-to-end distance. Later, Spakowitz and Wang
(SW) [13] studied the conformational states of an ideal semi-
flexible polymer confined to a spherical surface based on the
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continuous worm-like chain (WLC) model [14]. Unlike the
conformational states of the Gaussian polymer, SW found
the existence of a shape transition from an ordered to a
disordered phase, where polymer roughly looks like cooked
spaghetti and a random walk, respectively. Moreover, in the
appropriate limit, the behavior of the semiflexible polymer
reduces to the one of the Gaussian polymer in the spherical
case. Subsequently, the MM and SW results were confirmed
through computer simulations, where the validity regimes for
each theory were established. Additionally, as a consequence
of the excluded volume effect a helical state was found in
Refs. [15,16] and a tennis ball-like state in Ref. [17]; these
states are absent in both MM and SW theories. The problem
becomes richer when short-range and long-range electrostatic
interactions are considered since they can induce a tennis ball-
like state which is predominant over the helical conformation
in the case of long-range electrostatic interactions [18]. A
transition is also reported in a similar manner to that reported
by SW with slight corrections in the case of short-range
interaction and more pronounced in the long-range ones. In
the extreme limit of zero temperature, the conformational
states are expected to be in the ordered phase. Indeed, by
a variational principle consistent with the WLC model one
can obtain an abundance of conformational states including
those observed in the simulations mentioned above [19,20].
On the other hand, the confinement can induce a transition
from a circular polymer to a figure eight shape [9]; even
when the conformation of the polymer is considered as a
self-avoiding random walk, properties similar to that of a
critical phenomenon are found [1,21–23]. Confinement can
also occur in the three-dimensional volume enclosed by rigid
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or soft surfaces [2,24–28] and in a crowded environment, for
instance, modeled by a nanopost array [5].

Furthermore, two-dimensional confinement in closed flat
spaces can result in an order-disorder shape transition [29]
similar to that of SW. One advantage of confinement in the
flat two-dimensional case is that it can be compared with
experiment [10,30–32]. However, in the literature as far as
we know, even in the semiflexible ideal chain there is not a
systematic study of the SW transition in a flat and bounded
region. In this work, we present a theoretical and numerical
analysis of the conformational states of an ideal semiflexi-
ble polymer in a compact two-dimensional flat space. First,
we deduce the Hermans-Ullman (HU) equation [33] under
the supposition that the conformational states correspond to
stochastic realizations of paths defined by the Frenet equations
and the assumption that stochastic “curvature” satisfies a fluc-
tuation theorem given by a white noise distribution. This latter
hypothesis is consistent with the continuous version of the
WLC model as we will see below. Using the HU equation we
shall perform a multipolar decomposition for the probability
density function P(R, θ, R′, θ ′, L) that gives the probability
to find a polymer with length L with endings R and R′ and
directions θ and θ ′, respectively. This decomposition allows
us to find a hierarchy of equations associated to the mul-
tipoles of P(R, θ, R′, θ ′, L), namely, the positional density
distribution ρ(R, R′, L), the dipolar distribution Pi(R, R′, L),
the quadrupolar two-rank tensor distribution Qi j (R, R′, L),
and so on. We shall show, for instance, that the positional
density and the quadrupolar distributions are exactly related
through the modified telegrapher’s equation (MTE),

∂2ρ

∂s2
+ 1

2�p

∂ρ

∂s
= 1

2
∇2ρ + ∂i∂ jQ

i j . (1)

In particular, using this equation and the traceless condition
of Qi j , we are going to verify the well-known exact result of
Kratky-Porod for a semiflexible polymer in a two-dimensional
space [34]. In addition, we will show that as a consequence
of the exponential decay of Qi j we are going to define a
regime where quadrupolar distribution can be neglected in the
MTE. In addition, we shall explore the conformational states
for a semiflexible chain enclosed by a bounded compact two-
dimensional domain through the mean-square end-to-end dis-
tance. In particular, for a square domain we will show the ex-
istence of a shape transition order-disorder of the same nature
as the one found by SW [13]. Furthermore, we will develop
a Monte Carlo algorithm for use in computer simulations in
order to study the conformational states enclosed in a compact
domain. Particularly, the algorithm shall be suited in the
square domain, which, additionally, will allow us to confirm
the shape transition and validate the theoretical predictions.

This paper is organized as follows. In Sec. II we present
the stochastic version of the Frenet equations whose Fokker-
Planck formalism gives us a derivation of the HU equation. In
addition, we discuss a multipolar decomposition for the HU
equation. In Sec. III we provide an application of the methods
developed in Sec. II in order to study semiflexible polymer
conformations enclosed in a compact domain. Particularly,
we focus on a square box domain. In Sec. IV we present
a Monte Carlo algorithm to study the conformational states

of a semiflexible polymer enclosed in a compact domain. In
Sec. V we give the main results in a square box domain, and
we provide a comparison with the theoretical predictions. In
the concluding Sec. VI, we give our concluding remarks and
perspectives on this work.

II. PRELIMINARY NOTATION AND SEMIFLEXIBLE
POLYMERS

Let us consider a polymer on a two-dimensional Euclidean
space as a plane curve γ , R : I ⊂ R → R2, parametrized
by an arc length, s. For each point s ∈ I , a Frenet dihedral
can be defined whose vector basis corresponds to the set
{T(s), N(s)}, consisting of the tangent vector T(s) = R′(s) ≡
dR/ds and the normal vector N(s) = εT(s), where ε is a
rotation by an angle of π/2. Note that the components of the
rotation correspond to the Levi-Civita antisymmetric tensor
in two dimensions. Both are unit vectors (|T(s)| = |N(s)| =
1) and by construction are orthogonal to each other. It is
well known that along the points of the curve these vectors
satisfy the Frenet equations, T′(s) = κ (s)N(s) and N′(s) =
−κ (s)T(s), where κ (s) is the curvature of the curve [35].

In the absence of thermal fluctuations, the conformations of
the polymer are studied through different curve configurations
determined by variational principles. For instance, one of
the most successful models to describe configurations of a
semiflexible polymer is

H[R] = α

2

∫
ds κ2(s), (2)

where H[R] is the bending energy, and α the bending rigidity
modulus. This energy functional (2) corresponds to the con-
tinuous form of the WLC model [14]. In a rather different
context, a classical problem originally proposed by Bernoulli,
later by Euler, in the 18th and 19th centuries, consists of find-
ing the family of curves {γ } with a fixed length that minimizes
the functional (2). The solution to this problem is composed
of those curves whose curvature satisfies the differential equa-
tion k′′ + 1

2 k3 − λ
α
κ = 0, where λ is a Lagrange multiplier

introduced to constrain the curve length [36]. This problem
has been generalized to study elastic curves in manifolds
[19,37,38], which are nowadays relevant to understand the
problem of DNA packaging and the winding problem of DNA
around histone octamers [39].

In what follows, we shall develop an unusual approach
that incorporates the thermal fluctuations in the study of
semiflexible polymers described by the bending energy (2).

A. Stochastic Frenet equations approach

In this section, we propose an approach to study conforma-
tional states of a semiflexible polymer immersed in a thermal
reservoir and confined to a two-dimensional Euclidean space.
We start by postulating that each conformational realization
of any polymer on the plane is described by a stochastic path
satisfying the stochastic Frenet equations defined by

d

ds
R(s) = T(s), (3a)

d

ds
T(s) = κ (s)εT(s), (3b)
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where R(s), T(s) and κ (s) are now random variables. Accord-
ing to this postulate, it can be shown that |T(s)| is a constant
that can be fixed to a unit.

In addition we postulate that κ (s) for semiflexible polymers
is a random variable, named here stochastic curvature, and is
distributed according to the probability density

P[κ]Dκ := 1

Z
exp [−βH]Dκ, (4)

where H is given by Eq. (2), Z is an appropriate normaliza-
tion constant, Dκ is a functional measure, and β = 1/kBT
is the inverse of the thermal energy kBT , with kB and T
being the Boltzmann constant and the absolute temperature,
respectively. It is also convenient to introduce the persistence
length by �p = βα. Note that due to the Gaussian structure
of the probability density (4), the stochastic curvature satisfies
the following fluctuation theorem [40]:〈

κ (s)κ (s′)
〉 = 1

�p
δ(s − s′), (5a)

〈κ (s)〉 = 0. (5b)

Since the polymer is confined to a plane and T(s) is a unit
vector, then it may be written as T(s) = (cos θ (s), sin θ (s)),
where θ (s) is another random variable. In this way, the
stochastic equations (3) can be rewritten as

d

ds
R(s) = (cos θ (s), sin θ (s)), (6a)

d

ds
θ (s) = κ (s). (6b)

The most important feature of these equations is their analogy
with the Langevin equations for an active particle in the
overdamped limit, where the noise is introduced through
the stochastic curvature κ (s) [41]. Moreover, these equations
can be studied through traditional numerical methods, for
example, using standard routines implemented in Brownian
dynamics [42]. Here, from an analytical viewpoint, we find it
is more convenient to use a Fokker-Planck formalism in order
to extract information of the above stochastic equations (6).

B. From Frenet stochastic equations to the
Hermans-Ullman equation

In this section, we present the Fokker-Planck formalism
corresponding to the stochastic equations (6). This description
consists of determining the equation that governs the probabil-
ity density function defined by

P( R, θ |R′, θ ′; s) = 〈δ(R − R(s))δ(θ − θ (s))〉, (7)

where R and R′ are the ending positions of the polymer,
and the angles θ and θ ′ are their corresponding directions,
respectively. The parameter s is the polymer length.

Applying the standard procedure described in Refs. [40,43]
on the stochastic equations (6), we obtain the corresponding
Fokker-Planck equation

∂P

∂s
+ ∇ · [t(θ )P] = 1

2�p

∂2P

∂θ2
, (8)

where t(θ ) = (cos θ, sin θ ) and ∇ is the gradient operator
with respect to R. Let us look carefully at the last equation.
Surprisingly, this equation is exactly the equation found by

Hermans and Ullman in 1952 [33]. They derived it suppos-
ing that the conformation of a polymer is determined by
Markovian walks, taking the mean values of θ and θ2 as
phenomenological parameters. These are parameters based
on the x-ray dispersion experiments performed by Kratky
and Porod [34]. For this reason, hereafter we name (8) the
Hermans-Ullman (HU) equation. It must be mentioned that
Daniels found an equivalent equation a few months before
Hermans and Ullman [44]. A revision of the methods used
to obtain the HU equation can be found in Refs. [45,46].
For instance, taking into account (2), the HU equation can be
derived through the Green formalism [46]. In contrast, in the
present work, we have deduced the HU equation considering
two postulates: (1) the conformation of the semiflexible poly-
mer satisfies the Frenet stochastic equations (3), and (2) the
stochastic curvature is distributed according to (4), which is
consistent with the WLC model (2). As far as we know, this
procedure has not been reported in the literature.

To end this section, let us remark, as it is pointed out in
Refs. [45,46], that∫

d2Rd2R′ P( R, θ |R′, θ0; s) ∝ Z(θ, θ0, s), (9)

where Z(θ, θ0, s) is the marginal probability density function
(see Appendix A), which establishes a bridge to the formalism
in Saitô et al. [14] for the semiflexible polymer in the thermal
bath. In particular, using the HU equation (8), it can be shown
that 〈t(θ ) · t(θ0)〉 = exp [−s/2�p], which is the usual behavior
of the tangent vector correlation [47].

C. Multipolar decomposition for the HU equation

It is necessary to emphasize that the HU equation naturally
arises in the description of the motion of an active particle.
Thus, being careful with the right interpretation, the methods
developed in Refs. [41,48] to solve Eq. (8) can be applied
in this context. Particularly, we use the multipolar expansion
approach to solve Eq. (8), which in the orthonormal Cartesian
basis {1, 2ti, 4(tit j − 1

2δi j ), . . .}, takes the following form [48]:

P(R, θ, s) = ρ(R, s) + 2Pi(R, s)ti

+ 4Qi j (R, s)
(
tit j − 1

2δi j
)

+ 8Ri jk (R, s)
(
tit jtk − 1

4δ(i j t k)
)+ · · · , (10)

where we have adopted the Einstein summation convention,
and the symbol (i jk) means symmetrization on the indices
i, j, k, that is, δ(i jtk) = δi jtk + δkit j + δ jkti. The coefficients of
the series are multipolar tensors given by

ρ(R, s) =
∫ 2π

0

dθ

2π
P(R, θ, s),

Pi(R, s) =
∫ 2π

0

dθ

2π
ti P(R, θ, s),

Qi j (R, s) =
∫ 2π

0

dθ

2π

(
tit j − 1

2
δi j

)
P(R, θ, s),

Ri jk (R, s) =
∫ 2π

0

dθ

2π

(
tit jtk − 1

4
δ(i j t k)

)
P(R, θ, s),

... . (11)
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In the latter coefficients, we have ignored the θ dependence of
the vector t for reasons of notation. We also have obviated the
dependence on R′ and θ ′ to improve notation. The physical
meaning of these tensors is as follows: ρ(R, s) is the prob-
ability density function (PDF) of finding configurations with
ends at R and R′, P(R, s) is the local average of the polymer
conformational direction, Qi j (R, s) is the correlation between
the components i and j of the polymer direction t, etc.

From the HU equation (8), it is possible to determine
hierarchy equations for the multipolar tensors, which have
already been shown for active particles in Refs. [41,48]. The
same hierarchy equations can also be found in the semiflexible
polymer context. Integrating over the angle θ in Eq. (8), we
obtain the following continuity-type equation:

∂ρ(R, s)

∂s
= −∂iP

i(R, s). (12)

The related equation for Pi(R, s) is obtained by multiplying
Eq. (8) by t(θ ) and using the definition of the tensor Qi j (R, s).
Thus, we found

∂Pi(R, s)

∂s
= − 1

2�p
Pi(R, s) − 1

2
∂iρ(R, s) − ∂ jQi j (R, s).

(13)

In the same way, we obtain the equation for Qi j (R, s),

∂Qi j (R, s)

∂s
= − 2

�p
Qi j (R, s) − 1

4
Ti j (R, s) − ∂kRi jk (R, s),

(14)

where Ti j denotes the second rank tensor −δi j∂kPk +
(∂ iP j + ∂ jPk ). Similarly, the equations for the rest of tensorial
fields can be computed recursively for consecutive ranks.
Taking a combination of (12) and (13), we observe that the
PDF ρ(R, s) and the two-rank tensor Qi j (R, s) are involved
in one equation given by

∂2ρ(R, s)

∂s2
+ 1

2�p

∂ρ(R, s)

∂s
= 1

2
∇2ρ(R, s) + ∂i∂ jQ

i j (R, s).

(15)

It is noteworthy to mention that Eq. (15) is a modified
version of the telegrapher’s equation [49], where the term
∂i∂ jQi j (R, s) makes the difference. In the following, we use
Eq. (15) for the case of a semiflexible polymer in the open
Euclidean plane as a test case. This allows us to verify the
famous experimental result of Kratky and Porod [34] using
this procedure.

Example: Testing the Kratky-Porod result

In this section, we study the case of a semiflexible polymer
on the Euclidean plane. In order to reproduce the well-known
result of Kratky-Porod [34], we apply the multipolar series
method shown in the previous section to compute the mean-
square end-to-end distance. The end-to-end distance is defined
as δR := R − R′; thus the mean-square end-to-end distance is
given by

〈δR2〉 ≡
∫
R2×R2

ρ(R|R′; s)δR2 d2R d2R′. (16)

To compute this quantity, we use Eq. (15) to show that l.h.s.
of (16) satisfies

∂2〈δR2〉
∂s2

+ 1

2�p

∂〈δR2〉
∂s

=
∫

d2R d2R′(δR)2

×
[

1

2
∇2ρ(R, s) + ∂i∂ jQi j (R, s)

]
.

(17)

Integrating by parts on the r.h.s. of (17) with respect to R,
using that ∇2δR2 = 4 and the traceless condition δi jQi j = 0,
we have that 〈δR2〉 satisfies the differential equation

∂2〈δR2〉
∂s2

+ 1

2�p

∂〈δR2〉
∂s

= 2. (18)

Now we solve this differential equation with the initial con-
ditions, for s = 0, 〈δR2〉 = 0 and d

ds 〈δR2〉 = 0. The final
polymer length is denoted by L.

In this way, we found that the mean-square end-to-end
distance is given by

〈δR2〉 = 4�pL − 8�2
p

[
1 − exp

(
− L

2�p

)]
, (19)

which is the standard Kratky-Porod result for semiflexible
polymers confined to a plane [33,34]. The last result has two
well-known asymptotic limits:

〈δR2〉 �
{

4�pL, if L  �p,

L2, if L � �p.
(20)

In the first case, the polymer conformations are equivalent
to Brownian trajectories. In this case, the polymer is called
a Gaussian polymer [12]. In the second case, the polymer
takes only one configuration; it goes in a straight line, which
is known as the ballistic limit. We remark that the result
in Eq. (19) is usually obtained by using different analytical
approaches (for example, see Appendix A and Refs. [14,47]).

In the next section, we address the study of a confined poly-
mer to a flat compact domain within the approach developed
above.

III. SEMIFLEXIBLE POLYMER IN A COMPACT
PLANE DOMAIN

A. General expressions for a semiflexible polymer in an
arbitrary compact domain

In this section, we apply the hierarchy equations devel-
oped in Sec. II C in order to determine the conformational
states of a semiflexible polymer confined to a flat compact
domain D. Commonly, it is necessary to truncate the hierarchy
equations at some rank. For instance, at first order, let us
consider Pi(R, s) as a constant vector field; then (12) implies
that ρ(R, s) is uniformly distributed, which clearly is not
an accurate description because otherwise it means that the
mean-square end-to-end distance would be a constant for all
values of the polymer length s. An improved approximation
consists of taking the truncation on the second hierarchy rank,
which corresponds to assuming that Qi j (R, s) is uniformly
distributed. Indeed, the truncation approximation gets better
the larger the polymer length is, since as it is pointed out
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in Ref. [48] from Eqs. (12) and (13) one can conclude that
the tensors Pi(R, s) and Qi j (R, s) damp out as e−L/(2�p)

and e−2L/�p , respectively. From these expressions, clearly
Qi j (R, s) damps out more strongly than Pi(R, s) for larger
polymer length. In the polymer context, it means that the
tangent directions of the polymer are uniformly correlated.

In the following, let us define a characteristic length a
associated to the size of the compact domain D; thus if we
scale polymer length s with a one can consider 2a/�p as a di-
mensionless attenuation coefficient associated to the damp out
of Qi j (R, s). Thus as long as we consider cases when 2a/�p

far from 1, we may neglect the contribution of Qi j (R, s). Here
we are going to consider this latter case; therefore according
to (15), the telegrapher’s equation is the one considered as the
governing equation of the PDF ρ(R|R′, s),

∂2ρ(R, s)

∂s2
+ 1

2�p

∂ρ(R, s)

∂s
= 1

2
∇2ρ(R, s), (21)

with the initial conditions

lim
s→0

ρ( R|R′, s) = δ(2)(R − R′), (22a)

lim
s→0

∂ρ( R|R′, s)

∂s
= 0. (22b)

These conditions have the following physical meaning.
Clearly, Eq. (22a) means that the polymer ends coincide when
the polymer length is zero, whereas Eq. (22b) means that
the polymer length does not change spontaneously. Since the
polymer is confined to a compact domain, we also impose a
Neumann boundary condition

∇ρ(R|R′, s)|R,R′∈∂D = 0, ∀s, (23)

where ∂D is the boundary of D. This boundary condition
means that the polymer does not cross the boundary coating
the domain.

To solve the differential equation (21), we use the standard
separation of variables [50]. This method requires to solve
the so-called Neumann eigenvalue problem. It consists of
finding all possible real values λ, for which there exists a
nontrivial solution ψ ∈ C2(D) that satisfies the eigenvalue
equation −∇2ψ = λψ and the Neumann boundary condition
(23). In this case, the set of eigenvalues is a sequence λk with
k in a numerable set I , and each associated eigenspace is
finite dimensional. These latter eigenespaces are orthogonal to
each other in the space of square-integrable functions L2(D)
[50,51]. That is, the sequence λk is associated with the set of
eigenfunctions {ψk(R)} that satisfy the orthonormal relation

∫
D

ψk(R)ψk′ (R)d2R = δk,k′ . (24)

Next, we expand the probability density function
ρ(R|R′, s) in a linear combination of those eigenfunctions
{ψk(R)}, that is, a spectral decomposition ρ(R|R′; s) =∑

k gk(s)ψk(R)ψk(R′). Substituting this series in the teleg-
rapher’s equation (21), we find that the functions gk(s) satisfy

the following ordinary differential equation:

d2gk(s)

ds2
+ 1

2�p

dgk(s)

ds
+ 1

2
λkgk(s) = 0, (25)

where the initial conditions (22) imply gk(0) = 1 and dgk(0)/
ds = 0. Therefore, the solution is given by

gk(s) = G

(
s

4�p
, 8�2

pλk

)
, (26)

where

G(v,w) = e−v

[
cosh(v

√
1 − w) + sinh(v

√
1 − w)√

1 − w

]
.

(27)

Finally, using the above information the probability density
function is given by

ρ( R|R′, s) = 1

A(D)

∑
k∈I

G

(
s

4�p
, 8�2

pλk

)
ψk(R)ψk(R′),

(28)

where A(D) is the area of the domain D, which is needed in
order to have a normalized probability density function in the
space D × D. Then we have that ρ(R|R′, s)d2Rd2R′ is the
probability of having a polymer in a conformational state with
polymer length s and ends at R and R′. Additionally, using
expression (28), the mean-square end-to-end distance can be
computed in the standard fashion by

〈δR2〉D =
∑
k∈I

ak G

(
s

4�p
, 8�2

pλk

)
, (29)

where the coefficients ak are obtained by

ak =
∫
D×D

(R − R′)2ψk(R)ψk(R′) d2R d2R′. (30)

In the following, we shall discuss the specific case when
the polymer is enclosed in a square box.

B. Example: Semiflexible polymer in a square domain

In this section, we study the case when the semiflexible
polymer is enclosed in a square box D = [0, a] × [0, a]. For
this domain, it is well known that the eigenfunctions of
the Laplacian operator ∇2 correspond to a combination of
products of trigonometric functions [51]. That is, for each pair
of positive integer numbers (n, m) and positions R = (x, y) ∈
D, it is not difficult to show that the eigenfunctions of the
Laplacian operator consistent with (23) are

ψk(R) = 2

a
cos
(πn

a
x
)

cos
(πm

a
y
)
.

These functions constitute a complete orthonormal basis that
satisfies (24). The corresponding eigenvalues are λk = k2,
with k = ( πn

a , πm
a ).

Now, we proceed to determine the coefficients ak using
Eq. (30) in order to give an expression for the mean-square
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end-to-end distance. By straightforward calculation, the coef-
ficients ak are given explicitly by

ak =
{

1
3 a2, k = 0,

− 4a2

π4

[ (1−(−1)n )
n4 δm,0 + (1−(−1)m )

m4 δn,0
]
, k �= 0.

(31)

Upon substituting the latter coefficients in the general expres-
sion (29), we found that

〈δR2〉D
a2

= 1

3
−

∑
n∈2N+1

32

π4n4
G

(
L

4�p
, 8π2

[
�p

a

]2

n2

)
, (32)

where 2N + 1 is the set of odd natural numbers. Since the
function G(v,w) satisfies that G(v,w) � 1 for all positive
real numbers v and w, the series in Eq. (32) is convergent
for all values of L/�p y �p/a. Considering this last property, it
is possible to prove the following assertions.

Claim 1. Let L/�p any positive nonzero real number, then
the mean-square end-to-end distance (32) obeys

lim
�p/a→0

〈δR2〉D
�2

p

= 4L

�p
− 8

[
1 − exp

(
− L

2�p

)]
.

Claim 2. Let L/�p and �p/a any positive nonzero real
numbers and c = 2/3 − 64/π4, then the mean-square end-to-
end distance (32) obeys

0 � 〈δR2〉D
a2

� 2

3

and

0 � 〈δR2〉D
a2

−
[

1

3
− 1

3
G

(
L

4�p
, 8π2

�2
p

a2

)]
� c.

Claim 1 recovers the Kratky-Porod result about the mean-
square end-to-end distance [see Eq. (19)]. Claim 2 means
that the mean-square end-to-end distance is bounded from
below by 0 and is bounded from above by 2/3a2. In addition,
this second claim also provides an approximation formula for
〈δR2〉D, that is, for all values of L/�p and �p/a such that the
condition

1 − G

(
L

4�p
, 8π2

�2
p

a2

)
 3c (33)

holds, one has the following approximation:

〈δR2〉D
a2

� 1

3
− 1

3
exp

(
− L

4�p

)

×
⎧⎨
⎩cosh

⎡
⎣ L

4�p

(
1 − 8π2

�2
p

a2

) 1
2

⎤
⎦

+
(

1 − 8π2
�2

p

a2

)− 1
2

sinh

⎡
⎣ L

4�p

(
1 − 8π2

�2
p

a2

) 1
2

⎤
⎦
⎫⎬
⎭.

(34)

Let us point out that the validity of this approximation occurs
provided that the condition (33) holds, that is, whenever one
can neglect the value c (see Appendix B for proofs of Claims
1 and 2).

In the following, let us remark that for any fixed value of
a, the r.h.s. of (34), as a function of L, shows the existence of
a critical persistence length, �∗

p ≡ a/(π
√

8), such that for all
values �p > �∗

p it exhibits an oscillating behavior, whereas for
�p < �∗

p, it is monotonically increasing. In addition, for each
value of �p the function (34) converges to 1/3 as long as L 
a. The critical persistence length, therefore, distinguishes two
conformational behaviors of the semiflexible polymer en-
closed in the square box. In Fig. 8 below the mean-square end-
to-end distance, Eq. (32) and r.h.s. of (34), have been shown
for the ratios �p/a = 1/32, 1/16, 1/8, 1/4, 1/2, 1 where we
can appreciate both conformational states. Furthermore, one
of the most intriguing features of the above approximation
(34) is its similar structure to the corresponding one in the
case of a polymer wrapping a spherical surface. Indeed, let
us remark that (34) has the same mathematical structure as
the mean-square end-to-end distance found by Spakowitz and
Wang [13], exhibiting both conformational states.

In the next section, we address the study of the semiflexible
polymer through a Monte Carlo algorithm in order to corrob-
orate the results found here.

IV. MONTE CARLO ALGORITHM FOR SEMIFLEXIBLE
POLYMERS

Here we develop a Monte Carlo algorithm to use in com-
puter simulations in order to study the conformational states
of a semiflexible polymer enclosed in a compact domain. In
particular, the algorithm will be suited to the square domain,
which, additionally, will allow us to validate our analytical
approximations shown in the last section.

As we have emphasized above, the WLC model is the
suitable framework to describe the spatial distribution of semi-
flexible polymers, which are modeled as n beads consecu-
tively connected by n − 1 rigid bonds, called Kuhn’s segments
[52]. Each bead works like a pivot allowing us to define
an angle θi between two consecutive bonds, where i is the
label of the ith bead. This model requires a potential energy
description where all possible contributions due to bead-bead,
bead-bond, and bond-bond interactions are taken into account.
In a general setting, energies of bond stretching, elastic bond
angle, electrostatic interaction, torsional potential, etc., should
be considered, such as in Refs. [53–60]. However, here we are
interested solely in the study of possible spatial configurations
of a single semiflexible polymer enclosed in a compact do-
main D, such as the one shown in Fig. 1. Thus in our case we
take into account only two energetic contributions, namely,
the elastic bond angle and the wall-polymer interaction. The
first contribution, the elastic bond angle, is given by

Eb = g

2

∑
i

θ2
i , (35)

where θi is the angle between two consecutively bonds and
g = α/l0, where we recall that α is the bending rigidity and
l0 is the Kuhn length. In addition, we must consider the wall-
polymer interaction given by

Ew =
{

0, if all beads are in D,

∞, if there are beads outside of D.
(36)
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FIG. 1. Generic compact domain D is shown, where the bound-
ary wall ∂D is represented by the black continuous line. The con-
dition defining the beads near to the wall is represented by the blue
filled region of width ls.

Taking into account the energetic contributions previously
described, the probability distribution in Eq. (4) resembles
a continuum version of a Gaussian distribution [61]. In this
context, we generate random chains enclosed in D, consti-
tuted by N bonds with constant Kuhn length, implementing
a growth algorithm, where the polymer configurations are
produced as random walks off-lattice. It is worth mentioning
that this chain is started considering a fixed end. Meanwhile,
the other end will grow fluctuating freely. Moreover, the
interaction between the polymer and the wall is implemented
through the masking method, as suggested by Chen [46].
Our computational realization consists of bead generation
attending the following conditions: starting bead, beads far
from walls, beads near to walls, and selection problem, which
are explained in the following subsections.

A. Starting bead

This condition describes the process of initial bead genera-
tion and the acceptance criteria of the second bead. We choose
the initial bead at x0 as a uniformly distributed random point
in the region D. In each run, this x0 is one of the ends of
the chain, and it stays fixed during the rest of the simulation.
We define the auxiliary vector Rl0 = (l0, 0), which is parallel
to the horizontal axis; it will allow us to determine if the next
bead is inside D. Also, we consider the angle θ0 as the one that
is formed between the horizontal axis and the first bead, which
is taken from a uniform distribution in the interval [0, 2π ].
Note that the election of x0 and θ0 is consistent with the
physical condition of the enclosed polymer inside the compact
domain. This condition is the same used in the analytical
solution above. Now we compute the following vector:

R′ = R(θ0)Rl0
T , (37)

where R(θ0) denotes the two-dimensional rotational matrix
by an angle θ0, defined as

R(θ0) =
[

cos θ0 − sin θ0

sin θ0 cos θ0

]
, (38)

and the superscript denotes the transposition of Rl0 . The
resultant vector x0 + R′T will be the position of the second

bead only if this is inside D. dIf this happened, the new bead
will be denoted by x1 and the vector Rl0 = R′T is actualized.
On the contrary, we repeat the process until we find an angle
that satisfies the condition that the second bead is enclosed in
the domain.

B. Beads far from walls

This condition describes the method of subsequence bead
generation. We say that a bead is far from walls if the
perpendicular distance between the boundary ∂D and the bead
is greater than a particular distance ls. The meaning of ls is in
the same sense as the deflection length in the generic masking
method implementation [62,63]. In this case, if the (k − 1)-
th bead satisfies this condition, we generate the subsequent
bead taking a random angle θk distributed according to a
Gaussian density function N (0, l0/�p), where we recall �p as
the polymer persistence length. As in the previous condition,
we compute the vector R′ = R(θ0)Rl0

T corresponding to the
kth rotation of Rl0 . If l0 < ls, the resultant vector xk−1 + R′T
is in D for any angle. Therefore, all rotations are accepted, so
we assign the position xk to the kth bead.

C. Beads near walls

This condition describes the interaction between the poly-
mer and the walls. The most important problem to solve here
is the smooth bending of the chain when the polymer is near
the walls. In a similar fashion as in the previous condition, we
say that a bead is near the walls if the perpendicular distance
from ∂D to the bead is smaller than ls. This condition looks
like a frame surrounding the boundary of D (see blue filled
region in Fig. 1). The scalar product n̂ · R′T is used to seek
the generation of a new bead, where n̂ is the normal vector of
∂D, and R′T is the orientation of the bead with position xk .
In this region, we favor the smooth bending of the polymer
taking into account the following rules. If n̂ · R′T � 0, the
generation of the new bead is going away from the wall.
In this case, we generate the next bead according to second
condition. If n̂ · R′T < 0, the new bead generated approaches
the wall. In this case, we promote the bending of the chain-
generating angles with the same Gaussian function as in the
previous condition. However, we do the rotation by an angle
−sgn(R′T

2 )|θk|, where sgn is the sign function, and R′T
2 is the

projection of R′T over the perpendicular vector to n̂ (a π/2
rotation of n̂). The sign “-” appears there because we do
counterclockwise rotations. Also, we need to check that the
resultant vector xk−1 + R′T is in D; if this is the case, we
assign the position xk to the kth bead. Otherwise, we generate
angles θki with a Gaussian distribution function N (0, l0/�p)
until the next bead is in D, doing rotation by angles

θk = −sgn
(
R′T

2

) m∑
i=1

|θki|, (39)

where m is the number of angles generated until the next
bead is in D. In Fig. 2 we show a schematic representation
of this condition. Dashed arrows (green and red for positive
and negative rotations, respectively) are the promoted direc-
tion according to the sign of the projection of R′T over the
perpendicular vector to n̂ (blue arrow, denoted by n̂⊥).
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FIG. 2. Local schematic representation of the bending conditions
when the beads are near walls and n̂ · R′T < 0.

Finally, these steps are repeated n times to generate a
polymer of n bonds (or n + 1 beads) taking care of polymer-
walls interaction. This algorithm allows us to generate the
spatial configurations for confined polymers into a compact
domain. It is clear that the total length of a polymer of n
bonds is L = nl0. We denote the x(L) of the last bead after
n bonds, so the mean-square end-to-end distance is computed
as 〈δR2〉D = 〈(x(L) − x0)2〉. In Sec. V we analyze the results
obtained for 〈δR2〉D using this algorithm as a function of the
persistence length and the polymer length when D is a square
box.

It is worth mentioning that in the physical system there
is not a masking region. The latter is introduced in the
algorithm as an artificial feature to approach the problem of
the interaction between the walls and the polymer that leads
to the right bending of the chain when the polymer meets
the walls. Furthermore, it is to highlight that this trait allows
us to reduce the running time of the simulation. The price
paid for introducing this masking function is the violation of
the microscopic reversibility in the generation of consecutive
beads in the masking region since the probability to accept a
bead generation in a backward direction is zero. However, the
role played by this loss of microreversibility is statistically
suppressed when �p � a/2 as is observed in the simulation
results shown in the next section.

D. Selection problem

The selection problem consists of choosing the adequate
value of ls. This value should be suitable to avoid the over- or
underbending of the polymer. For instance, if �p is comparable
with the size of D, and ls is not appropriate to promote the
chain bending when the polymer is near the boundary ∂D, the
generation of beads outside of the domain will be favorable.
Therefore, the polymer will present bendings with high values
of angles where the chain meets the boundary. The selection
problem is resolved using the dimensional analysis of 〈δR2〉D.
Indeed, observe that in the continuous limit of the chain, the
mean-square end-to-end distance can be written as 〈δR2〉D =
a2g(�p/a, L/a), where g(�p/a, L/a) is a dimensionless func-
tion. Then we choose ls such that the mean-square end-to-end
distance computed with the simulation data depends just on
this combination �p/a and L/a. In other words, for k we
calculate k profiles of 〈δR2〉D/a2 for a k number of pairs
(�1

p, a1), (�2
p, a2), . . . , (�k

p, ak ), with �i
p/ai fixed for all i =

1, . . . , k, and then we choose ls such that all these profiles
collapse in a unique curve.

TABLE I. Values of ls used in simulations for different values of
persistence length �p.

�p/a ls/a

1 0.085
1/2 0.065
1/4 0.050
1/8 0.040
1/16 0.010
1/32 0.005
�1/50 0

V. SEMIFLEXIBLE POLYMERS ENCLOSED IN A SQUARE
BOX: SIMULATION VERSUS ANALYTICAL RESULTS

In this section, we are going to implement the algorithm
explained in the preceding section for the particular case of
a polymer enclosed in a square box of side a. In this case,
let us first note that for beads near the corners, checking
the conditions to promote the chain bending for both ad-
jacent walls at the same time is needed. Next, in the sim-
ulation we set up our unit length by d = 102 l0. Now we
have to present the selection of ls according to the last part
of the general algorithm. Thus, for the fixed ratios �p/a =
1/50, 1/32, 1/16, 1/8, 1/4, 1/2, 1, we study three profiles
corresponding to the values a/d = 5, 10, 15, respectively. In
Table I the selection values ls are shown once we collapse the
three profiles in a unique curve.

The results shown in this section were computed as the
average over 106 spatial configuration of confined polymers,
which were obtained using the algorithm described in the pre-
vious section. In particular, we study two respective regimes
defined through the comparison between the box side a and
the polymer length L. The first one, polymers in weak con-
finement whenever L/a � 1, is discussed in Sec. V A. The
second one, polymers in strong confinement, corresponding
to the situation when the polymer length is larger than the box
side, is discussed in Sec. V B.

A. Polymer in weak confinement

In this regime, once we have solved the selection problem
of ls, we present the simulation results for polymers enclosed
in a square box of side a = 10 d for different values of per-
sistence lengths. In Fig. 3 examples of semiflexible polymers
in weak confinement are shown. Notice that for very short
persistence length, �p � l0, the chain looks like a very curly
string like random walks, whereas when �p increases, the
polymer adopts uncoiled configurations.

The mean-square end-to-end distance is shown in Fig. 4,
where we note that it increases as long as �p increases,
allowing the polymer to explore more surface as a function of
the total polymer length. Also, notice that for small polymer
lengths, the mean-square end-to-end distance is in an excellent
agreement with the results for semiflexible polymers in an in-
finite plane given by Eq. (19). Conversely, for polymer lengths
around L � a we observe a slight deviation between the mean-
square end-to-end distance and the infinite plane solution
(19), because of the finite size of the box. Notwithstanding,
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lp/a=10-3

lp/a=2.5x10-3

lp/a=5x10-3

lp/a=10-2

lp/a=2x10-2

lp/a=1/32
lp/a=1/16

lp/a=1/8
lp/a=1/4

FIG. 3. Examples of semiflexible polymers, with length L = a,
in the weak confinement regime for several values of persistence
length. Solid black lines represent the walls of the box.

for small persistence lengths (�p � 10−3a), the mean-square
end-to-end distance is well fitted by Eq. (19). In this case, the
polymer does not seem to be affected by the walls, since the
area explored by the chain is too short, on average, to meet the
walls.

Furthermore, when the mean-square end-to-end distance
and the polymer length is scaled by �2

p and �p, respectively,
we found that the data shown in Figs. 4 and 5 are collapsed,
respectively, into an unique plot shown in Fig. 6, evidencing
a ballistic behavior for small values of L/�p followed by a
“diffusive” regime for large values of L/�p. These results
correspond to the well-known asymptotic limits of the Kratky-

FIG. 4. Mean-square end-to-end distance for confined polymers
(points) with several persistence lengths. The deviation from the
predictions for a polymer in a infinite plane (solid lines) given by
Eq. (19) is because on average the chain meets the polymer at lengths
L � a.

FIG. 5. Mean square end-to-end distance for polymers in the
Gaussian chain limit generated by the algorithm described in Sec. IV.

Porod result (20). In addition, it is noteworthy to mention
that these asymptotic limits are also reported in Ref. [13] for
a semiflexible polymer wrapping a spherical surface in the
corresponding plane limit. The symbol log refers to logarithm
in base 10 in all the article.

B. Polymer in strong confinement

In this section, we discuss the case of a polymer enclosed
in a square box when its length is large enough to touch the
walls and to interact several times with them. We perform
simulations in order to generate polymers of lengths up to
L/a = 10 (chains of 104 beads) for persistence lengths �p/a =
1/32, 1/16, 1/8, 1/4, 1/2, 1 for the values of box side a/d =
5, 10, and 15, respectively. These simulations use the values
of ls shown in Table I. Examples of these polymers are shown
in Figs. 7 and 8.

In Fig. 8 we also report the mean-square end-to-end dis-
tance scaled by a2 as a function of L/a for the different box
sides (a = 5, 10, and 15). In addition, in Fig. 9 we report
as well the mean-square end-to-end distance scaled by �2

p as
a function of L/�p. By simple inspection, in both cases an
oscillating behavior is exhibited for values �p/a > 1

8 , whereas
a monotonically increasing behavior becomes evident for

FIG. 6. Universal behavior of the mean-square end-to-end dis-
tance in Fig. 4 in the scaling 〈δR2〉/�2

p vs L/�p (solid lines). Dashed
lines are references for the ballistic and diffusive regimes for poly-
mers in weak confinement.
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L/a=2 L/a=4 L/a=6 L/a=8 L/a=10

FIG. 7. Snapshots of the growing chain process for polymers
with a persistence length �p/a = 1. Each row represents a single re-
alization where the fixed and growing ends are labeled by a circle and
a triangle, respectively. Each column shows a polymer configuration
when the chain reaches length (from the left to the right) L/a = 2,
L/a = 4, L/a = 6, L/a = 8, and L/a = 10, correspondingly. It is
also shown how the polymer rolls up around the square box while
the polymer length becomes larger.

persistence lengths such that �p/a < 1
8 . A growth in the

number of oscillations is observed while �p/a increases from
1/8. In addition, for values �p/a less than 1/8 the behavior
of the mean-square end-to-end distance corresponds to the
one of a Gaussian polymer enclosed in a box and the cor-
responding conformational realization of the polymer looks
like a confined random walk. As was mentioned before this
transition between the oscillating and monotonic behavior of
the conformation of the semiflexible polymer is very similar to
that described by Wang and Spakowitz [13] for a semiflexible
polymer confined to a spherical surface. Moreover, as noted in
Fig. 9 in the small polymer lengths regime, the mean-square
end-to-end distance shows a ballistic behavior, followed by
a brief interval with a “diffusive” behavior. Furthermore, an
interesting observation is that the mean-square end-to-end
distance exhibits an asymptotic plateau behavior for large
values of L/�p as a function of a/�p. In Fig. 10 we show
the value of the mean-square end-to-end distance for the the
polymer length L = 10 a in logarithmic scale as a function
of a/�p in binary logarithmic scale. In this condition, the
plateau behavior is well fitted by a linear function, where the
slope, m, of the line satisfies m/ log 2 = 1.97 � 2, whereas
that the intercept takes the value b = −0.473 ± 0.006. This
last fact leads us to a universal scaling law of the mean-square
end-to-end distance regarding the box side for very large

polymers:

〈δR(L = 10a)2〉
a2

= 10b ∼ 0.336 ± 0.004, (40)

where the error has been computed as the propagation error
from the linear fit of the data in Fig. 10. This result is the
universal convergence of the rate 〈δR2〉D/a2 to 1/3 for very
large polymers, which becomes independent of the box side
when the quotient �p/a keeps fixed. This is comprised if
we consider all available space in the box occupied so that
a uniform distribution of beads occurs. Indeed, through the
definition (16) with ρ(R|R′; L → ∞) = 1/a4 one can get
the desired result. Finally, it is noticeable that by simple
inspection of the five polymer realizations shown in Fig. 7, for
�p/a = 1, all have the same conspicuous relation between the
period of oscillation and the number of turns that the polymer
performs.

All these features of the behavior of the mean-square end-
to-end distance are reproduced by the theoretical prediction
(34) and (32). In particular, it is significant to note that the
critical persistence length found in our earlier discussion (see
Sec. III B) satisfies approximately �∗

p/a = 1/(π
√

8) ≈ 1/8.
We also note that for �p/a = 1 there is a slight discrepancy
between the simulations results and the theoretical prediction
(32) appearing in the three local minima shown in Fig. 8. This
is due to the fact that for values of �p/a near 2 there is a break-
down of the telegrapher approximation that we performed in
Sec. III A. In other words, the small disagreement appears
for �p/a ≈ 1 because the role of the tensor Qi j becomes
important and it cannot be neglected in Eq. (15). Additionally,
we observe that in Fig. 8(a) there is a slight discrepancy
between the simulation data. In particular, it is because in this
case the violation of microscopic reversibility in the masking
region plays a more relevant role. This is also related to the
fact that the width of the masking region is larger than in the
other cases.

VI. CONCLUDING REMARKS AND PERSPECTIVES

In this paper we have analyzed the conformational states
of a semiflexible polymer enclosed in a compact domain.
The approach followed rests on two postulates, namely, that
the conformation of a semiflexible polymer satisfies the
Frenet stochastic equations (3), and the stochastic curvature
is distributed according to (4), which is consistent with the
WLC model. In addition, it turns out that the Fokker-Planck
equation, corresponding to the stochastic Frenet equations,
is exactly the same as the HU equation [see Eq. (8)] [33].
Furthermore, taking advantage of the analogy between the
HU equation and the Fokker-Planck equation for a free active
particle motion [48], we establish a multipolar decomposition
for the probability density function, P(R, θ |R′, θ ′; L), that
describes the manner in which a polymer with length L dis-
tributes in the domain with certain endings, R and R′ and their
associated directions θ and θ ′, respectively. In consequence,
exploiting this analogy we provide an approximation for
the positional distribution ρ(R, R′, L) through telegrapher’s
equation, which for a compact domain is a good approxima-
tion as long as 2a/�p > 1, where a is a characteristic length
of the compact domain. In particular, we derive results for a
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FIG. 8. Mean-square end-to-end distance for polymers in strong confinement as a function of the polymer length for both the theoretical
prediction (solid lines) given by Eq. (32) and the simulation results (figures) considering different values of the persistence length: (a) �p/a = 1,
(b) �p/a = 1/2, (c) �p/a = 1/4, (d) �p/a = 1/8, (e) �p/a = 1/16, and (f) �p/a = 1/32. The simulations were performed using three different
box sides a/d = 5 (blue triangles), a/d = 10 (red squares), and a/d = 15 (green circles). We also depicted examples of polymer chains of
length L/a = 10 in inset plots for the corresponding persistence length value, where the initial fixed starting bead is represented by a black
filled circle, while the growing end is labeled by a black filled triangle.

semiflexible polymer enclosed in a square box domain, where
we can give a mathematical formula for the mean-square
end-to-end distance.

Furthermore, we have developed a Monte Carlo algorithm
to study the conformational states of a semiflexible polymer
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FIG. 9. Mean-square end-to-end distance for polymers in strong
confinement as a function of the persistence length. Note that
〈δR2〉 shows an oscillating behavior for values of persistence length
satisfying the relation �p/a > 8, which is the same signature for
the mean-square end-to-end distance for polymers confined into a
sphere. Dashed and doted lines have been plotted as references for
the ballistic and diffusive behaviors, respectively.

enclosed in a compact domain. In particular, we implement
this algorithm to the case of a square box domain. The total
running time, i.e., the time it takes to carry out a chain
compound by n beads, is linear in the total polymer length. For
a chain of 104 beads, we have measured an average CPU time
of 0.14 s per trial [64]. Note that the higher persistence length,
the slower the running time. We also compare the results of the
simulation with the theoretical predictions finding an excellent
agreement. Particularly, we have considered two situations,
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g(

<
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(L
=

10
a)

2 >
/l p

2 )

log2(a/lp)

Fit

FIG. 10. Convergence of the mean-square end-to-end distance
〈δR2〉D = a2/3 for very large polymers in strong confinement as a
function of the ratio a/�p.
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namely, a polymer in weak confinement and a polymer in
strong confinement corresponding to polymers with length
lesser and greater than the box side, respectively. In the weak
confinement case, we reproduce the two-dimensional solution
of a free chain, i.e., the Kratky-Porod result for polymers con-
fined in two dimensions. In the strong confinement case, we
showed the existence of a critical persistent length �∗

p � a/8
such that for all values �p > �∗

p the mean-square end-to-end
distance exhibits an oscillating behavior, whereas for �p < �∗

p,
it is monotonically increasing. In addition, for each value of
�p the function converges to 1/3 as long as L  a. The critical
persistence length, thus, distinguishes two conformational
behaviors of the semiflexible polymer enclosed in the square
box. As was mentioned above, this result is the same type as
the one found by Wang and Spakowitz [13] for a semiflexible
polymer wrapping a spherical surface. As a consequence of
this resemblance, one can conclude that the shape transition
from oscillating to monotonic conformational states provides
evidence of a universal signature for a semiflexible polymer
enclosed in a compact space.

Our approach can be extended in various directions. For
instance, the whole formulation can be extended easily to
semiflexible polymers in three dimensions, although we must
consider an stochastic version of the Frenet-Serret equations;
now in this case, one would obtain the three-dimensional case
of the HU equation, because the WLC model involves just
the curvature. In addition, the approach developed here can
also be extended to the case where the semiflexible polymer
wraps a curved surface. Furthermore, it is possible to simulate
conformational states of a polymer via the solutions of the
Langevin equations in (6). Another simulation method could
be performed through the Rosenbluth-Rosenbluth algorithm
[65,66], whose implementation is an alternative to the mask-
ing method, and the corresponding soft bending of the chain
would come from conformations in equilibrium satisfying the
adequate detailed balance.
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APPENDIX A: SAITÔ’S et al. APPROACH

The conformational state space of the polymer in this ap-
proach corresponds to the functional space {T(s)|s ∈ [0, L]},
where T(s) is a tangent vector to the curve that describes
the conformation of the polymer. Thus, the probability of
having the polymer in a particular conformation given the
end directions at TL and T0 is denoted by P[T]DT. Upon
integrating over all conformations with the exception of the
fixed ends in TL and T0, we find that∫ TL

T0

P[T]DT = 1

N Z(TL, T0, L), (A1)

where DT is a functional measure, and Z is usually called
the partition function [47]. Note that Z(T(L), T0, L)/N =

P(TL, T0, L) is the probability density of finding the polymer
with end directions T0 and TL and length L. Also,

N =
∫

T2=1
d2TZ(T, T0, L) (A2)

is the normalization constant. The partition function is a path
integral in the context of the path integral formulation in
quantum mechanics developed by Feynman. In particular, the
partition function for the semiflexible polymer conformation
in the approach of Saitô et al. is given by

Z(T(L), T0, L) =
∫ T(L)

T(0)
DT exp

(
−�p

2

∫ L

0
κ2 ds

)
, (A3)

where DT is the functional measure for the polymer confor-
mations. The partition function Z(T(L), T0, L) can be deter-
mined in several ways [40].

In this description, the average value of physical observ-
ables is computed in the traditional way:

〈O(T)〉 =
∫

T2=1
d2T O(T)P(T, T0, L). (A4)

One observable of interest is the mean-square end-to-end
distance 〈δR2〉, which we compute in the same way as Saitô
et al.:

〈δR2〉 =
∫ L

0
ds′
∫ L

0
ds〈T(s) · T(s′)〉. (A5)

In particular, when the polymer is lying in the open Eu-
clidean plane 〈δR2〉, the mean-square end-to-end distance
can be computed exactly, and the result is the same as
(19). The argument to prove this is as follows. Due to the
functional structure of the partition function, it is possible to
prove that Z satisfies a diffusion-type equation ∂Z

∂s = 1
2�p

∇2
TZ,

with the initial condition limL→0 Z(TL, T0, L) = δ(TL − T0).
Here the Laplacian operator ∇2

T is the two-dimensional Lapla-
cian constrained to T2 = 1, so it is convenient to define the
parametrization T = (cos θ, sin θ ). Thus, we have that

∂Z

∂s
= 1

2�p

∂2Z

∂θ2
. (A6)

The latter equation can be solved using separation of vari-
ables. The solution is

Z(θ, θ0, s) =
∞∑

m=−∞
e− m2s

2�p eim(θ−θ0 ). (A7)

Also, the normalization constant is N = 2π . Therefore, the
mean-square end-to-end distance reads

〈δR2〉 = 1

2π

∫ L

0
ds′
∫ L

0
ds
∫ 2π

0
dθ cos θ Z(θ, 0, |s − s′|).

(A8)

After an straightforward calculation using (A7) one can con-
clude the desire result (19).

APPENDIX B: PROOF OF CLAIMS

In this section we provide the proof of the assertion in
Claims 1 and 2.
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Claim 1. Let L/�p any positive nonzero real number, then
the mean-square end-to-end distance (32) obeys

lim
�p/a→0

〈δR2〉D
�2

p

= 4L

�p
− 8

[
1 − exp

(
− L

2�p

)]
.

Proof. Expanding the function (27) in Taylor series in the
variable w at w = 0 we find

G(v,w) = 1 − 1
2 [v − e−v sinh (v)]w + O(w2). (B1)

Substituting (B1) in Eq. (32), we get

〈
δR2

〉
D = a2

[
1

3
−

∑
n∈2N+1

32

π4n4

]

+ 4�2
p

[
L

4�p
− e− L

4�p sinh

(
L

4�p

)] ∑
n∈2N+1

32

π2n2

+ O

(
�3

p

a3

)
. (B2)

Note that the series in (B2) can be expressed through the
Riemann ζ and Dirichlet η functions using∑

n∈2N+1

32

π knk
= 16

π k
[ζ (k) + η(k)]. (B3)

Specifically, for k = 2 and k = 4, we have 16
π2 [ζ (2) + η(2)] =

4, and 16
π4 [ζ (4) + η(4)] = 1

3 , respectively [67]. Finally, we get
the result claimed substituting these values in Eq. (B2) and
taking the corresponding limit. �

Claim 2. Let L/�p and �p/a any positive nonzero real
numbers and c = 2/3 − 64/π4, then the mean-square end-to-
end distance (32) obeys

0 � 〈δR2〉D
a2

� 2

3
and

0 � 〈δR2〉D
a2

−
[

1

3
− 1

3
G

(
L

4�p
, 8π2

�2
p

a2

)]
� c.

Proof. For the first inequality, let us call

Gn ≡ G

[
L

4�p
, 8π2

(
�p

a

)2

n2

]
, (B4)

where Gn dependences on L/�p and �p/a are not written for
the sake of simplicity. Taking the triangle inequality, and using
that |Gn| � 1, we have that

∣∣∣∣∣
∑

n∈2N+1

32

π4n4
Gn

∣∣∣∣∣ �
∑

n∈2N+1

32

π4n4
= 1

3
, (B5)

where we have used the identity (B3), that is,
16
π4 [ζ (4) + η(4)] = 1

3 . Finally, it is sufficient to use the
triangle inequality in Eq. (32) and the relation in Eq. (B5).

For the second inequality, note that Eq. (32) can be written
as follows:

〈δR2〉D
a2

−
(

1

3
− 1

3
G1

)
=
(

1

3
− 32

π4

)
G1

−
∑

n∈2N+3

32

π4n4
Gn. (B6)

Taking the absolute value in both sides in the latter equation,
and using the triangle inequality and the property |Gn| � 1,
we have that

∣∣∣∣ 〈δR2〉D
a2

−
(

1

3
− 1

3
G1

)∣∣∣∣ �
(

1

3
− 32

π4

)

+ 16

π4
[ζ (4) + η(4) − 2].

Using that ζ (4) = π4/90 and η(4) = 7π4/720, we conclude
the proof. �
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